1. Find a real number \(x \) for which \(x[x] = 1234 \).

Note: \([x] \) is the largest integer less than or equal to \(x \).

2. Let \(C_1 \) be a circle of radius 1, and \(C_2 \) be a circle that lies completely inside or on the boundary of \(C_1 \). Suppose \(P \) is a point that lies inside or on \(C_2 \). Suppose \(O_1 \) and \(O_2 \) are the centers of \(C_1 \) and \(C_2 \), respectively. What is the maximum possible area of \(\Delta O_1O_2P \)? Prove your answer.

3. The numbers 1, 2, \ldots, 99 are written on a blackboard. We are allowed to erase any two distinct (but perhaps equal) numbers and replace them by their nonnegative difference. This operation is performed until a single number \(k \) remains on the blackboard. What are all the possible values of \(k \)? Prove your answer.

Note: As an example if we start from 1, 2, 3, 4 on the board, we can proceed by erasing 1 and 2 and replacing them by 1. At that point we are left with 1, 3, 4. We may then erase 3 and 4 and replace them by 1. The last step would be to erase 1, 1 and end up with a single 0 on the board.

4. Let \(a, b \) be two real numbers so that \(a^3 - 6a^2 + 13a = 1 \) and \(b^3 - 6b^2 + 13b = 19 \). Find \(a + b \). Prove your answer.

5. Let \(m, n, k \) be three positive integers with \(n \geq k \). Suppose \(A = \prod_{1 \leq i \leq j \leq m} \gcd(n + i, k + j) \) is the product of \(\gcd(n + i, k + j) \), where \(i, j \) range over all integers satisfying \(1 \leq i \leq j \leq m \). Prove that the following fraction is an integer

\[
\frac{A}{(k + 1) \cdots (k + m)} \binom{n}{k}.
\]

Note: \(\gcd(a, b) \) is the greatest common divisor of \(a \) and \(b \), and \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \).