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1 Validity of mapping current density via magnetic field imaging

In the case of a static 2D current distribution J(x, y) = (Jx(x, y), Jy(x, y)), there is a one-to-one

mapping between J(x, y) and the associated stray magnetic field

B(r) = (Bx(x, y, z), By(x, y, z), Bz(x, y, z)). Therefore, in principle one can equate the

knowledge of the magnetic field distribution to the knowledge of the current distribution. Here,

we evaluate several experimental factors that may invalidate this equivalence. We show that in our

experimental setting, these factors are insignificant within experimental uncertainties, and hence

it is valid to extract the local current density via magnetic field imaging.

First, we discuss the potential consequence of measuring B(r) over a finite field-of-view.

According to the Biot-Savart law, the in-plane stray field at (x, y, d) is

Bx(x, y, d) =
µ0

4π

∫
dx′dy′

d

[(x− x′)2 + (y − y′)2 + d2]3/2
Jy(x

′, y′) (S1)

By(x, y, d) = −µ0

4π

∫
dx′dy′

d

[(x− x′)2 + (y − y′)2 + d2]3/2
Jx(x

′, y′) , (S2)

where µ0 is the vacuum permeability. In other words, the in-plane stray field can be considered

as a convolutional filter (x2 + y2 + d2)−3/2 with a resolution length-scale d applied on the local

current density. As a result, Bx(x, y, d) and By(x, y, d) are only sensitive to the current density in

the neighborhood of (x, y) extending on the order of ∼ d. This is also apparent with the forms of

the above equations in Fourier space1:

bx(k, d) =
µ0

2
e−d|k|jy(k) , (S3)

by(k, d) = −µ0

2
e−d|k|jx(k) , (S4)
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where k is the wave-vector, and bx,y (jx,y) is the Fourier transform of Bx,y (Jx,y). Therefore,

(Bx, By) is equivalent to (Jx, Jy) with a low-pass filter, and the current density can be obtained by

inverting the low-pass filter on the stray-field (e.g., in the case of vectorial wide-field imaging).

Let us now consider the case where the measured stray field involves the out-of-plane stray

field Bz, for example in scanning magnetometry. From the Biot-Savart law, one has

Bz(x, y, d) =
µ0

4π

∫
dx′dy′

(y − y′)Jx(x′, y′)− (x− x′)Jy(x′, y′)
[(x− x′)2 + (y − y′)2 + d2]3/2

. (S5)

Here, the convolutional kernel has the form ∼ r/(r2 + d2)3/2. Therefore, Bz is not simply a low-

pass filter applied on the current density. This is also apparent with the form of the above equation

in Fourier space1:

bz(k, d) = i
µ0

2
e−d|k|

(
ky
|k|
jx(k)− kx

|k|
jy(k)

)
. (S6)

The form of the kernel in Eq. S5 indicates that Bz(x, y, d) is insensitive to the current density in

the immediate neighborhood of (x, y), while contribution from further away has greater weight.

As a consequence, Bz has a slow ∼ 1/r decay far away from a current-carrying wire segment.

Therefore, when attempting to extract the local current density from a measurement that contains

Bz, one needs to consider the potential contribution from current outside of the field of view. This

can happen when the current-carrying channel does not continue in a straight line indefinitely, but

makes a turn. Let us consider how close the turning needs to occur from the point of measurement

so the contribution from far-away wire becomes important compared to the measurement

precision, typically ∼5% on the maximal value of the projective field for our experiments. Let us

consider a channel initially along the y-direction, which changes direction to run along the
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x-direction at a distance r away from the point of measurement. Using the expression of the field

away from a thin current-carrying wire, one can estimate the contribution to Bz as µ0I/(4πr).

There is an extra factor of 2 in the denominator because after the turn, we have a semi-infinite

wire. We estimate the field magnitude at the point of measurement to be (µ0/2)(I/W ), with

W = 1µm. Then, the contribution due to Bz from the far-away wire is comparable to 5% of the

total measured field when r is closer than 3µm. In the devices measured with NV scanning

magnetometry, turning of current paths occurs on length-scales significantly greater than this

distance. Therefore, the effect of slowly-decaying Bz from far-away current does not invalidate

our approach to use magnetometry to probe the local current profile.

The discussion so far centers around the magnetostatic case. In AC magnetometry, the

natural assumption is to replace J(x, y) and B(x, y, d) with J(x, y, t) and B(x, y, d, t). In general,

this is not strictly true because of the delay in the propagation of the electromagnetic field; the

generalized time-dependent formula for the stray magnetic field is given by Jefimenko’s equations

which incorporate retarded time. Here, we show that our experiment is in the magnetostatic

regime. Let us consider the current being modulated at a frequency ω. At a point of measurement,

the stray field is sensitive to contributions from current over a length scale r given by the distance

between the measurement point and the current source. Over this length scale, an electromagnetic

field propagates to the point of measurement within a time τprop ∼ r/c, where c is the speed of

light. We can assume the experiment is in the magnetostatic regime if this time is much faster

than 1/ω. In the scanning magnetometry experiment, the scan range is no more than 5µm, so

r < 5µm and τprop < 17 fs. Therefore, magnetostatics can be safely assumed for
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ω/(2π)� 60 THz, which is certainly the case in our experiment.

Lastly, in AC magnetometry, RC reactance can lead to a slow rise/fall in current modulation.

To assess the effect of RC reactance, we consider the effective circuit shown in Fig. S1 under a

step voltage modulation V (t) = VΘ(t), where Θ(t) is the Heaviside step function. The resistor

R1 corresponds to the resistance of the graphene device and is at most R1 ≈ 20 kΩ as measured

with two-terminal transport measurement. The resistor R2 = 50 Ω corresponds to the terminal

load resistance. The capacitor C comes from a combination of bond pads and BNC cables, and is

estimated via geometry to be no more than 1 nF. Solution of the current through R1 is

I(t) =
V

R1 +R2

[
1 +

R2

R1

exp

(
−(R1 +R2)

CR1R2

t

)]
. (S7)

The current initially overshoots before reaching the equilibrium (DC) value V/(R1 + R2).

The time scale CR1R2/(R1 + R2) ≈ 0.05µs is much shorter than the typical modulation period

of our experiments & 10µs. Furthermore, the relative overshoot is R2/R1 .1%. Therefore, RC

reactance has negligible effect in our AC measurements.

R1 
V(t) 

R2 

C 

Figure S1: Effective circuit of the device.
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2 Optimal sensitivity for optically detected magnetic resonance

The best sensitivity for optically detected magnetic resonance (ODMR) is achieved by minimizing

the ratio Γ/(C
√
N ), where Γ is the linewidth of the ODMR spectrum, C is the contrast, and N

is the rate of photon collection. In general, both the linewidth and the contrast depend on the

combination of the optical and microwave power. In both imaging and scanning experiments, we

are limited by the laser intensity that can be delivered to the NV spins: we restrict the excitation

power to be below saturation to avoid NV degradation (likely due to charge state interconversion).

In imaging, we are further restricted by the available laser power, which has to be distributed over

a microns-scale area. Therefore, the only remaining knob is the microwave power. We obtain

ODMR spectra, measure Γ and C as a function of the microwave power, and use the microwave

power that minimizes the ratio Γ/C for ODMR. In the case of imaging, this procedure is performed

with the ODMR spectra integrated over the entire field of view. In Fig. S2, we show an example

spectrum at a single pixel of wide-field ODMR imaging of the graphene device on diamond at the

optimal magnetometry parameters.
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Figure S2: Wide-field imaging ODMR spectrum at a single pixel for the NV ms = 0 ↔ −1

(left panel) and ms = 0 ↔ +1 (right panel) transitions at +I (red circles) and −I (blue circles).

Photoluminescence (PL) is normalized by the PL value ofms = 0 state. The lines are fits to double

Lorentzian line shapes split by 3 MHz hyperfine coupling due to 15N nuclear spin.
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3 Determination of magnification and resolution for wide-field imaging

For wide-field magnetic imaging, we calibrate magnification with the following procedure. Using

the nano-positioner on which the graphene-on-diamond device is mounted, we move the device in

the xy plane over a range of about 7µm, and record an image with each lateral movement of the

nano-positioner. By tracking features in the image and using the known pixel size of the camera

(5.86µm × 5.86µm), we obtain a magnification of about 117. Therefore, each pixel on the camera

corresponds to a 50 nm × 50 nm area on the sample. For data analysis and display, we perform

a 2 × 2 binning, so that each pixel in the figures corresponds to a 100 nm × 100 nm area. This

calibration procedure has an estimated 6% error due to measurement uncertainty.

The point spread function (PSF) is given by the Airy pattern with the form

PSFAiry(u) =

(
2J1(u)

u

)2

, (S8)

where J1 is the Bessel function of the first kind of order one, and u is a dimensionless length scale.

The first zero occurring at u = 3.8317 ≈ 4 corresponds to the resolution according to the Rayleigh

criterion. For convenience, we use a Gaussian profile to approximate the PSF. The Airy pattern to

leading order in u is PSFAiry = 1− u2/4 +O(u4). A Gaussian profile of the form e−u
2/4 has the

same expansion. Therefore, we use the following as our resolution function

PSF(x, y) =
1

πσ2
r

e−(x
2+y2)/σ2

r (S9)

and identify 2σr as the imaging resolution.

To experimentally determine the resolution, we make use of a sharp feature in the NV PL
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generated by reactive ion etching (RIE) of the diamond surface. As the RIE employed for

graphene/hBN etching also etches diamond and hence near-surface NV spins, we can use RIE to

generate patterns in the NV PL. The pattern we use is a stripe (Fig. S3a). We image a line cut

(indicated by the blue line in Fig. S3a), normalize the slowly-varying background to unity, and

show the normalized PL in Fig. S3b. To model the PL distribution, we first note the 1D PSF is

PSF1D(x) =
∫

dy PSF(x, y) = e−x
2/σ2

r /(
√
πσr). The 1D line-cut of the stripe is then the

convolution of the 1D PSF and the rectangular function Π(x/W ), which is unity for |x/W | < 0.5

and zero otherwise, with W the width of the stripe:

PSF1D ∗ Π(x/W ) =
1

2

(
Erf

(
W − 2x

2σr

)
+ Erf

(
W + 2x

2σr

))
, (S10)

where Erf(x) is the error function. From a fit of this form to the normalized PL line-cut (Fig. S3b),

we obtain a resolution of 2σr = 420(40) nm. This is consistent with the estimated resolution

assuming a PL wavelength λ=650 nm and NA=0.9: 0.61λ/NA = 440 nm.
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Figure S3: (a) NV photoluminescence (PL) image of the graphene-on-diamond device. The red

outline indicates the boundary of the graphene channel. Some of the dark regions are due to

shadows cast by metallic contacts, which include electrical contacts to the graphene channel and

side probes, as well as top gate contacts. These PL features are not sharp due to the thickness of the

metallic structures. Therefore, we use RIE to generate sharp features in NV PL, such as the stripe

marked by the blue line. The blue line indicates the 1D line-cut used to generate the profile shown

in (b), which we use to extract the resolution. We note that there is no PL feature corresponding

to the outline of the graphene, because we did not etch all the way through the bottom hBN when

patterning the hBN-encapsulated graphene heterostructure. However, for generating the stripe,

we etched longer in order to etch through the hBN and hence remove the NV spins underneath.

(b) Normalized PL line-cut measurements (red circles). Here, we normalize the slowly-varying

background to unity. Hence, the depletion of the stripe feature has a relative contrast of about

40% with respect to the background. We fit the normalized PL to Eq. S10 (blue) to extract the

resolution.
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4 Pulse sequence for spin-echo AC magnetometry

In Fig. S4, we show the pulse sequence for spin-echo AC magnetometry. The NV spin is first

optically polarized into the ms = 0 level. A (π/2)x microwave pulse resonant with the ms =

0 ↔ −1 transition creates a coherent superposition between these two states. The system evolves

for a period of time τ in the presence of a field BAC generated by a bias VAC applied on the

device, and after a (π)x refocusing pulse evolves for another τ in the presence of −BAC generated

by −VAC. For read-out, the electronic spin state is projected onto the ms = 0,−1 basis by a

final ±(π/2)x,y pulse, and the ground state population is detected optically via spin-dependent

fluorescence. Here, (. . . )i refers to a rotation of the Bloch vector around Si axis, where (Sx, Sy, Sz)

are the spin operators.

(π/2)x πx ±(π/2)x,y 
τ τ 

532 nm Excitation 

Microwave 

Vsd(t) VAC 

Photon counting 

Figure S4: Pulse sequence for spin-echo AC magnetometry.
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5 Current reconstruction for scanning probe magnetometry applied on simulated current

profiles

To show the fidelity of the current reconstruction algorithm for scanning magnetometry, we test

the algorithm on simulated current profiles. In Fig. S5, we show a simulation with three different

types of current profiles: a uniform profile, a uniform profile with two bumps, and a parabola with

two bumps. The total current, width, and noise level are chosen to be comparable to those in the

experiment with graphene devices. The simulated data for B|| has a noise of 5% on the maximal

B||. As shown here, the reconstructed current profile is typically within 5% of the original current

profile. For the simulation of a uniform current, while the reconstructed current occasionally

deviates beyond 5% from the original profile, the standard error of the mean is 6%.
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Figure S5: Current reconstruction applied to simulated profiles. Left to right: simulation is

performed on three different current distributions: (left) a uniform distribution, (middle) a uniform

distribution with two bumps, and (right) a parabola with two bumps. The x-axis is shown in units

of the piezo scanning voltage. All profiles have I = 1µA. Top: simulated data for the projected

field (red points) along with B|| generated from the reconstructed current profile (blue curves).

Simulated data has 5% noise on the maximal value of the field. Bottom: result of reconstructed

current profile (red) compared to the original (dark blue curve). The light blue band is the 5% error

band for assessing the goodness of the reconstruction.
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6 Sensitivity of current reconstruction to uncertainty in the stand-off distance

NV centers used in this work are generated with nitrogen ion implantation at 6 keV. Stopping

and Range of Ions in Matter (SRIM) calculation gives an estimate of 10(3) nm for the depth of

the nitrogen, with the error bar denoting the ion straggle. However, experiments from Refs. 2, 3

indicate that the actual average NV depth for such shallow implants may be up to a factor of two

larger compared to the estimate from SRIM. Therefore, for the NV spin ensemble in the wide-

field imaging measurement, we estimate an average depth of 20 nm with uncertainty of 10 nm,

which includes both the uncertainty of the average of the distribution as well as the straggle. The

bottom hBN has a thickness close to 30 nm. Therefore, we use d =50(10) nm for the current

reconstruction. The uncertainty in the stand-off distance leads to an 9 A/m (or 6%) error on the

current density.

For the single NV scanning measurement, the stand-off distance d is one of the free

parameters in the Biot-Savart functional and therefore is extracted. The extracted d has some

distribution and can vary over a range up to 50 nm. On average, the extracted d is below 60 nm,

which is consistent with the experimental setup: ≈ 20(10) nm from the 6 keV implant plus the

thickness of the top hBN (. 20 nm) or the finite thickness of the Pd wire (≈ 30 nm). Given that a

variation of d over ∼ 10 nm scale is not expected to change the generated stray field much, we do

not expect to be able to extract d to high precision. This is reflected in the uncertainty of d which

is generally around 20 nm to 40 nm. We can evaluate the effect of the spread of d by extracting

the current profile when we fix d to a specific value. Fig. S6 displays variation in the
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reconstructed current profiles of a Pd channel and an encapsulated graphene device shown in Fig.

2e of the main text, corresponding to d fixed at several values. Here, the range of variation in d

corresponds to the typical spread of the extracted d. For the Pd wire, with ±15% change in d, we

see a 2%-7% change in the current profile; whereas with the same variation in d, even less change

in the current profile is observed for graphene. The typical error on the current density estimated

here is consistent with ≈ 5% error assessed from simulated current profiles.
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Figure S6: Variation in current profiles in Fig. 2e of the main text at various values of d. Red:

allowing d to be extracted from the current reconstruction algorithm. Extracted d is 60(10) nm for

the Pd channel (left panel) and 20(20) nm for the graphene device (right panel). Green (gray): d at

−15% (+15%) of the aforementioned value.
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7 Transport characterization of the graphene-on-diamond device

In Fig. S7, we show resistance R as a function of the gate voltage Vg and carrier density n for

the graphene-on-diamond device, obtained with two-terminal measurement. The location of the

charge neutrality point (Dirac point) VD is determined from location of the peak resistance. Carrier

density n is determined using n = Cg(Vg − VD), where Cg = ε0εr/(et) is the gate capacitance

per area, with ε0 the permittivity of free space, εr the dielectric constant, and t the thickness of the

dielectric. For the graphene-on-diamond device, εr = 4 and t = 13nm are used for the hBN gate

dielectric.

24

22

20

18
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Figure S7: Resistance R as a function of the gate voltage Vg and carrier density n obtained from

two-terminal measurement.
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8 Transport characterization of devices for scanning measurement

In Fig. S8, we show resistivity ρ as a function of carrier density n for three of the four devices

shown in Fig. 2f of the main text. Resistivity was obtained with four-terminal measurements. The

location of the charge neutrality point (Dirac point) VD is determined from location of the peak

resistance. Carrier density n is determined using n = Cg(Vg − VD), where Cg = ε0εr/(et) is the

gate capacitance per area, with ε0 the permittivity of free space, εr the dielectric constant, and t the

thickness of the dielectric. For the devices made on the standard SiO2/Si substrates, εr = 3.9 and

t = 285 nm are used.

For the device corresponding to the second (from the left) data in Fig. 2f of the main text, the

geometry of the device precluded a four-terminal measurement of the resistivity. However, because

photo-doping brings the system to the Dirac point in steady state, the magnetometry measurements

performed on this device were at the Dirac point. The last two sets of data (from the right) of Fig.

2f of the main text correspond to the same physical device: initial transport characteristics are

shown in the middle panel of Fig. S8, and later, altered characteristics are shown in the right panel

of Fig. S8. The later state of the device has a significantly broader ρ vs n and much lower peak

resistivity, indicating higher carrier density inhomogeneity. Therefore, we consider the two states

as two distinct devices.
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Figure S8: Resistivity ρ as a function of carrier density n for three of four graphene devices shown

in Fig. 2f of the main text. From the left to right, each panel corresponds to the (starting from left)

first, third, and fourth data set shown in Fig. 2f of the main text. Resistivity was obtained using

four-terminal measurements.
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9 Variation of viscous profile at different Gurzhi Lengths

The linearized electronic Navier Stokes equation4 for the current density J is

−ν∇2J +
1

τmr

J = e2
n

m
E , (S11)

where ν is the kinematic viscosity, e is the electronic charge, τmr is the momentum-relaxing time,

m is the effective mass, and E is the bias electric field. For electronic carriers in graphene, m =

~
√
πn/vF, where vF = 106 m/s is the Fermi velocity. A flow along the y-direction J = (0, Jy(x))

and under no-slip boundary condition, Jy(x = ±W/2) = 0 has following current density

Jy(x) =
e2vFτmr

~

√
n

π
E

(
1− cosh(x/Dν)

cosh(W/(2Dν))

)
, (S12)

where Dν ≡
√
ντmr. One can then obtain the conductivity defined as σ ≡ I/(WE) where I =∫

dx Jy(x):

σ =
e2vFτmr

~

√
n

π

(
1− 2Dν

W
tanh

(
W

2Dν

))
. (S13)

In Fig. S9, we show profiles from the solution of the electronic Navier Stokes equation with

different values of Dν/W . For Dν/W � 1, the current density approaches a uniform profile Jy =

σ0E and the conductivity σ = σ0 ≡ e2τmrn/m becomes the Drude conductivity. For Dν/W � 1,

the current density approaches the ideal Poiseuille profile Jy(x) = e2vF
2~ν

√
n
π
E
((

W
2

)2 − x2), and

the conductivity σ = e2nW 2/(12mν) has the ∼ W 2/ν scaling. For Dν/W = 0.3, the current

density approaches within 5% of the ideal Poiseuille profile, while for Dν/W > 0.5, the current

density approaches within 2% of the ideal Poiseuille profile.
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Figure S9: Solution of the electronic Navier Stokes equation with different values of Dν/W . The

band around the ideal Poiseuille profile is 5%. The current density is normalized by the average
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10 Comparison of measured current profile to the flow of non-interacting electrons with

diffuse boundary

For a system of non-interacting (τpp = ∞) electrons moving in a channel −W/2 < x < W/2

with completely diffusive boundary, the flow profile develops a curvature in the regime when the

momentum-relaxing mean free path is on the order of the width, lmr ≈ W . In the main text, we

compared the NV measured profile in graphene at the charge neutrality point (CNP) to the non-

interacting case, and concluded that the non-interacting case cannot explain our measurement. In

this section, we discuss the details of the calculation of non-interacting profiles.

The derivation of the current profile of non-interacting electrons in a channel with diffuse

boundary can be done following previous work (see, e.g., ref. 5 and references therein). The local

current density is given by

J(x) = eg

∫
d2p

(2π)2
vf(x,p), v = ∂pε, (S14)

where e = −|e| is the electron charge, g = 4 is the spin-valley degeneracy, ε = ε(p) is the

quasiparticle energy as a function of momentum p, and f(x,p) is the steady-state quasiparticle

distribution function. It is convenient to write the deviation of f from the equilibrium Fermi-Dirac

distribution f0(ε) =
[
e(ε−εF )/T + 1

]−1 in the form

f(x,p)− f0(ε) =

(
−df0
dε

)
F. (S15)

If the temperature T is much smaller than the Fermi energy εF = ε(pF ), the dependence of F on

|p| proves to be weak, so that F = F (x, θ) where θ is the angle between vector p and the y-axis.
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Accordingly, the current density is given by

J(x) = e
dn

dεF

π∫
−π

dθ

2π
vF (x, θ), v = (−vF sin θ, vF cos θ) , (S16)

where n = g
∫
f0(ε) d

2p/(2π)2 is the electron density and vF = dεF/dpF is the Fermi velocity.

Adopting the relaxation-time approximation for bulk scattering, we obtain the linearized

Boltzmann kinetic equation for F :

vx∂xF − evyE = −F − F
τmr

, F ≡
π∫

−π

dθ

2π
F. (S17)

It is easy to see that F must be odd under reflection with respect to the x-axis: |θ| → π − |θ|. This

implies that F = 0, so that the electron density and the electric field E are uniform in the channel.

Equation (S17) becomes

sin θ ∂xF +
F

lmr

= eE cos θ. (S18)

We need to solve this equation subject to the suitable boundary conditions (BC) at the edges. For

the case of purely diffuse scattering, the quasiparticle flux reflected from the edges is isotropic.

Thus, the BC at x = W/2 edge is F (W/2, θ) = const at 0 < θ < π. Flux conservation fixes this

constant to be

F (W/2, θ) =
1

2

0∫
−π

F (W/2, θ′) sin θ′dθ′, 0 < θ < π. (S19)

A similar boundary condition, for angles −π < θ < 0, holds at x = −W/2 edge. The desired

solution is therefore

F (x, θ) = eElmr cos θ

{
1− exp

[
−W/(2lmr)

| sin θ|
+
x/lmr

sin θ

]}
. (S20)

Substituting this expression into Eq. (S16), we obtain, after some elementary transformations,

Jy(x)

eσ0E
= 1−G

(
W + 2|x|

2lmr

)
−G

(
W − 2|x|

2lmr

)
, G(z) ≡ 2

π

∞∫
1

du

u3

√
u2 − 1 e−zu, (S21)
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where σ0 = e2nlmr/(vFm) is the standard Drude conductivity.

Function G(z) monotonically decreases at z > 0 and has the following asymptotic behavior:

G(z) ' 1

2
− 2

π
z ln

(
2e−γ

z

)
− z2

2
+

1

6π
z3
[
ln

(
2e−γ

z

)
+

7

3

]
, z � 1, (S22)

'
√

2

πz3
e−z, z � 1, (S23)

where γ = 0.577 is the Euler constant. The upper line is relevant if the scattering is dominated by

the edges (i.e. ballistic limit), lmr � W . The lower line is useful if the transport is limited by the

bulk scattering (i.e. Ohmic limit), lmr � W . In both such limits the current density enhancement

Jy(0)W/I at the center of the channel becomes small.

In general, this profile has some curvature, which is maximal in the regime of lmr ≈ W .

In Fig. S10, we show the profiles at various values of lmr/W and compare to an ideal Poiseuille

flow. We see that the non-interacting profiles begin as a uniform profile for lmr/W � 1, develop

a curvature that is maximal at lmr/W ≈ 1, and then flattens again as lmr/W � 1. In Fig. S11,

we show the peak (central) value of Jy/(I/W ) as a function of lmr/W in order to quantify the

curvature of the profile. The maximum occurs at lmr/W = 0.625, though there is little change

in the range of lmr/W ∼0.5-1. From both Figs. S10 and S11, we see that even with the maximal

curvature at lmr/W = 0.625, the non-interacting profile still significantly deviates from the ideal

viscous case. In Fig. 2e of the main text, we compared an experimental profile at the CNP to

both the ideal viscous profile and the non-interacting profile at lmr/W = 0.625. It is clear that

the non-interacting profile cannot explain the measured profile in graphene, which instead matches

well to the viscous profile.
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Figure S11: Peak (central) value of J/(I/W ) of non-interacting profiles as a function of lmr/W .
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11 Validity of hydrodynamics in graphene at room temperature

At elevated temperatures, the dominant mechanism for momentum-relaxation is electron-phonon

scattering. For hBN-encapsulated graphene, the associated momentum-relaxing mean free path

lmr ≈ 1µm (refs. 6–8) corresponds to τmr = lmr/vF ≈ 1 ps. From the main text, we have τν =

0.19− 0.39 ps; τpp should be on the same order and hence is small compared to τmr. We also note

that the particle-particle collision mean free path is lpp ≡ τppvF ∼ 190−390 nm, corresponding to

a Knudsen number Kn≡ lpp/W ∼ 0.19− 0.39, which is small compared to unity. Together, these

two conditions justify the hydrodynamic limit. As observed in this work and in ref. 8, for the usual

range of carrier density n < 1012 cm−2 accessed in a graphene experiment, ν ∼ 0.1 − 0.4 m2/s,

which corresponds to Dν ≈ 300 − 600 nm. For W = 1µm, the resulting Jy calculated with Eq.

1 of the main text is within 4% to 1% of an ideal viscous profile with the same total current. This

is consistent with our observation that there is no discernible variation in the current profile at

different carrier densities.
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12 Effect of photo-doping on scanning magnetometry experiment

Exposure to light is known to lead to photo-induced doping in an hBN-encapsulated graphene

device fabricated on an SiO2/doped Si substrate9, 10. The mechanism is that defects residing in

hBN are photo-dissociated, leading to free positive and negative charges that can migrate within

the hBN layer. At any value of gate voltage Vg, the free charges experience the electric field and

migrate accordingly. The charges that migrate towards the graphene dope the graphene; however,

the charges that migrate towards SiO2 cannot exit the hBN layer, remain trapped in hBN, and serve

to screen the electric field11, 12. Hence, upon light exposure, the system moves towards the CNP

over time, and the steady state is the CNP. Nevertheless, the rate is slow enough that we can obtain

scanning NV magnetic measurements as a function of carrier density range. In this section, we

describe the relevant analysis to examine the effect of photo-doping in scanning measurement.

In scanning NV magnetometry, photo-induced doping occurs as the graphene device is

exposed to the NV-excitation light scattered from the diamond probe. We observe photo-doping

dynamics with the following experiment. With the probe retracted (about 10µm above the

device) and light focused on the probe, we set Vg to a finite value, and monitor the resistivity ρ as

a function of time. The density-dependent transport curve ρ vs n of this device is shown in the

middle panel of Fig. S8. In Fig. S12, we show ρ as a function of time for Vg = −10 V (left panel)

and Vg = +10 V (right panel). In both cases, the resistivity increases and saturates at the

resistivity associated with the CNP ≈ 1.5 kΩ (see the middle panel of Fig. S8). This indicates the

evolution of the system towards CNP and that the CNP is the steady state under light illumination.
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Figure S12: Time-dependent evolution of resistivity ρ under exposure to NV-excitation light

scattered from the diamond probe. The measurement is done with the probe retracted at about

10µm above the device. Time evolution is measured with Vg set to−10 V (left) and +10 V (right).

Note that while ref. 9 observed photo-induced doping to occur only for Vg < 0 at 77 K, here we

observe photo-induced doping regardless of the sign of Vg at room temperature. Our observation

is consistent with the result of ref. 10.

Once the system has been photo-doped to the CNP, it is stable under light illumination. In

the left panel of Fig. S13, we show ρ measured throughout the course of a scanning

magnetometry measurement when the device has been photo-doped to the CNP. Negligible

variation in ρ is observed.

Photo-induced doping presents complication for a scanning magnetometry measurement

away from the CNP. The time scale of the dynamics presented in Fig. S12 is on the order of

hours, but this is under the situation when the probe is retracted. When the probe is on the device,
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the evolution becomes significantly faster. Nevertheless, the dynamics is slow enough that during

a scanning magnetometry measurement, which lasts about 1.5 hours, the system evolves across a

range of carrier density, but does not completely reach the CNP. For the data presented in Fig. 4a

of the main text, we first photo-dope the system to shift the CNP to Vg = −20 V. Then, we set

Vg = 0 V, and perform scanning magnetometry measurements. Before and after each set of

scanning magnetometry measurements, we monitor the resistivity ρ to determine the carrier

density range that the system has evolved across by matching the measured resistivity to the

transport curve shown in the middle panel of Fig. S8. In the right panel of Fig. S13, we show the

same transport curve as in the middle panel of Fig. S8, and shade the ranges of carrier density that

the system has evolved across during the two measurements at finite carrier density shown in Fig.

4a of the main text. The carrier density range is n = 0.3 − 1.5 × 1012 cm−2 and

n = 0.1− 0.3× 1012 cm−2 respectively.

Unlike a device where gating is provided by a Si back gate separated from the device with an

SiO2 layer, a device where gating is provided by a graphite gate, separated from the graphene only

by an hBN layer, does not undergo photo-induced doping13. Therefore, the graphene-on-diamond

device, where gating is provided by a graphite top gate separated from the graphene by an hBN

layer, does not suffer from photo-induced doping.
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Figure S13: Left panel: resistivity monitored as a function of piezo scanner voltage during a

scanning NV magnetometry measurement. Right panel: transport curve ρ vs n from the middle

panel of Fig. S8, and carrier density range (green checkers and blue vertical stripes) covered by the

two scanning magnetometry measurements at finite carrier density shown in Fig. 4a of the main

text. The carrier density ranges are n = 0.3− 1.5× 1012 cm−2 and n = 0.1− 0.3× 1012 cm−2.

29



13 Comparison of current reconstruction methods for scanning magnetometry

In this section, we compare the current reconstruction method for scanning magnetometry

described in the main text with an alternative approach where one directly inverts the Biot-Savart

law in Fourier space (Eqs. S3, S4, S6). We refer to the latter approach as Fourier inversion. We

show that the main text method gives the same bulk current profile as Fourier inversion; however,

unlike Fourier inversion, the main text method preserves sharp edges in the current profile (if

present) without amplifying noise.

In Fig. S14, we show the current profile in graphene from Fig. 2e of the main text along with

current profiles obtained from the same scanning magnetometry data using the Fourier inversion

method for several values of standoff distance d. Regularization is achieved via placing a cutoff

kc in Fourier space, with kc chosen in each case such that the variation in the background (i.e., for

|x| > W/2) is similar to the peak error bar from the data of Fig. 2e. Over the range of d expected

for the experiment, we see that the current profile obtained with the main text method is consistent

with that obtained from Fourier inversion.

In Fig. S15, we show the dependence on Fourier cutoff kc for d = 30 nm. The qualitative

shape of the current density - a parabolic profile - is insensitive to the choice of kc, which is

consistent with the expectation for a smooth profile. The only difference kc makes is the amount

of noise and the prominence of the dip feature close to the center of the profile. The optimal cutoff

for this measurement is kc/(2π) = 3µm−1.
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In Fig. S16, we show the current profile in Pd from Fig. 2e of the main text along with current

profiles obtained from the same data using the Fourier inversion method with d = 70 nm and for

several values of kc. For low kc, the influence of high spatial frequency noise on the reconstruction

is minimal, but sharp features in the current profile are washed out. As one increases kc, one begins

to recover sharp edges, but when the sharp features are comparable to those of the reconstructed

current profile from the main text (lower right panel), high spatial frequency noise is severely

amplified. Lastly, we see that the width of the rise at the edges is given by 1/kc.

From this analysis, we see that the main text reconstruction method gives the same result

as Fourier inversion when there are no sharp spatial features in the current profile. Compared to

Fourier inversion, the main text method is able to preserve sharp features without amplifying noise.
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Figure S14: Comparison of current profile in graphene from Fig. 2e of the main text (red circles)

to current profile extracted with Fourier inversion using several standoff distances d. Left panel:

black stars are for d = 15 nm. Middle panel: blue open diamonds are for d = 30 nm. Right panel:

green open squares are for d = 50 nm. In each case where Fourier inversion is applied, a cutoff in

Fourier space is chosen such that the resulting noise in the background is comparable to the peak

error bar of the red data points.
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Figure S15: Comparison of current profile in graphene from Fig. 2e of the main text (red circles)

to current profile extracted with Fourier inversion (blue diamond) at d = 30 nm using several

Fourier cutoffs kc. Upper left: kc/(2π) = 1.7µm−1. Upper right: kc/(2π) = 3µm−1. Lower left:

kc/(2π) = 4.4µm−1. Lower right: kc/(2π) = 5.7µm−1.
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Figure S16: Comparison of current profile in Pd from Fig. 2e of the main text (red circles) to

current profile extracted with Fourier inversion at d = 70 nm using several Fourier cutoffs kc.

Upper left (purple): kc/(2π) = 2.1µm−1. Upper right (blue): kc/(2π) = 3.2µm−1. Lower left

(black): kc/(2π) = 4.3µm−1. Lower right (green): kc/(2π) = 4.6µm−1. For each panel, the light

blue points are located at ±(W − k−1c ), and the light blue bars extend from the light blue points

with a length 1/kc.
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14 Heating due to laser and microwave delivery in wide-field imaging

To estimate heating due to laser and microwave delivery, we use the Fourier law q = −k∇T , where

q is the heat flux and k is the thermal conductivity. Here, we use k = 2200 W/(mK) for diamond.

If the heat is being deposited at a power Q over an area ∆x2, where ∆x is the characteristic length

scale of the heating, then based on the Fourier law we can write Q/∆x2 ≈ k∆T/∆x and hence

∆T ≈ Q/(k∆x).

For wide-field imaging, about 10 mW of laser illuminates an area of about 5µm in diameter.

If we assume the laser is completely absorbed on the diamond surface, then with Q ≈ 10 mW and

∆x ≈ 5µm, we get an upper bound on the temperature change to be ∆T . 1 K.

Microwave delivery for wide-field imaging consists of a -35 dBm signal amplified at 45 dB

gain. Therefore, about 10 mW of power is sent through the microwave delivery. Once again, if we

assume this power is entirely deposited on the diamond in the vicinity of the device, and using the

dimension of the microwave delivery to estimate ∆x ≈ 10µm, we get ∆T . 1 K.

In both cases, we see that heating due to laser and microwave delivery is negligible in wide-

field imaging.
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15 Estimate fluctuation potential for high impurity device

One of the devices measured has higher charge impurity, as shown by the lower resistivity at the

Dirac peak. The current profile for this device is shown as the right-most profile in Fig. 2f and its

transport curve ρ vs. n is shown in the right-most panel of Fig. S8. In this section, we estimate the

fluctuation potential δµ as a measure of the impurity level for this device.

It is insightful to plot the transport measurement data in the form of conductivity σ vs. Fermi

wave vector kF =
√
πn = EF/(~vF) (Fig. S17). For both the standard device and high impurity

device, the data shows that initially for small kF, σ remains close to constant, and for large kF ,

there is a linear trend that extrapolates to an x-intercept corresponding to kF = kBT/(~vF). The

difference between the standard device and the high impurity device is that the latter has a higher

minimal conductivity.

In the viscous Poiseuille (Dν � W ) regime, the conductivity can be written as σ = AEF/ν

where A = e2W 2/(12π~2). Note that the same form σ ∝ EF can be written in the Ohmic case,

except that the relevant quantity that determines transport is τmr instead of ν, and thatW disappears

from the dependence. The data of σ vs kF data can be described by the following model:

σ =


A(kBT + δµ)/νDF EF < kBT + δµ

A(EF − kBT )/νFL EF > kBT + δµ

(S24)

In this model, ν is treated as taking on a constant value νDF near the CNP (the Dirac fluid

regime), and another constant value νFL in the finite-density Fermi-liquid regime. Such
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approximation is justified from the result shown in Fig. 4b.

In this model, the minimal conductivity σmin ∼ (kBT + δµ)/νDF. Assuming νDF is an

intrinsic property of the system and hence is independent of inhomogeneity, what sets σmin at a

given temperature is δµ. Therefore, when comparing two minimal conductivities, we have

σmin,1/σmin,2 = (kBT + δµ1)/(kBT + δµ2). We use two values of δµ for the standard device:

δµ = 0 and δµ = 50 K, which is typical for encapsulated device14. This allows us to estimate the

fluctuation potential for the high impurity device: δµ = 450 − 570 K, which is large compared to

the thermal energy.

37



6

5

4

3

2

1

0

σ
 (m

S)

120100806040200

kF (µm-1)

Figure S17: Conductivity σ as a function of Fermi wave vector kF =
√
πn. Red, black, and

green circles correspond to transport measurements shown in the left, middle, and right panels of

Fig. S8. Red and black data are from standard devices, and green data is from the high-impurity

device. The corresponding solid curves are linear fits to the data for kF > 100µm−1. Shaded blue

region corresponds to kF < kBT/(~vF). Red (green) horizontal dashed lines correspond to the

minimal conductivity for the standard devices (high-impurity device).

38



16 Transport regime of Pd

Here we substantiate that the transport regime of the Pd wire is Ohmic. Refs. 15, 16 have each

obtained palladium lmr to be 9 nm and 25 nm respectively. The Fermi energy is EF = 8.16 eV,

and with effective mass m∗/m = 0.4, this gives us the Fermi velocity vF = 2.7 × 106 m/s.

We then have the elastic (momentum-relaxing) scattering time τmr = 3 − 9 fs. The mobility

∼ 10cm2/(Vs) is four magnitude lower compared to that of high quality graphene device such as in

our experiment. For the Fermi liquid regime valid for Pd, the electron-electron scattering time can

be estimated τee ∼ ~EF/(kBT )2 = 8 ps � τmr. With such a short momentum-relaxing scattering

time compared to the electron-electron scattering time, transport in Pd is diffusive (Ohmic).
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17 Estimate of the slip-length

Poiseuille current flow only occurs with a no-slip boundary condition17 uy(x = ±W/2) = 0,

where W is the channel width. In general, the boundary condition can be parameterized by the

slip-length ζ , defined as ζ ≡
∣∣∣duydx ∣∣∣ /uy evaluated at the boundary17. A no-slip boundary condition

applies for ζ � W , where the other limit is the no-stress boundary condition ζ � W . In the

case of no-stress boundary condition, current flow in a channel is uniform despite the presence of

viscosity.

The boundary condition for (lithographically patterned) graphene was not known prior to our

work. Viscous flow of an electron fluid in doped graphene has been explored either via a vortex

whirlpool detected using a negative vicinity voltage8, 18, 19 or superballistic conduction measured

with a point contact20. Formation of a vortex whirlpool is insensitive to the boundary condition8.

Superballistic flow through a point contact has a profile that is analogous to Poiseuille flow across

a channel, but does not require a no-slip boundary condition; e.g., the analysis of ref. 20 was

performed with a no-stress boundary condition.

In our graphene experiments, we find that the current continuously decreases away from the

center of the channel, vanishing at the boundary. This observation indicates a no-slip boundary

condition at the room temperature. Kiselev and Schmalian17 estimate ζ ≈ 0.6lpp for the diffuse

limit likely appropriate for lithographically patterned graphene. The authors also discuss a nearly

specular limit with ζ ≈ 0.008
(

λ3T
h2h′

)
lpp. Here, λT = vF~/(kBT ) is the thermal wavelength and

the two length scales h and h′ are the roughness of the edge. The authors use h = h′ = 250 Å.
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Thus in the nearly specular limit, the ratio λ3T/(h
2h′) ≈ 1 and ζ ≈ 0.008lpp. This is much smaller

compared to the diffuse limit, and since we are interested to establish an upper bound on ζ from

the authors’ estimate, it is appropriate to consider the diffuse limit.

In order to estimate ζ , we need lpp = vFτpp. The viscous scattering time τν determined in our

work is not the same as τpp. However, τpp is measured in ref. 21 to be τpp = 5τ~ so we use that value

here. At T = 300 K we have τpp = 127 fs and hence lpp = 127 nm. This gives ζ ≈ 76 nm � W ,

consistent with the no-slip boundary condition observed in our experiment.

We note that a recent work ref. 22 estimates ζ ≈ 500 nm in their system at T = 75 K. With

such a longer slip-length, Poiseuille flow persists because a wider channel is employed in the work,

with W = 4.7µm. In addition, lpp ≈ 0.16W = 750 nm, which is much larger than in our system

because of lower temperature. Hence one still has ζ ≈ 0.6lpp. In another word, the slip-length is

large at lower temperature, and decreases as temperature increases.

As discussed in ref. 17, a large slip-length below 100 K is consistent with the observation by

the Manchester group that the Gurzhi effect is not observed up to 100 K. However, at much higher

temperature, the slip-length decreases significantly; according to ref. 17, the slip-length would reach

a sub-100 nm value at room temperature, consistent with our experimental observation of no-slip

boundary condition.

41



18 Field-dependence of viscous profiles

To check if there is significant field dependence to the observed current profiles in graphene, we

performed scanning NV magnetometry at the CNP for several applied bias magnetic fields

(Fig. S18). The bias field was aligned with the orientation of the NV and the values were B0 =50,

200, 389 G. The out-of-plane field is B0,z = B0/
√

3 = 29, 115, and 225 G. At all magnetic field

values, the observed current profiles maintain the overall shape for Poiseuille flow and do not

have significant, qualitative change.

The corresponding cyclotron radius is rC = EF/(evFB) = 8.9, 2.2, and 1.1 µm at the three

bias field values. Here, we use EF = kBT . In the regime where the cyclotron radius is larger than

the width W , a hydrodynamic current profile is not expected to change22, which is consistent with

our experimental observation.
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Figure S18: Current profiles at the CNP for three different out-of-plane bias magnetic fields. The

current density J is normalized by average flux I/W . The x-axis is normalized by the width W .

The out-of-plane field is 29 (green), 115 (red), and 225 G (blue), corresponding to cyclotron radius

rC = 8.9, 2.2, and 1.1 µm. Solid black curve is for ideal viscous flow.
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19 Analysis of transport characterization of graphene device for scanning measurement

Here, we provide further analysis of the transport characterization of a graphene device studied

with scanning NV magnetometry. Analysis is performed for the data shown in the middle panel

of Fig. S8. The data shown in the left-most panel of Fig. S8 is almost identical, so here we only

show analysis of one set of data. The data shown in the right-most panel of Fig. S8 corresponds

to a device with significantly larger charge impurity; an analysis of the impurity level is shown in

Section 15 of the Supplementary Information.

First, we extract the mobility µ = σ/(en) from the standard formula. For EF = ~vF
√
πn <

kBT , we use n such thatEF(n) = kBT , both here and in the subsequent analysis. µ as a function of

n is shown in Fig. S19a. The benchmark of device quality is seen in the high-density regime where

mobility is fairly constant. In that regime, we have ≈ 6 × 104 cm2/(Vs), which is on par with

the 5 × 104 cm2/(Vs) value typical for a high mobility encapsulated graphene device cited in the

literature (see for example the mobility of a typical device in the Manchester group experiment8).

Next, we extract the momentum-relaxing scattering length lmr and viscous scattering length

lν ≡ ν/vF. For lmr, one could apply the standard Drude formula lmr = σh/(2e2kF) where the

Fermi wave vector kF =
√
πn. This formula is applicable where the current profile is uniform.

The resulting lmr is shown as black dashed curve in Fig. S19b. Given that we observed a parabolic

current profile, the Drude formula will not accurately assess lmr. In order to assess the scattering

length scales in the Poiseuille regime, we make use of the results for three values of the kinematic

viscosity ν from the main text Fig. 4b, each corresponding to a value ofDν/W . lmr can be obtained
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from the definition of the Gurzhi length Dν ≡
√
lmrν/vF and the value of ν corresponding to each

value of Dν/W . lmr corresponding to Dν/W = 0.3, 0.5 are shown in Fig. S19b. Note that lmr is

not shown for Dν/W = ∞ because it corresponds to lmr = ∞. The viscous scattering length is

then given by the definition lν ≡ ν/vF, as shown in Fig. S19c.

Lastly, we show the ratio of the scattering lengths lν/lmr, which is the same as τν/τmr, for

Dν/W = 0.3 (red) and 0.5 (green) in Fig. S19d. While τν is not necessarily the same as τpp, they

are expected to be on the same order, and hence τν/τmr provides a measure to assess the validity

of hydrodynamics. We found τν/τmr is bounded above by 0.4 and hence significantly smaller than

unity. Thus, we see that the transport measurement provides a self-consistent check that the system

is in the hydrodynamic regime.
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Figure S19: (a) Mobility µ vs. carrier density n. (b) Momentum-relaxing mean free path lmr. Black

dashed curve is the data from the Drude formula. Red and green curves are from a hydrodynamic

analysis withDν/W = 0.3 and 0.5. (c) Viscous scattering length lν extracted from a hydrodynamic

analysis with Dν/W = 0.3 (red), 0.5 (green), and∞ (blue). (d) Ratio of scattering times τν/τmr =

lν/lmr for Dν/W = 0.3 (red) and 0.5 (green).
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20 Range of channel width for Poiseuille flow in graphene at room temperature

In this section, we discuss the range of channel width W in which one may observe Poiseuille

current flow in graphene at room temperature. As discussed in Supplementary Information

Section 11, one expects Dν ≈ 300 − 600 nm. Hence, W . 3Dν ≈ 1 − 2µm is the necessary

regime to observe a parabolic current profile. On the other hand, W cannot be small such that the

slip-length ζ starts to become significant. Based on the work in ref. 17, Supplementary

Information Section 17 estimates ζ ≈ 80 nm. It is reasonable to place 10ζ . W as the criterion

for Poiseuille flow. Therefore, the range in which one can expect to observe Poiseuille flow is

0.8µm . W . 2µm.

Previous works obtained a signature of viscous Poiseuille flow in the scaling of the resistivity

ρ ∝ W−2 in a graphene point contact20 and WP2 (ref. 23). The graphene point contact experiment

covered a range of point contact width from 0.1 to 0.8 µm, a factor of 8, while the experiment with

WP2 ribbon covered a range of ribbon width from 0.4 to 9 µm, a factor of 22.5. In contrast, the

range of graphene channel width at room temperature discussed above corresponds to a factor of

2.5. Hence it will be difficult to observe the resistivity scaling in the case of a graphene channel at

room temperature due to the narrow range in which one has to conduct such an experiment.
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21 Verification of continuity equation from the wide-field imaging experiment

In this section, we show line-cuts of Jy at a few different y-values, and demonstrate that the

continuity equation ∇ · J = 0 is satisfied. First, we show line-cuts Jy at several y-values in

Fig S20b. Jy becomes flatter as one approaches the lower part of the channel where the current

starts to bend around a corner towards the drain on the left.

In order to verify that this dynamics is real and not an imaging artifact, we probe the

divergence of the current to check that the continuity equation is satisfied. In Fig. S20c, we show

an example of the divergence of the current density∇ · J from the wide-field imaging experiment.

In the channel where we investigate Poiseuille flow, the largest value of the divergence is around

δ(∆J/∆x) ≈ 170µA/µm2. As the pixel size of the image is ∆x = 0.1µm, we can provide

another independent assessment of the error on the current to be ∆xδ(∆J/∆x)/2 ≈ 9 A/m. The

factor of 2 in the denominator comes from error propagation in calculating the divergence, where

one needs to make use of values of the current density at four points. This error estimate is

consistent with the assessment from uncertainty of the stand-off distance.

We note that ∇ · J at the bottom-left side-probe is significantly larger compared to that in

the main channel. This is due to the large magnetic gradient arising from the highly concentrated

current, which leads to a distorted ODMR spectrum and inaccurate determination of the magnetic

field. Due to such artifacts, one expects a much larger error in the extracted local current and hence

divergence for images at this part of the device.
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Next, we check that the continuity equation is satisfied in an alternative way. We can reliably

obtain vertical flux
∫

dx Jy in the channel above the top gate metallic contact, and we observe the

flux agrees with the source-drain current Isd = 100µA within 9µA, which is also consistent with

δJ = 9µA/µm. In addition, we checked that the horizontal flux
∫

dy Jx at the bottom left side

probe (at around x = −1µm) agrees with Isd.

Therefore, we conclude that the data is consistent with the continuity equation within the

error bar. The check of the continuity equation benchmarks the reliability of our imaging technique.

Given that we verify the continuity equation, we conclude that the observed spatial evolution of

the current density is real and not an artifact in the measurement. Presumably, this involves higher

order dynamics of the electron fluid as the current bends around the device corner, which leads the

system to deviate from the equilibrium ideal Poiseuille flow in the lower part of the channel.
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Figure S20: (a) The same image from Fig. 3b for reference. (b) Line-cuts of Jy at a few different

y. The values of y (units in µm) corresponding to each set of data is shown in the legend. (c)

Example of measured divergence of current density ∇ · J in graphene from wide-field imaging

experiment. (d) Vertical flux
∫

dx Jy as a function of y. The gray band corresponds to the region

within 420 nm (imaging resolution) of the metallic top gate contact; in this region, imaging is

distorted due to the presence of the contact. Blue band corresponds to ±9µA of the source-drain

current Isd = 100µA.
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22 Magneto-Transport Measurement

Magneto-transport measurement provides a way to determine whether transport is ballistic in

graphene as a function of temperature. The measurement is performed with the hBN-encapsulated

graphene device whose measured current profile is shown in Fig. 2e of the main text. An optical

image of the device, together with the schematic of the transport measurement, is shown in

Fig. S21a. We measure the four-terminal resistivity ρ as a function of an out-of-plane magnetic

field B and carrier density n. The measurement is carried out in a Janis SVT/MAGNET cryostat.

A 2D plot of the data is shown in Fig. S21b for temperature at 10 K and 270 K. At finite doping,

the data for 10 K shows two prominent maxima in the resistivity, whereas the data for 270 K is

largely featureless. To further highlight the difference at the two temperatures, we show line-cuts

along B at several values of n. The horizontal axis is shown in units of W/RC , where W = 1µm

is the device width and RC = ~kF/(eB) is the cyclotron radius. Here kF =
√
πn is the Fermi

wave vector. At 10 K, a peak in ρ occurs at W/RC ≈ ±1, and a kink occurs at W/RC ≈ ±2.

These are well-known signatures of ballistic transport in graphene24, 25. Hence, the device is

demonstrated to exhibit ballistic transport at low temperatures, as expected for a standard

hBN-encapsulated graphene device. As temperature increases, ballistic transport will disappear at

some point. For our data at 270 K, the signatures of ballistic transport have disappeared. Hence

we conclude that ballistic transport is no longer present at 270 K and above.
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Figure S21: Magneto-transport measurements of hBN-encapsulated graphene device at 10 K and

270 K. (a) Schematic of the magneto-transport experiment, performed via measurements of the

four-terminal resistivity ρ. (b) Resistivity ρ as a function of carrier density n and out-of-plane

magnetic field B. The range of ρ displayed is chosen to make the relevant features visible in the

colormap. At low temperature (10K), we observe a double-peak feature in ρ as B is varied. This

feature is absent at 270 K. (c) 1D line-cuts of (b). The horizontal axis is shown in units of W/RC ,
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whereW = 1µm is the device width andRC = ~kF/(eB) is the cyclotron radius. Here kF =
√
πn

is the Fermi wave vector. Each linecut is offset vertically. Line-cuts are shown for n = 5.67×1011

to 1.36 × 1012 cm−2 at 3.78 × 1010 cm−2 intervals. At 10 K, a peak in ρ occurs at W/RC ≈ ±1,

and a kink occurs at W/RC ≈ ±2. These features are absent at 270 K.
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23 Current Reconstruction from Scanning NV Microscopy

Scanning NV microscopy measures only one projection of the magnetic field generated by current

through the device. However, the Biot-Savart law together with continuity equation, which has the

form kxjx + kyjy = 0 in Fourier space, requires the map of one projection of the magnetic field to

contain all information of a 2D current distribution. In our experiment, the NV has an orientation

vector û = (
√

2/3 cos θ,
√

2/3 sin θ,
√

1/3), where θ is the angle between the NV orientation

projected on the xy plane and the x-axis. Here, the device being studied is used to define the

coordinate axis, with the long direction of the device taken as the y-direction. Therefore, the

projected field is B||(x) =
√

2/3 cos θBx(x) +
√

1/3Bz(x). The sample is placed on the setup in

such a way as to minimize θ.

There are two challenges with applying the Fourier inversion method described previously

to scanning measurements. First, B|| involves Bz, which has a long ∼ 1/x tail. Direct inversion

requires measurement over a large field of view or otherwise leads to long-wavelength artifacts

(e.g., offsets or a slope), which in general can be corrected but nevertheless are inconvenient.

Second, current reconstruction involves inverting a low-pass filter which, in the absence of other

low-pass filter such as optical diffraction, leads to amplification of noise at high frequencies.

Therefore, regularization is required26. However, regularization needs to be performed with care:

a naive application of a global regularization can smoothen out a sharp feature, such as at the

edges.

The goal is to have a current reconstruction procedure that is generally applicable to an
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arbitrary current profile Jy(x) flowing in a channel oriented along the y-direction. First, the current

density is parameterized as Jy = Jy({an}, x), with {an} being free parameters that determine Jy.

It is convenient to capture the expected overall shape of the current profile with a minimal number

of parameters in a function called J0. For this purpose, the functional form of Eq. 1 of the main text

is chosen, which can vary from a parabola to a rectangular function. While J0 is the solution of the

electronic Navier Stoke equation, it is used here merely to set the functional form without assuming

hydrodynamics. The second part of the parameterization ∆J captures the remaining variation; it

is a linear interpolation with N equally spaced points inside the channel and parametrized by the

values an = ∆J (xn), where xn ≡ −W
2

+ nW
N

for n = 0, 1, ..., N is the nth equally-spaced point

along the width of the channel. Since the behavior at the edges is already captured by J0, it is

allowed to set a0, aN = 0. The mathematical expression for the parameterization is

Jy(x,W,D, {an}) = A0J0(x,W,D) + ∆J(x,W,N, {an}) , (S25)

J0(x,W,D) ≡
(

1− cosh(x/D)

cosh(W/(2D))

)
Π(x/W ) , (S26)

∆J(x,W,N, {an}) ≡
N∑
n=1

Jlin(x− (xn−1 + xn)/2,W/N, an−1, an) , (S27)

Jlin(x,∆W,a, b) ≡
((

b− a
∆W

)
x+

a+ b

2

)
Π(x/∆W ) . (S28)

Here, Π(x) is the rectangular function, which is unity for |x| < 1/2 and zero otherwise. Note that

no particular model is assumed for the current density; also the parameterization described above

allows Jy to take on any functional form. The only prior knowledge exploited in this procedure is

the fact that the current density is zero outside the channel.
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With this parameterization, functional can be constructed that generates B|| for a given Jy:

B||(x, xctr,W,D, {an}, d, θ, B0) = B0 +

√
2

3
cos(θ)αx(x, d) ∗ Jy(x− xctr,W,D, {an})

+
1√
3
αz(x, d) ∗ Jy(x− xctr,W,D, {an}) . (S29)

Here, xctr is the center of the channel, d is the stand-off distance, B0 is an offset that accounts for

potential contribution in Bz from far away current flowing not strictly in the y-direction, ∗ denotes

a 1D convolution, and the kernels are

αx(x, d) ≡ µ0

2π

d

(d2 + x2)
(S30)

αz(x, d) ≡ −µ0

2π

x

(d2 + x2)
. (S31)

To obtain the parameters {xctr,W,D, {an}, d, θ, B0}, the cost function is minimized:

χ2 =
∑
i

|B||(xi, xctr,W,D, {an}, d, θ, B0)−B||,i|2 , (S32)

where {xi, B||,i} is the experimental data.

Inverting the Biot-Savart law, which acts as a low-pass filter, without regularization leads to

unphysical amplification of high-frequency noises on the magnetic field, and therefore

regularization is routinely required for the inverse problem. Here, regularization is performed by

subjecting the χ2 minimization to a global constraint |∆J ′′| < ∆J ′′max, where ∆J ′′ is the

(numerical) second derivative of ∆J . This is equivalent to a low-pass filter of the form k−2 in

Fourier space. The constraint ∆J ′′max is chosen such that the reduced χ2 is close to unity,

χ2
ν ≡ χ2/[δB2(Nd − Np)] ≈ 1. Here, δB is the typical error bar of the data, Nd is the number of

data points and Np are the number of free parameters in the functional. We note that J0 itself is

well-behaved, and therefore only regularization on ∆J is necessary.
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24 Comparison of imaging techniques

In this section, we provide a summary of different imaging techniques for probing electronic

transport in graphene22, 27–32 and discuss their utility in the context of imaging hydrodynamic

current flow. The table below provides a summary of the key specifications for each technique.

The most critical requirement is the ability to operate above 100 K, which is the temperature

range of hydrodynamic current flow in graphene. This requirement excludes Josephson junction,

SQUID, and scanning gate microscopy. Note that scanning gate microscopy has been applied to

probe electron hydrodynamic in a 2D electron gas31, where hydrodynamics is observed at a much

lower temperature compared to graphene.

Graphene 
current imaging 
technique

Temperature 
of operation

Spatial 
resolution

Quantity 
measured

References

Single NV 
scanning probe

<600 K; this 
work 300K

~50 nm B-field 
(projective)

This work

Josephson 
junction

10 mK ~200 nm Supercurrent Allen et al. Nat. Phys. 12, 128 
(2015)

Ensemble NV 
wide field 
imaging

<600 K; this 
work 300K

420 nm B-field (vector) This work,
Tetienne et al. Sci. Adv. 3, 
e1602429 (2017).

Nano SQUID <4.2 K ~50 nm B-field (Bz) Uri et al. Nat. Phys. 16, 164 
(2020).

Scanning gate 
microscopy

<4.2K ~50 nm*, 
~200 nm#

Perturbation on 
current from 
scanning gate 

*Aidala et al. Nat. Phys. 3, 464
(2007), 
#Braem et al. Phys. Rev. B 98, 
241304(R) (2018)

Scanning SET <300K 880 nm E-field Ella et al. Nat. Nanotechnol.
14, 480 (2019),
Sulpizio et al. Nature 576, 75 
(2019).
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