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Abstract — Scheduled block time (SBT) setting is a crucial part in 

airlines’ scheduling. Interviews with the airline and relevant 

work in ground transportation have shown that SBT and the 

historical block time distribution have a close relationship. A 

better understanding of this relationship is a major goal for the 

FAA and the airlines because the benefits includes less cost, more 

efficient operations and better performance in the National 

Airspace System. This paper investigates this relationship with 

empirical data and multiple regression models. The historical 

block time information is aggregated to individual flight level to 

keep track of the performance of the flight over a time period. 

The distribution of the flight time for a flight is depicted by the 

difference between every 10
th

 percentiles. We found that 

departure delay plays a minor role in setting scheduled block-

time, and that SBTs have decreasing sensitivity to historical flight 

times towards the right tail of the distribution. Airlines tend to 

act “optimistically” and are willing to experience delays in trade 

of a shorter SBT. We also include OD pair information in the 

model and found longer SBT is set for larger airports, as padding 

for busy traffic. Taking the heterogeneity in the behavior across 

airlines into consideration, we further decompose the dataset to 

study specific airlines. The historical flight time distribution has 

similar effect on SBT for different airlines, and low cost carriers 

tend to set a shorter SBT than legacy carriers. For legacy 

carriers, we found that American Airlines values level of service 

provided the most, whereas United Airlines has a really 

aggressive behavior to cut SBT. Legacy carriers also set a shorter 

SBT for flights between their own hubs, to avoid the disruption of 

early arrivals.  

Keywords-Aviation; Scheduled Block Time; Airline Scheduling 

Behavior; Block Time Reliability 

I.  INTRODUCTION  

Block time scheduling is a very crucial part of the airline 
scheduling business and airlines face a complex trade-off. FAA 
defines block-time as the time that commences when an aircraft 
moves under its own power for the purpose of flight and ends 
when the aircraft comes to rest after landing [1]. For a specific 
flight—e.g. United 364 from San Francisco to Washington 
Dulles—the airline pre-assigns a block time for it as a step in 
their schedule design. This pre-assigned time is known as the 
scheduled block time (hereafter, SBT) for this flight. Fig. 1 
illustrates scheduled block time in the context of flight time 
decomposition. Scheduled block time (SBT) is the time 
duration between the scheduled (computer reservation system, 
or CRS) departure and scheduled (CRS) arrival time. The 

actual block time (FT) is the time between actual departure and 
arrival time and it may vary from day to day for the same 
flight. The block time can be further decomposed into taxi-out, 
airborne and taxi-in time. The time between scheduled 
departure time and actual departure time is defined as departure 
delay, or gate delay.  

Typically the airline scheduler sets SBT for a certain flight 
more than six months ahead of time based on the estimate of 
the time it takes to complete each flight [2]. The CEO of Delta 
Airlines made a comment in the summer 2012 that the 
scheduled block time for a large jet flying between DCA and 
ATL city pair today is the same as that for a far slower DC-7 
flying it in 1960. This is one example showing that despite 
much faster aircraft, the improvement in the SBT is only 
marginal over the past 50 years and airlines are not satisfied 
with this. One possible explanation is that increasing traffic 
volume is dispersing the distribution of block time, thus 
prolonging the SBT. SBT is an important airline cost driver for 
airlines. A longer SBT means less efficient utilization of the 
aircraft, and thus fewer scheduled flights for a fleet. Moreover, 
flight crews are paid based on the maximum of actual block 
time and scheduled block time. Shorter SBT reduces early 
arrivals so that crews are less likely to be overpaid. On the 
demand side, passengers may be driven away by longer SBTs 
and choose other airlines with shorter SBTs. A longer SBT 
may lead to more early arrivals, increasing ramp congestion 

  

Figure 1.  Scheduled Block Time (SBT) in the Context of Flight Time 

Decomposition. [2] 
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and aggravating passengers if a gate is not immediately 
available. Therefore, based on all of these factors, the airlines’ 
profit motive encourages a shorter SBT. On the other hand, 
SBT is directly related the airlines’ operational performance. A 
longer SBT with more padding will guarantee less delay 
(against schedule) for the flight and thus better on-time 
performance. On-time performance must be reported to the 
Department of Transportation (DOT) and is available to the 
public. It may act as an important metric for passengers to 
evaluate the airlines and choose their carrier. Moreover arrival 
delay tends to propagated in the National Airspace System 
(NAS) that would also disrupt performance. Hao and Hansen 
[3] found that one minute of delay per flight in the three New 
York airports will cause 0.07 minute of delay per flight in the 
other airports in NAS. One minute of delay per flight in the 
rest of NAS will generate 0.28 minute of delay in New York. 
The desire to improve on-time performance and reduce delay 
thus encourages longer SBTs for the airlines. Therefore, the 
airline faces a complex set of trade-offs in setting SBT. 

While the idea of making flight schedules more ―robust‖—
immune to the disruptive impact of delays—has emerged in the 
past decade and applied in a wide range of scheduling 
decisions, there is little literature that takes block time 
distribution into account in the analysis of scheduled block 
times. According to some airline schedulers, many airlines 
decide scheduled block-times based on fixed percentiles of 
actual block-time distributions built from historical data [4]. 
Sohoni et al. argue, however, such techniques have not resulted 
in good on-time performance (OTP). They defined two service-
level metrics for an airline schedule to incorporate reliability 
and develop a stochastic integer programming formulation to 
adjust the existing schedule by changing departure time to 
maximize expected profit, while ensuring the two service 
levels. Another attempt to predict SBT using historical data is 
done by Coy in [5]. A two-stage statistical model of airlines’ 
SBT is applied in the paper and the realized block time is found 
to be an effective predictor of block time, having a parameter 
very close to 1. In addition, arrival times, airport utilization, 
poor weather condition including ice procedure at airports are 
found to be significant predictors of block time [5]. 
Considering the complexity of robust scheduling, 
Chiraphadhanakul and Barnhart [6] studied how to more 
effectively utilize the existing slacks rather than simply having 
more slacks to achieve a more robust schedule. Schedule slack 
is defined as the additional time allocated beyond the expected 
time required for each aircraft connection, passenger 
connection, or flight leg [6]. Slacks can absorb delay to keep 
the system more reliable, however at a very high cost per 
minute.  They developed the concept of effective slack (the 
total aircraft/passenger slack after accounting for the historical 
arrival delay), with caps of certain minutes, as an optimization 
objective. They also found that minor schedule adjustments to 
the original schedule can significantly improve overall 
schedule performance.  

As an important part in airline scheduling, the impact of 
SBT is profound for both airlines and the FAA. The direct 
impact of SBT on flight delays naturally influences airline on-
time performance. In [2] Deshpande and Arikan analyzed 
empirical flight data published by the Bureau of Transportation 

Statistics to estimate the scheduled on-time arrival probability 
of each commercial domestic flight. They claimed that the 
definition for on-time performance is crucial and questioned 
the DOT’s 15-minute on-time metric (known as A14 since it is 
the fraction of arrivals that are less than 15 minutes late) based 
on their finding that huge difference exists in on-time 
performance and flight delay under the A14 and A0 definitions. 
They calculated a cost ratio of leftover (overage) cost to 
shortage (underage) cost for each flight. These two costs 
represent the weight airlines are putting into earliness and 
lateness of a flight. Their results show that airlines 
systematically ―underemphasize‖ flight delays, i.e., that the 
implied flight delay costs are less than the implied costs of 
early arrivals for a large fraction of flights [2]. This is 
interesting and different from what we have learned from 
ground transportation. It is, however, consistent with [3], where 
it is found from conversations with airline planners that airlines 
tend to have a shorter scheduled block-time to save cost. To do 
this, they are willing to incur more delay and thus attain less 
on-time reliability. Another impact of SBT is directly reflected 
in airline cost. In [7], results from estimating a variety of 
delay-buffer models reveal that both delay and schedule buffer 
are important cost drivers. The coefficients suggest 0.6% 
increase in variable cost would occur if there is a 1-min 
increase in average delay against schedule or a similar 
increase in schedule buffer. The ability to reduce SBTs 
(without increasing delay against schedule) could thus result in 
significant cost savings. 

We seek a better understanding of the scheduled block time 
setting process as well as the relationship between SBT and 
actual block time performance (distribution). The insights into 
this relationship may enable the FAA (as well as other Air 
Navigation Service Providers (ANSPs)) to understand how 
their policies and practices affect SBTs and identify 
opportunities to reduce costly schedule. In this research, the 
potential of changing the block time distribution to reduce SBT 
will be the major focus. We want to identify the part of the 
block time distribution that most greatly impacts SBT. We are 
also interested in deepening our understanding of how airlines 
approach the problem of setting SBTs, with the hope of 
eventually identifying possible improvements to the current 
state of practice. 

This paper is structured as follows. In section 2, the results 
of an interview with the block time setting group from a major 
US airline is presented. The practical procedure in industry 
about how the scheduled block time is set for the airline is 
explained in some detail. Realizing the airline behavior, a 
behavioral analysis is conducted in section 3 to model the 
behavior of scheduled block time setting using historical data, 
followed by the estimation results. Section 4 further discusses 
the model with airline-specific model specification. The 
behavior difference between airlines will be addressed. 
Conclusions and future research will be discussed in section 5. 

II. INDUSTRY PRACTICE  

Many airlines have a block time setting group. From the 
discussion with the block time group from a major US airline, 
we learned that the team files preliminary block time files 



 

Figure 2.  Airline Practice of Choosing Scheduled Block Time

every year. In the file, the SBT is categorized by quarter to 
capture the seasonality effect. Busier seasons may require 
longer SBT because busier traffic might be expected at 
terminals. Also weather conditions might differ across seasons, 
which could also affect actual block time. Generally holiday 
effects are not taken into consideration. Throughout the year, 
SBT is adjusted when needed based on many factors, i.e., 
facility changes, competitors’ reaction, and internal feedback 
between different scheduling groups. The historical 
performance data is the major source for setting SBT. The 
information about realized block time, consisting of three parts: 
taxi-out time, airborne time and taxi-in time, is primarily used. 
Typically, the airborne time information of the past five years 
is considered, while for taxi time, only more recent data is 
used. This is because airfields are frequently undergoing 
changes, such as runway extensions, and construction of new 
runways and taxiways. A five-year range would be too long for 
the airfield to remain unchanged. In situations where historical 
data are not available, for instance new facilities that are 
implemented to improve operations, a simulation tool will be 
used to estimate new block time and SBT will be determined 
accordingly. Such facility improvement might be a runway 
expansion, new surface operation technique, or a new taxiway 
or runway. Also, the team compares their SBT with other 
airlines to make sure that their schedule remains competitive in 
the market. 

Fig. 2 illustrates the decision process for SBT in a flow 
chart. With the desired historical data in hand, the schedulers at 
the airline will categorize the data by origin-destination pair, 
departure time of the day window, quarter, and aircraft type. 
The time window for departure time varies is based on the 
frequency of flights. Normally, a time window of 15 to 20 
minute is applied. For instance, for a certain quarter, flights 
departing within the time-window of the day, with the same 
aircraft type, and with the same OD pair (market) will be 
categorized in the same group. Many large airports are 
scheduled to the limit of their capacity (assuming fair weather) 
at several time intervals during the day. This practice is 
particularly prevalent at hub airports, where airlines schedule 
banks of 40 or more departing or arriving flights in periods of 
less than 30 min [8]. Furthermore, to capture the weekday and 
weekend effect, Saturday operations are considered separately 
because traffic on that day is less. Sunday flights are grouped 
with those on normal weekdays. Flights are divided into groups 
and not simply by flight number to increase the sample size and 
because many flight numbers may change over a time period of 
five years.  

After the historical data is divided into the defined groups, a 
cost index will be applied. The costs of fuel and crew are the 
major driver of the index. The historical data will firstly be 
cleaned. Outliers will be deleted from the dataset. The airline 
didn’t release many details on the criteria for picking out 
outliers. But the approach is generally based on the standard 
deviation of historical data. The primary basis for choosing 
SBT for a flight is the Block Time Reliability (BTR). As 
mentioned above, block time is the time that commences when 
an aircraft moves under its own power for the purpose of flight 
and ends when the aircraft comes to rest after landing [1]. For 
commercial flights, actual block time is the time duration 
between the actual departure time and the actual arrival time. 
Among all the actual block times, the percentile at which the 
SBT lies is reported as BTR. In other words, BTR is a way to 
measure, for a certain flight group, how many realized flights 
flew a block time shorter than or equal to its scheduled block 
time. BTR is different from the FAA reported on-time 
performance, since the on-time performance takes the whole 
flight, including gate delay at the origin airport into 
consideration, while BTR only considers block time, consisting 
of taxi-out, airborne and taxi-in time. Also, BTR does not 
include a 15-minute ―grace period,‖ as on-time performance 
does. According to the airline, on-time performance is not 
specifically considered by the block time group. Instead, it is 
the network group that handles flight networking whose main 
objective is to meet the on-time performance requirements. The 
network group works with the SBT provided by the block time 
group and give feedback to the block time group for adjustment 
if they feel on-time performance will be unsatisfactory for a 
given SBT. There are intensive discussions between the two 
groups and the adjustment is basically reflected in the choice of 
the percentile of historical block time, i.e., the BTR. 

Typically, the BTR is chosen to be 65th to 75th percentile 
of the historical block time data. Adjustments are made 
according to the airport characteristics, flight characteristics 
and feedback from other groups in the airline. Several factors 
affect the choice of the targeted percentile. Firstly, hub airports 
normally will have a lower percentile, ranging from 65% to 
70% for example. For the major airline that has a hub-spoke 
network, the schedulers especially want a lower BTR for their 
major hub airport. Hub airports have periods of high gate 
utilization, and early arrivals are highly disruptive. For the 
airline we interviewed, a lower BTR (as low as 65%) is set for 
its major hub airport, in order to reduce early arrivals. 
Regarding the flight-specific characteristics, for long-haul 
flights, whose block time distributions tend to be more 
dispersed, the BTR for setting scheduled block times is in 
general lower, in order to reduce average earliness.  



A frequent request from the network planning group is for 
the block time group to lower SBT, both to be more 
competitive with other airlines and so that there can be longer 
scheduled turn times. Block times are set in the operations 
planning group in the airline thus focus more on operation 
reliability. The tension between the operations planning group 
and the network planning group regarding the SBT setting is 
because the former focuses more on operation reliability and 
latter focuses more on marketability. There is frequent 
communication between these groups so that optimal 
satisfactory solution for this multi-objective task of setting SBT 
can be reached. Lastly, it is worth noting that when airlines set 
their SBT, the gate delay, which is the time between scheduled 
and actual departure time, is rarely considered in the decision 
process. Although gate delay clearly affects on-time 
performance, it is not considered part of the block time, 
perhaps because historical gate delay is not considered 
predictive of future date delay.  

III. METHODOLOGY AND GENERAL RESULTS 

Based on the interview with the airline block time group, 
the rule for SBT setting seems to be a specific BTR (block time 
reliability) target. The BTR is interpreted as certain percentile 
of the historical block time distribution. Thus, we developed a 
model with the percentile statistics of the actual flight time. 
The huge amount of historical data in the field of air 
transportation is utilized to empirically investigate SBT setting 
behavior.  

A. Data and Modeling 

The relationship between block time distribution and block-
time setting is modeled empirically, using multiple regression 
in order to understand the relationship between SBT and past 
operational experience. The variables capture the difference in 
percentile of historical block time; therefore the model is called 
the percentile model in this paper. Other variables that might 
affect SBT decisions are also included in the model. 

The data on which the SBT setting model will be estimated 
is collected from two sources: the Airline On-time Performance 
dataset and the air carrier statistics data from T-100 Domestic 
segment with U.S. carrier, Form 41 database. Both datasets are 
acquired from the Bureau of Transportation Statistics (BTS). 

We employ the Bureau of Transportation Statistics (BTS) 
Airline On-time Performance data to characterize airline 
schedule and operations. This database contains detailed 
performance information for individual flights by major US air 
carriers between points within the United States. These flight 
records are aggregated to capture the distribution of historical 
flight time. The aggregation of flights is by specific airlines, 
flight numbers, origins, and destinations: e.g. AA 112 from 
ORD-LGA. The time unit for the aggregation of an individual 
flight is a quarter year.  

As mentioned before, we want to investigate the 
relationship between block time distribution and SBT. For each 
quarter, we assume that there is a uniform SBT for each 
individual flight, which is the elapsed time between the 
scheduled departure and the scheduled arrival. In the actual 
dataset, the condition where SBT is uniform through the 

quarter is rare. This is mainly because the constant adjustment 
to the SBT by the airline. The median value of Scheduled 
block-time in the quarter is used. The distribution of actual 
flight time is captured by calculating different percentiles of the 
flight time data. Also, because gate delay is expected to have a 
different effect than flight time, we calculate the mean value of 
gate delay separately. For flight f in day t, the gate delay (or, 

departure delay) is denoted as qy

ftD . We include qy

fD which is 

the average value for qy

ftD  over the qyT  days in quarter q of 

year y, for each flight f F , as an explanatory variable. Also, 

the 50th to 100th percentile of the actual flight time (block 
time) qy

fFT  is calculated. The 50th percentile, which is the 

median flight time, denoted as , ,

0.5

f q yQ , of flight f F in 

quarter q of year y is included in the model. The variability of 
FT is further captured by the differences between every 10th 
percentiles from 50th to 100th. For example, 

, , , , , ,

56 0.6 0.5

f q y f q y f q yd Q Q  . This approach depicts the distribution of 

flight time information in a consistent manner with the industry 
practice mentioned above. The different segments of 
percentiles capture how scheduled block time is influenced by 
successively rarer but higher realized flight time values. To 
better distinguish seasonal effects, we also include dummy 
variables y

qQ  for quarter q of year y.  

In addition to the flight time characteristics, the attributes of 
the OD pair and the airline may also have impact on SBT 
decision. From the interview with Delta Airlines personnel, we 
learnt that shorter SBTs are set for their hub airports (e.g. 
ATL), intending to avoid early arrivals because they disrupt 
gate utilizations that mostly owned by Delta. Also, competition 
with other airlines flying the same market may motivate a 
shorter SBT for the airline to win more customers. Therefore, 
we include variables that depict the OD pair competitiveness 
and airport characteristics in studying SBT setting. 

To capture competition of the OD pair, The Herfindahl 
index (also known as Herfindahl–Hirschman Index, or HHI) is 
applied. It is an economic concept widely applied in 
competition law, antitrust and also technology management [9] 
that measures the size of firms in relation to the industry and 
indicates the amount of competition among them. It is defined 
as the sum of the squares of the market shares of the 50 largest 
firms (or summed over all the firms if there are fewer than 50) 
within the industry, where the market shares are expressed as 
fractions. Increases in the HHI generally indicate a decrease in 
competition and an increase of market power, whereas 
decreases indicate the opposite.  

For the purpose of our analysis, the market share of a 
carrier in an OD pair can be expressed as the portion of number 
of seats provided in the total number of seats serving this 
market. For market od, the HHI can be calculated as: 

 
2

1

N
i

od

i od

s
HHI

s

 
  

 
  

where si is the number of seats provided by carrier i flying this 
OD pair, sod is the total number of seats provided in this OD 
pair, and N is the number of carriers in this OD pair. Thus, in a 
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market with two carriers that each provides 50 percent of seats, 
HHI equals 0.52+0.52 = 1/2. A small HHI indicates a 
competitive industry with no dominant players. The T-100 
database provides number of seats for domestic OD pairs and 
carriers to calculate the HHI. Distance between origin and 
destination airports is also provided in the dataset and included 

in the model. The distance for OD pair od is denoted as 
oddist , 

in the unit of miles.  

Lastly, the characteristic of the airport may also have 
impact on SBT. Large U.S. airports generally expect more 
traffic leading to more delay, thus SBT might be adjusted 
accordingly. We have dummy variables OEPO and OEPD 
indicating whether the airport is an OEP 35 airport, for origin 
and destination separately. The OEP 35 (Operational Evolution 
Partnership) airports are commercial U.S. airports with 
significant activity. They serve major metropolitan areas and 
also serve as hubs for airline operations. More than 70 percent 
of passengers move through these airports. 

Table 1 presents a summary of the data we collected from 
BTS for the period .  

In the formulation, we assume that schedulers set the 
scheduled block-time for a flight with the knowledge of actual 
flight information and HHI competition index of the same 
quarter in the previous year. This setting implies that 
schedulers focus on flight experience during the same season 
for which they are scheduling. In this paper, the year 2009 and 
2010 are chosen to be studied (i.e., y=2009). Thus scheduled 
block-time in 2010 is modeled with the actual flight data from 
the same quarter in 2009. The flight data is filtered to only 
include weekday flights. To assure robustness in the data, we 
only include the flights that are frequently flied in a quarter. 
Flights flown less than 50 times in either the quarter in 2009 or 
2010 are eliminated from the dataset. This specification of 
model is called percentile model and is formulated as: 

9
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


    

(6)
 

The percentile model is applied to the whole population of 
qualifying flights, with 17,733 observations in total. 

TABLE I.  General Data Statistics 

B. Estimation Results 

We estimated the model both for the entire data set and for 
subsets of the data corresponding to different categories of 
airlines. We present the results for the entire data set first. 

1) Numerical results 
Estimation results for the percentile model are shown in 

Table 2. The R2 explains almost 100% of the variation in 
scheduled block-time. We can see that the coefficient for mean 
departure delay is quite small. One minute increase of mean 
departure delay will only cause the SBT for next year to 
increase 0.04 minutes. Regarding the distance of the flight, the 
impact on SBT setting is positive. This indicates that airlines 
are being more conservative for longer flights; this is probably 
because there is more uncertainty in longer flights and SBTs 
are set to be longer to take the uncertainty into consideration. 
The impact of dispersion is captured by the coefficients of the 
percentile difference variables. Firstly, the impact of median 
flight time is 0.936, which is close to 1, indicating a major 

contribution from flight time. The , ,

, 1

f q y

i id 
variables are intended 

to capture the variability of flight time over the right tail of the 
distribution where it exceeds the average value. The interval 
between 50th and 60th percentile generates 0.46 minutes of 
increase in SBT. The impact decreases rapidly to 0.07 minutes 
increase from the interval between 70th and 80th percentile and 
further drops to only 0.006 minutes increase, for the right end 
tail of the distribution. These results show that SBT is strongly 
affected by the left tail of the flight time distribution depicts, 
while the ―inner right tail‖ has a moderate effect, while 
additional flight time above the 70th percentile has a rather 
small effect. This is consistent with the airline practice 
described in section 2. Airlines claims to choose SBT for a 
BTR target of around 70%. Thus, it is expected that more 
weight is put on the inner right tail (below 70th percentile) and 
down-weight the far right tail (above 70th percentile).  

The HHI variable has a negative coefficient. Higher HHI 
indicates decrease in competitiveness for the OD pair. Thus, a 
negative coefficient means that if the OD market is highly 
competitive, airlines will increase SBT. This shows that in spite 
of the effect that airlines desire a shorter SBT to be more 
attractive to the customers; they are still concerned about their 
performance. Highly competitive market might mean high 
traffic, thus they tend to set longer SBT to guarantee on-time 
performance.  

2) Comparison to Hypothetical Models 
The percentile model represents airlines’ composite SBT-

setting behavior, in a manner that explicitly shows the weight 
they place on different regions of the historical distribution or 
realized block times. To further interpret the results of the 
percentile model, two hypothetical models for the SBT setting 
process are shown in the last two columns in Table 2 to 
compare with our estimation results.  

The first hypothetical model (termed HM1) assumes that 
the SBT is solely determined by the average historical block 
time. In a CDF plot, the area above the plot corresponds to the 
mean value of the variable. Now consider a model where the 
mean value of realized flight time solely determines SBT. In 
this hypothetical model the coefficient of mean flight time 

Variable Unit Mean Min Max Standard 

Deviation 

SBT min 146.54 23 655 84.10 

qy

fD  min 7.06 -12.25 82.97 9.60 

distod mile 873.18 31 4962 680.51 

, ,

0.5

f q yQ  min 142.69 20 648 82.14 

, ,

56

f q yd  min 2.638 0 25 1.58 

, ,

67

f q yd  min 3.12 0 20 1.88 

, ,

78

f q yd  min 4.04 5.68E-14 29 2.49 

, ,

89

f q yd  min 6.66 1.14E-13 48.5 4.30 

, ,

90

f q yd  min 31.59 1 327 26.33 

HHIod - 0.67 0.19 1 0.27 



would be 1. Using the CDF plot, we can translate the mean 
flight time into an expression based on percentile differences. 
If we divide the plot into 50th, 60th… 100th percentiles and 
assume the plot is piecewise linear between percentiles, then 
the mean value can be expressed as the sum of the areas above 
the CDF plot between each percentile line. For example, the 
area between 0 and 50th percentile value corresponds to the 
contribution to the mean of the median flight time value, and 
can be calculated using the percentile value as the area of a 
trapezoidal. This can be repeated for each 10th percentile 
interval of the tail above the 50th percentile of the distribution. 
The specification for hypothetical model 1 thus becomes: 

0.50.75 0.45 56 0.35 67 0.25 78

0.15 89 0.05 90

SBT Q d d d

d d

       

   

        (8) 

Hypothetical model 2 (HM2) is a pure version of the 
airlines’ BTR-based behavior. It assumes that SBT is equal to 
a certain percentile of the historical block time, for example, 
70th percentile. Then the parameters of the median and the 
difference between 50th and 60th, 60th and 70th percentiles 
would be 1, since the sum of these variables is exactly the 70th 
percentile value, and the coefficients for the differences above 
70th percentile would be 0, indicating that the airline doesn’t 
consider the far right tail. The equation of HM2 is thus: 

0.51 1 56 1 67 0 78 0 89 0 90SBT Q d d d d d             (9) 

Table 2 compares the results between percentile model and 
the hypothetical models. HM1 only considers the mean value 
of flight time. In the estimated percentile model, the coefficient 
for the median flight time (Q0.5) is larger in the percentile 
model. The coefficients for the differences from the 50th to 
100th percentile decrease at a faster rate in the estimated model 
than they do for HM 1. This clearly shows that SBTs place 
more weight on the left side of the flight time distribution while 
downweighting the far right tail, particularly above the 70th 
percentile. This finding is consistent with previous literature 
where the implied flight delay costs are less than the implied 
costs of early arrivals for a large fraction of flights [2]. Put 
another way, airlines tend to be ―optimistic‖ when they choose 
the SBT. They tolerate longer delays in order to realized the 
advantages or shorter SBTs.  

HM2 assumes SBT is solely based on the 70th percentile of 
actual block time and thus ignores flights times beyond these 
values. In the estimated percentile model, the coefficient for the 
median value is close to 1, as in this hypothetical model.  In 
contrast to that model however, the inner right tail parameters 
are less than 1 and outer right tail parameters are greater than 0. 
Thus, compared to HM2, the estimated percentile model shifts 
weight from the inner right to the outer right tail. One 
interpretation of this is that the regression model, when 
estimated for a large diverse set of flights, captures a composite 
of different BTR standards: 93% of flights have a standard at or 
above 50%, 46% have a standard at or above 60%, and so 
forth. 

 

 

 

TABLE II.  Estimation Results: Population Percentile Model  

 

IV. AIRLINE ANALYSIS 

A. Model Description 

Based on the study in section 3, we gained an overall idea 
about the SBT setting behavior in the industry. However, there 
may be heterogeneity in the SBT setting behavior across 
different airlines, especially between low cost carriers and 
legacy carriers. Legacy carriers and low cost carriers have 
distinct goals and strategies in their scheduling because of their 
different flight networks and target customers. For example, 
driven by the low cost goal, low cost carriers might more 
willingly set a shorter SBT and put less weight on the right tail 
of the distribution. Also, the HHI indicating competition effect 
might have different impact for low cost carrier and legacy 
carrier since they view competition differently. Lastly, if the 
flight is flying either into or out of an OEP airport, i.e., a large 
commercial airport in the U.S., the airlines would add more 
SBT into the schedule. This also indicates that airlines want 
the flight time performance to be better, even though they 
would incur cost of longer SBT. This effect on behavior 
should again be studied separately with legacy and low cost 
carriers. Therefore, a study into the different airlines’ behavior 
is conducted in this session. 

In this study, we chose six U.S. carriers to study the 
heterogeneity in SBT setting behavior across airlines. This 
includes three low cost carriers: JetBlue, Southwest, and 
AirTran, and three legacy carriers: American Airlines, Delta 
Airlines and United Airlines. The data of the three low cost 
airlines are aggregated because they show similar pattern, 
whereas for the three legacy carriers, their SBT setting 
behavior is modeled separately. 

For the legacy carriers, in addition to the information that 
whether the origin or destination airport is a large (OEP35) 
one, the hub attributes of the airport should also be considered 

  Percentile Model   HM 1 HM 2 

Variable Estimate SE t-Stat p-Value Coeffi

cient 

Coeffi

cient  

Intercept  2.011 0.214 9.39 <.0001 - - 
qy

fD  0.039 0.0044 8.88 <.0001 - - 

distod 0.009 0.00038 24.06 <.0001 - - 
, ,

0.5

f q yQ  0.936 0.0033 281.8 <.0001 0.75 1 

, ,

56

f q yd  0.463 0.0309 15.01 <.0001 0.45 1 

, ,

67

f q yd  0.236 0.0256 9.22 <.0001 0.3 1 

, ,

78

f q yd  0.075 0.0194 3.85 0.0001 0.25 0 

, ,

89

f q yd  0.066 0.0110 5.98 <.0001 0.15 0 

, ,

90

f q yd  0.0084 0.0016 5.28 <.0001 0.05 0 

2

yQ  0.131 0.11 1.19 0.2337 - - 

3

yQ  0.053 0.1091 0.49 0.6249 - - 

4

yQ  0.126 0.1092 1.16 0.2480 - - 

HHIod -2.254 0.1587 -14.21 <.0001 - - 

OEPO 1.037 0.1028 10.09 <.0001 - - 

OEPD 0.521 0.1 5.22 <.0001 - - 

R-square 0.9962 



in the model. Large airlines have their own hub airports where 
they own a majority of the gates. From our interview with the 
airline personnel, we learnt that airlines’ SBT setting gives 
their own hub airports additional considerations. Generally 
SBTs tend to be set shorter for hub airports because early 
arrivals can be particularly disruptive for the hubs. Early 
arrivals may have no gate available and disrupt the ramp 
operations. On the other hand, however, there are more 
connecting flights at the hub airports. As an effort to try to 
avoid missed connections, airlines might want longer SBT for 
the hub airports to assure better on-time performance. To look 
for these effects, we included in the legacy carrier models an 
additional explanatory variable is included indicating whether 
the origin or destination airport is a hub airport for the specific 
airline. American Airlines’ hub airports include Chicago 
O'Hare International Airport (ORD) and Dallas/Fort Worth 
International Airport (DFW); Delta’s hub airports include 
Atlanta Hartsfield-Jackson Atlanta International Airport (ATL), 
Minneapolis-St Paul International Airport (MSP), Detroit 
Metropolitan Wayne County Airport (DTW) and Salt Lake 
City International Airport (SLC); United’s hub airports include 
San Francisco International Airport (SFO), ORD, Washington 
Dulles International Airport (IAD) and Denver International 
Airport (DEN). The variables Hub_origin and Hub_des are 
dummy variables that indicate this airport attribute. 

B. Estimation Results 

The estimation results for the airline analysis are listed in 
Table 3. For the low cost carriers and American Airlines, the 
flight time variables have very similar results to the overall 
model in section 3. The mean gate delay again has a very small 
but positive impact, and distance also has positive impact. The 
median value is a major driver and the impact of historical 
block time distribution attenuates rapidly along the right tail. 
However, the pattern is not quite the same for Delta Airlines 
and United Airlines. Mean gate delay and the intercept are not 
significant in the SBT setting model for Delta and mean gate 
delay is not significant for United. Regarding the flight time 
distribution, median historical flight time is still a major 
contributor for Delta. The inner right tail (up to 80th percentile) 
of the historical flight time has large and significant coefficient, 
whereas the percentile differences beyond 80th percentile are 
no longer significant. For United Airlines, median value is 
again a major predictor, however only the percentiles up to the 
60th are significant in their SBT setting model. This indicates 
that United Airlines is unusually aggressive when they set 
SBTs and give little consideration to the further right tail of the 
distribution. While being aware that the actual block time will 
often be longer then the SBT they set, United Airlines is more 
willing to take that risk and suffer potential delay. Figure 3 
further illustrate the trends in the coefficient of percentile 
differences for each airline or airline group. The higher the 
curve, the more weight is put on the right tail, i.e., the more 
conservative regarding SBT the airline is. Delta and American 
Airlines are the more conservative airlines; low cost carriers 
have a moderate tendency that is comparable with the 
population model; United Airlines, however, shows very 
aggressive SBT setting behavior that considers only the median 
and the very inner right tail of the distribution. Low cost carrier  

 

TABLE III.  Estimation Results: Airline Analysis 

generally set a shorter SBT because the magnitudes of the 
parameters are slightly smaller than the legacy carriers.  

 

Figure 3.  Coefficient comparison for Different Carriers 

 

 Percentile Model Hypothetical 

Model 

Variable LCC AA DL UA 1 2 

Intercept  1.909 

(3.75) 

2.304 

(2.35) 

1.773 

(1.10) 

5.632 

(8.66) 

- - 

qy

fD  0.037 

(4.47) 

0.056 

(3.50) 

0.035 

(1.07) 

-0.014 

(-1.01) 

- - 

distod 0.0046 

(4.61) 

0.0027 

(2.41) 

0.00496 

(2.59) 

0.006 

(7.47) 

- - 

, ,

0.5

f q yQ  0.967 

(114.3) 

0.985 

(102) 

0.966 

(58.47) 

0.964 

(133.63) 

0.75 1 

, ,

56

f q yd  0.472 

(6.84) 

0.748 

(7.22) 

0.461 

(3.02) 

0.3797 

(4.84) 

0.45 1 

, ,

67

f q yd  0.249 

(4.43) 

0.271 

(3.26) 

0.677 

(4.85) 

0.068 

(1.04) 

0.3 1 

, ,

78

f q yd  0.147 

(3.41) 

0.205 

(3.53) 

0.256 

(2.57) 

0.0046 

(0.09) 

0.25 0 

, ,

89

f q yd  0.078 

(3.34) 

0.083 

(2.5) 

0.0674 

(1.14) 

-0.0455 

(-1.62) 

0.15 0 

, ,

90

f q yd  0.0035 

(1.03) 

0.027 

(4.78) 

-0.0108 

(-1.11) 

0.0024 

(0.58) 

0.05 0 

2

yQ  0.2438 

(0.99) 

-0.925 

(-2.46) 

-3.697 

(-5.34) 

3.242 

(10.12) 

- - 

3

yQ  -0.6997 

(-3.00) 

-0.065 

(-0.16) 

-3.129 

(-4.80) 

1.262 

(4.15) 

- - 

4

yQ  -1.8596 

(-7.16) 

-2.322 

(-5.76) 

-4.0397 

(-5.95) 

3.616 

(12.34) 

- - 

HHIod 0.9595 

(2.18) 

-2.187 

(-3.97) 

2.481 

(1.80) 

-0.491 

(-0.88) 

- - 

OEPO 0.316 

(1.42) 

0.365 

(0.6) 

-0.222 

(-0.27) 

0.387 

(0.99) 

- - 

OEPD -0.935 

(-4.34) 

-0.459 

(-1.16) 

1.191 

(1.32) 

1.068 

(2.75) 

- - 

Hub_origin - -1.398 

(-4.2) 

-2.308 

(-3.66) 

-0.321 

(-1.03) 

- - 

Hub_des - -1.459 

(-3.73) 

-1.882 

(-3.23) 

-0.799 

(-2.59) 
- - 

R-square 0.9967 0.9955 0.9962 0.9976 - - 

No. of 

observation 

2363 1825 586 1978 - - 



Regarding the OD pair characteristic variables, whether the 
airport is a large (OEP 35) airport doesn’t matter for most of 
the cases. Low cost carriers is the only group which shows an 
impact of the OEP destination dummy on SBT, and the effect 
is negative.  Low cost carriers set shorter SBT when their 
flights are flying into a large airport. This is probably a strategy 
small airlines are using to appear more attractive to customers 
on the market by having a shorter SBT in the reservation 
system. The competition index HHI for specific OD pair has 
significant effect on SBT for Delta and American Airlines, but 
not for the low cost carriers and United. Low cost carriers as 
well as United thus do not appear to consider the 
competitiveness for a certain market when setting SBT. For 
Delta Airlines, the coefficient is positive. This indicates that 
higher competition in the market would drive Delta to reduce 
their SBT, a point made in the airline interviews. For American 
Airlines, the coefficient is negative. The more competitive the 
market, the longer American Airlines sets its SBT. American 
response to competition in setting SBTs suggests that it 
considers on-time performance to be a more effective means of 
attaining market share than short scheduled flight durations.  

The dummy variable indicating hub airports only applies to 
the legacy carriers. The coefficients are all significant (except 
for Hub_origin for United) and negative, showing that airlines 
want shorter SBT for flights involving their own hub airports. 
The hub-des results are again consistent with the industry 
practice of seeking to avoid early arrivals at hubs in order to 
avoid disrupting gate operations described in section 2.It is 
stated that airlines more aggressively try to avoid early arrivals 
for their own hubs where they have the majority of gates, 
because early arrivals disrupt gate operations.  

V. CONCLUSION 

In this paper, we study how airlines set scheduled block 
time, and the impact of historical block time distribution on 
SBT. According to one airline, SBT is set using a BTR target, 
which is applied to a historical block time distribution. We 
developed the percentile model in order to capture the airlines’ 
BTR based practice. The variability in flight time is captured 
by increments between every 10th percentile above the 50th . 
This enables us to observe how different regions of the 
historical block-time distribution are considered in SBT setting. 
Other variables, such as gate delay, distance, airport size and 
hub status, and competiveness are also included in the model, 
which is estimated on an aggregate data set as well as 
individual carriers and carrier groups. 

At the aggregate level, the model suggests that target BTRs 
vary across flights, with BTR targets generally in the range 
between 50% and 70%. The far right tail of the historical block 
time distribution only has a minor impact on SBT. In general, 
airlines are willing to experience delay in trade of a shorter 
SBT. This implies the airlines trade-off between cost and 
performance. There is substantial variation among airlines, 
with UA among the more aggressive and AA among the least. 
Thus UA appears willing to risk more delay to keep SBTs low, 
while AA is willing to set higher SBTs in order to increase 
reliability. Among other factors, notable results include that 
historical gate delay is virtually ignored, that airlines with hubs 
tend to set shorter SBTs for their hub-bound flights, and that 

the impact of competition varies across airlines. Delta and low 
cost carriers shortens the SBT when dealing with high 
competition, while AA chooses to prolong their SBT. 

This model draws an explicit connection between SBT and 
the historical distribution of realized block times. It provides 
the ability to determine how a change in this distribution, for 
example as the result of NEXTGEN improvements, will affect 
SBT, and therefore delay against schedule as well.  It is clear 
from our results that knowledge of the change in average block 
times is not sufficient for this, since a given change in the 
average can arise from many different changes in the 
distribution. This suggests that business cases for NAS 
improvements should pay more attention to impacts on the 
distribution of block times. 

More broadly, there is much talk in the community of the 
importance of ―predictability‖ and how improving 
predictability could reduce SBTs and thus increase efficiency. 
Our analysis shows that simply reducing block time variability 
does not necessarily lead to shorter SBTs. The focal point must 
be on the inner right tail of this distribution, between roughly 
the median and 70th percentile. Efforts to reduce the outer right 
tail will certainly yield benefits, but they will be in the form of 
reduced delay against schedule, not changes in the schedule 
itself.   

While it is presumptuous for external analysts to tell 
airlines how they should set scheduled block times, it is curious 
that historical gate delay is largely ignored in this process. 
More attention is needed to understand why this is so, and 
whether more consideration to gate delay may be warranted. 
Since it is the dominant source of variation in the distribution 
of the total time between scheduled departure and actual 
arrival, improvements in on-time performance might be 
attained by giving more consideration to this factor, to the 
extent it can be predicted for past experience. 
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