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1 Validity of mapping current density via magnetic field imaging

In the case of a static 2D current distribution J(x,y) = (J,(z,v), J,(z,y)), there is a one-to-one
mapping between J(z, y) and the associated stray magnetic field

B(r) = (B.(z,y,2),By(x,y,2),B.(r,y,2)). Therefore, in principle one can equate the
knowledge of the magnetic field distribution to the knowledge of the current distribution. Here,
we evaluate several experimental factors that may invalidate this equivalence. We show that in our
experimental setting, these factors are insignificant within experimental uncertainties, and hence

it is valid to extract the local current density via magnetic field imaging.

First, we discuss the potential consequence of measuring B(r) over a finite field-of-view.

According to the Biot-Savart law, the in-plane stray field at (x, y, d) is

Ho 1.0 d o
B = — 1
x($7 Y, d) 4’/T dﬂf dy [(i[f _ $/)2 + (y _ y/)2 + d2]3/2 Jy(x Y ) (S )
Ho ’ 1.7 d o
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where i is the vacuum permeability. In other words, the in-plane stray field can be considered

as a convolutional filter (z? + y? + d%)73/2

with a resolution length-scale d applied on the local
current density. As a result, B,(z,y,d) and B, (z,y, d) are only sensitive to the current density in

the neighborhood of (z,y) extending on the order of ~ d. This is also apparent with the forms of

the above equations in Fourier space':

bolk,d) = B, (k). (83)
bkd) = =5 ™ (k). (S4)



where k is the wave-vector, and b, , (j,,) is the Fourier transform of B, , (J,,). Therefore,
(B, By) is equivalent to (.J,, J,) with a low-pass filter, and the current density can be obtained by

inverting the low-pass filter on the stray-field (e.g., in the case of vectorial wide-field imaging).

Let us now consider the case where the measured stray field involves the out-of-plane stray

field B,, for example in scanning magnetometry. From the Biot-Savart law, one has

(y - ?/)Jz(x,v y,) - (‘T - x/>Jy(‘7’J7 y/>
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B.(z,y,d) = X2 / da'dy’ (S5)
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Here, the convolutional kernel has the form ~ 7/(r? 4+ d?)®/2. Therefore, B, is not simply a low-
pass filter applied on the current density. This is also apparent with the form of the above equation
in Fourier space':

_ it am (R g R
b.(k,d) =1 5 e (|k|jm<k) ’k|jy(k)> ) (S6)

The form of the kernel in Eq. S5 indicates that B, (z,y, d) is insensitive to the current density in
the immediate neighborhood of (x,y), while contribution from further away has greater weight.
As a consequence, B, has a slow ~ 1/r decay far away from a current-carrying wire segment.
Therefore, when attempting to extract the local current density from a measurement that contains
B., one needs to consider the potential contribution from current outside of the field of view. This
can happen when the current-carrying channel does not continue in a straight line indefinitely, but
makes a turn. Let us consider how close the turning needs to occur from the point of measurement
so the contribution from far-away wire becomes important compared to the measurement
precision, typically ~5% on the maximal value of the projective field for our experiments. Let us

consider a channel initially along the y-direction, which changes direction to run along the



x-direction at a distance r away from the point of measurement. Using the expression of the field
away from a thin current-carrying wire, one can estimate the contribution to B, as pol/(47r).
There is an extra factor of 2 in the denominator because after the turn, we have a semi-infinite
wire. We estimate the field magnitude at the point of measurement to be (uo/2)(1/W), with
W = 1 ym. Then, the contribution due to B, from the far-away wire is comparable to 5% of the
total measured field when 7 is closer than 3 ym. In the devices measured with NV scanning
magnetometry, turning of current paths occurs on length-scales significantly greater than this
distance. Therefore, the effect of slowly-decaying B, from far-away current does not invalidate

our approach to use magnetometry to probe the local current profile.

The discussion so far centers around the magnetostatic case. In AC magnetometry, the
natural assumption is to replace J(z, y) and B(x, y, d) with J(z,y,t) and B(z,y,d, t). In general,
this is not strictly true because of the delay in the propagation of the electromagnetic field; the
generalized time-dependent formula for the stray magnetic field is given by Jefimenko’s equations
which incorporate retarded time. Here, we show that our experiment is in the magnetostatic
regime. Let us consider the current being modulated at a frequency w. At a point of measurement,
the stray field is sensitive to contributions from current over a length scale r given by the distance
between the measurement point and the current source. Over this length scale, an electromagnetic
field propagates to the point of measurement within a time 7,,,, ~ 7/c, where c is the speed of
light. We can assume the experiment is in the magnetostatic regime if this time is much faster
than 1/w. In the scanning magnetometry experiment, the scan range is no more than 5 pm, so

r < Spum and T, < 17fs. Therefore, magnetostatics can be safely assumed for



w/(2m) < 60 THz, which is certainly the case in our experiment.

Lastly, in AC magnetometry, RC reactance can lead to a slow rise/fall in current modulation.
To assess the effect of RC reactance, we consider the effective circuit shown in Fig. S1 under a
step voltage modulation V' (¢t) = VO(t), where O(¢) is the Heaviside step function. The resistor
Ry corresponds to the resistance of the graphene device and is at most R; ~ 20 k() as measured
with two-terminal transport measurement. The resistor Ry = 50 ) corresponds to the terminal
load resistance. The capacitor C' comes from a combination of bond pads and BNC cables, and is

estimated via geometry to be no more than 1 nF. Solution of the current through R; is

‘/ R2 (Rl + RQ)
I(t) = — |14+ == A T ) 7
<t) Rl + RQ { Rl P ( CR1R2 t>:| (S )

The current initially overshoots before reaching the equilibrium (DC) value V/(R; + R»).
The time scale C Ry Ry/(R; + Rs) = 0.05 us is much shorter than the typical modulation period
of our experiments = 10 us. Furthermore, the relative overshoot is Ry/R; <1%. Therefore, RC

reactance has negligible effect in our AC measurements.
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Figure S1: Effective circuit of the device.



2 Optimal sensitivity for optically detected magnetic resonance

The best sensitivity for optically detected magnetic resonance (ODMR) is achieved by minimizing
the ratio I'/(C VN ), where T is the linewidth of the ODMR spectrum, C is the contrast, and N
is the rate of photon collection. In general, both the linewidth and the contrast depend on the
combination of the optical and microwave power. In both imaging and scanning experiments, we
are limited by the laser intensity that can be delivered to the NV spins: we restrict the excitation
power to be below saturation to avoid NV degradation (likely due to charge state interconversion).
In imaging, we are further restricted by the available laser power, which has to be distributed over
a microns-scale area. Therefore, the only remaining knob is the microwave power. We obtain
ODMR spectra, measure I and C as a function of the microwave power, and use the microwave
power that minimizes the ratio I'/C for ODMR. In the case of imaging, this procedure is performed
with the ODMR spectra integrated over the entire field of view. In Fig. S2, we show an example
spectrum at a single pixel of wide-field ODMR imaging of the graphene device on diamond at the

optimal magnetometry parameters.
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Figure S2: Wide-field imaging ODMR spectrum at a single pixel for the NV m; = 0 <& —1
(left panel) and m, = 0 <> +1 (right panel) transitions at +/ (red circles) and —/ (blue circles).
Photoluminescence (PL) is normalized by the PL value of m4 = 0 state. The lines are fits to double

Lorentzian line shapes split by 3 MHz hyperfine coupling due to >N nuclear spin.



3 Determination of magnification and resolution for wide-field imaging

For wide-field magnetic imaging, we calibrate magnification with the following procedure. Using
the nano-positioner on which the graphene-on-diamond device is mounted, we move the device in
the xy plane over a range of about 7 ym, and record an image with each lateral movement of the
nano-positioner. By tracking features in the image and using the known pixel size of the camera
(5.86 pm x 5.86 pm), we obtain a magnification of about 117. Therefore, each pixel on the camera
corresponds to a 50 nm x 50 nm area on the sample. For data analysis and display, we perform
a 2 x 2 binning, so that each pixel in the figures corresponds to a 100 nm x 100 nm area. This

calibration procedure has an estimated 6% error due to measurement uncertainty.

The point spread function (PSF) is given by the Airy pattern with the form

2
PSF s (1) = (M> , (s8)

u
where J; is the Bessel function of the first kind of order one, and u is a dimensionless length scale.
The first zero occurring at u = 3.8317 ~ 4 corresponds to the resolution according to the Rayleigh
criterion. For convenience, we use a Gaussian profile to approximate the PSF. The Airy pattern to
leading order in u is PSF a;ry = 1 — u2/4 + O(u*). A Gaussian profile of the form e~*"/* has the

same expansion. Therefore, we use the following as our resolution function

1
PSF(z,y) = _Qef(mQer?)/U? (S9)

s

and identify 20, as the imaging resolution.

To experimentally determine the resolution, we make use of a sharp feature in the NV PL
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generated by reactive ion etching (RIE) of the diamond surface. As the RIE employed for
graphene/hBN etching also etches diamond and hence near-surface NV spins, we can use RIE to
generate patterns in the NV PL. The pattern we use is a stripe (Fig. S3a). We image a line cut
(indicated by the blue line in Fig. S3a), normalize the slowly-varying background to unity, and
show the normalized PL in Fig. S3b. To model the PL distribution, we first note the 1D PSF is
PSFip(z) = [dyPSF(z,y) = e /% /(\/no,). The 1D line-cut of the stripe is then the
convolution of the 1D PSF and the rectangular function II(z /W), which is unity for |x/W| < 0.5

and zero otherwise, with W the width of the stripe:

PSFp « II(z/W) = ! (Erf (WQ_ %) + Erf (W; 233)) , (S10)

2 o o

where Erf(x) is the error function. From a fit of this form to the normalized PL line-cut (Fig. S3b),
we obtain a resolution of 20, = 420(40) nm. This is consistent with the estimated resolution

assuming a PL wavelength A=650 nm and NA=0.9: 0.61\/NA = 440 nm.
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Figure S3: (a) NV photoluminescence (PL) image of the graphene-on-diamond device. The red
outline indicates the boundary of the graphene channel. Some of the dark regions are due to
shadows cast by metallic contacts, which include electrical contacts to the graphene channel and
side probes, as well as top gate contacts. These PL features are not sharp due to the thickness of the
metallic structures. Therefore, we use RIE to generate sharp features in NV PL, such as the stripe
marked by the blue line. The blue line indicates the 1D line-cut used to generate the profile shown
in (b), which we use to extract the resolution. We note that there is no PL feature corresponding
to the outline of the graphene, because we did not etch all the way through the bottom hBN when
patterning the hBN-encapsulated graphene heterostructure. However, for generating the stripe,
we etched longer in order to etch through the hBN and hence remove the NV spins underneath.
(b) Normalized PL line-cut measurements (red circles). Here, we normalize the slowly-varying
background to unity. Hence, the depletion of the stripe feature has a relative contrast of about
40% with respect to the background. We fit the normalized PL to Eq. S10 (blue) to extract the

resolution.
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4 Pulse sequence for spin-echo AC magnetometry

In Fig. S4, we show the pulse sequence for spin-echo AC magnetometry. The NV spin is first
optically polarized into the m; = 0 level. A (7/2), microwave pulse resonant with the my =
0 <+ —1 transition creates a coherent superposition between these two states. The system evolves
for a period of time 7 in the presence of a field Bac generated by a bias Vac applied on the
device, and after a (), refocusing pulse evolves for another 7 in the presence of — B¢ generated
by —Vac. For read-out, the electronic spin state is projected onto the mgs = 0, —1 basis by a
final +(7/2),, pulse, and the ground state population is detected optically via spin-dependent
fluorescence. Here, (. .. ); refers to a rotation of the Bloch vector around S; axis, where (.S,, S, S-)

are the spin operators.

(2), =,  EHW2),,
Microwave I T I T I

Vsd(t) VAC

532 nm Excitation - ._

Photon counting

Figure S4: Pulse sequence for spin-echo AC magnetometry.
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5 Current reconstruction for scanning probe magnetometry applied on simulated current

profiles

To show the fidelity of the current reconstruction algorithm for scanning magnetometry, we test
the algorithm on simulated current profiles. In Fig. S5, we show a simulation with three different
types of current profiles: a uniform profile, a uniform profile with two bumps, and a parabola with
two bumps. The total current, width, and noise level are chosen to be comparable to those in the
experiment with graphene devices. The simulated data for B has a noise of 5% on the maximal
B|. As shown here, the reconstructed current profile is typically within 5% of the original current
profile. For the simulation of a uniform current, while the reconstructed current occasionally

deviates beyond 5% from the original profile, the standard error of the mean is 6%.
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Figure S5: Current reconstruction applied to simulated profiles. Left to right: simulation is
performed on three different current distributions: (left) a uniform distribution, (middle) a uniform
distribution with two bumps, and (right) a parabola with two bumps. The z-axis is shown in units
of the piezo scanning voltage. All profiles have [ = 1 uA. Top: simulated data for the projected
field (red points) along with B); generated from the reconstructed current profile (blue curves).
Simulated data has 5% noise on the maximal value of the field. Bottom: result of reconstructed
current profile (red) compared to the original (dark blue curve). The light blue band is the 5% error

band for assessing the goodness of the reconstruction.
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6 Sensitivity of current reconstruction to uncertainty in the stand-off distance

NV centers used in this work are generated with nitrogen ion implantation at 6 keV. Stopping
and Range of Tons in Matter (SRIM) calculation gives an estimate of 10(3) nm for the depth of
the nitrogen, with the error bar denoting the ion straggle. However, experiments from Refs. >3
indicate that the actual average NV depth for such shallow implants may be up to a factor of two
larger compared to the estimate from SRIM. Therefore, for the NV spin ensemble in the wide-
field imaging measurement, we estimate an average depth of 20 nm with uncertainty of 10 nm,
which includes both the uncertainty of the average of the distribution as well as the straggle. The
bottom hBN has a thickness close to 30 nm. Therefore, we use d =50(10) nm for the current
reconstruction. The uncertainty in the stand-off distance leads to an 9 A/m (or 6%) error on the

current density.

For the single NV scanning measurement, the stand-off distance d is one of the free
parameters in the Biot-Savart functional and therefore is extracted. The extracted d has some
distribution and can vary over a range up to 50 nm. On average, the extracted d is below 60 nm,
which is consistent with the experimental setup: ~ 20(10) nm from the 6 keV implant plus the
thickness of the top hBN (< 20 nm) or the finite thickness of the Pd wire (= 30 nm). Given that a
variation of d over ~ 10 nm scale is not expected to change the generated stray field much, we do
not expect to be able to extract d to high precision. This is reflected in the uncertainty of d which
is generally around 20 nm to 40 nm. We can evaluate the effect of the spread of d by extracting

the current profile when we fix d to a specific value. Fig. S6 displays variation in the

14



reconstructed current profiles of a Pd channel and an encapsulated graphene device shown in Fig.
2e of the main text, corresponding to d fixed at several values. Here, the range of variation in d
corresponds to the typical spread of the extracted d. For the Pd wire, with +15% change in d, we
see a 2%-7% change in the current profile; whereas with the same variation in d, even less change
in the current profile is observed for graphene. The typical error on the current density estimated

here is consistent with ~ 5% error assessed from simulated current profiles.

1.2 1

1.0

Figure S6: Variation in current profiles in Fig. 2e of the main text at various values of d. Red:
allowing d to be extracted from the current reconstruction algorithm. Extracted d is 60(10) nm for
the Pd channel (left panel) and 20(20) nm for the graphene device (right panel). Green (gray): d at

—15% (+15%) of the aforementioned value.
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7 Transport characterization of the graphene-on-diamond device

In Fig. S7, we show resistance I? as a function of the gate voltage V|, and carrier density n for
the graphene-on-diamond device, obtained with two-terminal measurement. The location of the
charge neutrality point (Dirac point) Vp is determined from location of the peak resistance. Carrier
density n is determined using n = Cy(V, — Vp), where C, = ¢¢¢,/(et) is the gate capacitance
per area, with €, the permittivity of free space, €, the dielectric constant, and ¢ the thickness of the

dielectric. For the graphene-on-diamond device, €, = 4 and ¢t = 13nm are used for the hBN gate

dielectric.
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Figure S7: Resistance I as a function of the gate voltage V;, and carrier density n obtained from

two-terminal measurement.
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8 Transport characterization of devices for scanning measurement

In Fig. S8, we show resistivity p as a function of carrier density n for three of the four devices
shown in Fig. 2f of the main text. Resistivity was obtained with four-terminal measurements. The
location of the charge neutrality point (Dirac point) Vp is determined from location of the peak
resistance. Carrier density n is determined using n = C(V, — V), where Cy = e,/ (et) is the
gate capacitance per area, with €, the permittivity of free space, ¢, the dielectric constant, and ¢ the
thickness of the dielectric. For the devices made on the standard SiO,/Si substrates, ¢, = 3.9 and

t = 285 nm are used.

For the device corresponding to the second (from the left) data in Fig. 2f of the main text, the
geometry of the device precluded a four-terminal measurement of the resistivity. However, because
photo-doping brings the system to the Dirac point in steady state, the magnetometry measurements
performed on this device were at the Dirac point. The last two sets of data (from the right) of Fig.
2f of the main text correspond to the same physical device: initial transport characteristics are
shown in the middle panel of Fig. S8, and later, altered characteristics are shown in the right panel
of Fig. S8. The later state of the device has a significantly broader p vs n and much lower peak
resistivity, indicating higher carrier density inhomogeneity. Therefore, we consider the two states

as two distinct devices.
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Figure S8: Resistivity p as a function of carrier density n for three of four graphene devices shown
in Fig. 2f of the main text. From the left to right, each panel corresponds to the (starting from left)
first, third, and fourth data set shown in Fig. 2f of the main text. Resistivity was obtained using

four-terminal measurements.
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9 Variation of viscous profile at different Gurzhi Lengths

The linearized electronic Navier Stokes equation* for the current density J is

v L y=elE, (S11)
T m

mr
where v is the kinematic viscosity, e is the electronic charge, 7,,, is the momentum-relaxing time,
m is the effective mass, and E is the bias electric field. For electronic carriers in graphene, m =
hy/mn/vp, where vp = 10% m/s is the Fermi velocity. A flow along the y-direction J = (0, J,(x))

and under no-slip boundary condition, J,(z = £1//2) = 0 has following current density

_ EUpTe [ __cosh(z/D,)
M@y ===/ 2 (1 cosh(W/(QDV)))’ (512)

where D, = /UTy,. One can then obtain the conductivity defined as 0 = I /(W E) where I =

EvpTme 1 2D, %%
o= " \/;(1 T tanh (QDV)> . (S13)

In Fig. S9, we show profiles from the solution of the electronic Navier Stokes equation with

[ dx Jy(z):

different values of D, /WW. For D, /W < 1, the current density approaches a uniform profile J, =

oo E and the conductivity o = 0y = €2 /m becomes the Drude conductivity. For D, /W > 1,

the current density approaches the ideal Poiseuille profile .J, (z) = S VEE <(%)2 - :1:2), and
the conductivity o = e?nW?/(12mv) has the ~ W? /v scaling. For D,/W = 0.3, the current
density approaches within 5% of the ideal Poiseuille profile, while for D, /W > 0.5, the current

density approaches within 2% of the ideal Poiseuille profile.
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Figure S9: Solution of the electronic Navier Stokes equation with different values of D, /W . The
band around the ideal Poiseuille profile is 5%. The current density is normalized by the average

flux I /W, and the spatial position is normalized by W.
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10 Comparison of measured current profile to the flow of non-interacting electrons with

diffuse boundary

For a system of non-interacting (7,, = 00) electrons moving in a channel —W/2 < x < W/2
with completely diffusive boundary, the flow profile develops a curvature in the regime when the
momentum-relaxing mean free path is on the order of the width, /,,, ~ W. In the main text, we
compared the NV measured profile in graphene at the charge neutrality point (CNP) to the non-
interacting case, and concluded that the non-interacting case cannot explain our measurement. In

this section, we discuss the details of the calculation of non-interacting profiles.

The derivation of the current profile of non-interacting electrons in a channel with diffuse
boundary can be done following previous work (see, e.g., ref. > and references therein). The local

current density is given by

d2
J(JI) = €g/ (27T];2Vf(x7 p)? v = apga (814)
where e = —|e| is the electron charge, g = 4 is the spin-valley degeneracy, ¢ = £(p) is the

quasiparticle energy as a function of momentum p, and f(z,p) is the steady-state quasiparticle
distribution function. It is convenient to write the deviation of f from the equilibrium Fermi-Dirac

distribution fy(e) = [e—=r)/T + 1] ! in the form

f(z,p) = fole) = (-Z-@) F (S15)

If the temperature 7" is much smaller than the Fermi energy e = £(pr), the dependence of F' on

|p| proves to be weak, so that F' = F'(x, ) where 0 is the angle between vector p and the y-axis.

21



Accordingly, the current density is given by

dn [ df |
J(z)=e i | o vF(x,0), v = (—vpsinf,vp cosb), (S16)

—Tr

where n = g [ fo(e) d®p/(27)? is the electron density and vp = dep/dpr is the Fermi velocity.
Adopting the relaxation-time approximation for bulk scattering, we obtain the linearized

Boltzmann kinetic equation for F':

F-F  — [db
V0, F — evy Il = — , F= | —F
Tenr 21

(S17)

It is easy to see that F' must be odd under reflection with respect to the x-axis: |#| — 7 — |#|. This
implies that ' = 0, so that the electron density and the electric field £ are uniform in the channel.
Equation (S17) becomes

F
sinf 0, F + — = eFE cos?. (S18)

lmr

We need to solve this equation subject to the suitable boundary conditions (BC) at the edges. For
the case of purely diffuse scattering, the quasiparticle flux reflected from the edges is isotropic.
Thus, the BC at = W/2 edge is F' (W/2,0) = const at 0 < 6 < 7. Flux conservation fixes this

constant to be
0

F(W/2,0) = %/F (W/2,6")sin6'dd’, 0<6@<m. (S19)

A similar boundary condition, for ar_lgles —m < 6 < 0, holds at z = —1¥/2 edge. The desired
solution is therefore

F(z,0) = eEly, cost {1 — exp {— MT/SEilgr) + xSl/lng] } . (520)

Substituting this expression into Eq. (S16), we obtain, after some elementary transformations,

2 -9 2 Ood
@) (W2 o (W2 a2 2 [ a e s2n)
60'0E 2lmr 2lmr T U3
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where og = e’nly,,/(vpm) is the standard Drude conductivity.

Function GG(z) monotonically decreases at z > 0 and has the following asymptotic behavior:

12 2%\ 22 1 27\ 7
G(z):i—%21n<e )—%—I——z?’{ln(e )+—}, 2 <1, (S22)

z o z 3

~ | —e %, z> 1, (523)

where v = 0.577 is the Euler constant. The upper line is relevant if the scattering is dominated by
the edges (i.e. ballistic limit), [,,, > W. The lower line is useful if the transport is limited by the
bulk scattering (i.e. Ohmic limit), /,,, << W. In both such limits the current density enhancement

J,(0)W/I at the center of the channel becomes small.

In general, this profile has some curvature, which is maximal in the regime of [,,,, ~ W.
In Fig. S10, we show the profiles at various values of [,,,, /W and compare to an ideal Poiseuille
flow. We see that the non-interacting profiles begin as a uniform profile for /,,,, /W < 1, develop
a curvature that is maximal at [,,,, /W =~ 1, and then flattens again as l,,,/W > 1. In Fig. S11,
we show the peak (central) value of .J,/(//W) as a function of [,,,/WV in order to quantify the
curvature of the profile. The maximum occurs at [,,, /W = 0.625, though there is little change
in the range of [,,,,/W ~0.5-1. From both Figs. S10 and S11, we see that even with the maximal
curvature at [,,,/W = 0.625, the non-interacting profile still significantly deviates from the ideal
viscous case. In Fig. 2e of the main text, we compared an experimental profile at the CNP to
both the ideal viscous profile and the non-interacting profile at [,,,/WW = 0.625. It is clear that
the non-interacting profile cannot explain the measured profile in graphene, which instead matches
well to the viscous profile.
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Figure S10: Comparison of hydrodynamic profiles with D, /W = 0.3, oo and non-interacting

profiles with [,,,,/¥=0.1, 0.6, and 100.
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Figure S11: Peak (central) value of .J/(I /W) of non-interacting profiles as a function of l,,,, /TV.
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11 Validity of hydrodynamics in graphene at room temperature

At elevated temperatures, the dominant mechanism for momentum-relaxation is electron-phonon
scattering. For hBN-encapsulated graphene, the associated momentum-relaxing mean free path
Iy = 1 pm (refs. 6-8) corresponds t0 Ty, = Iy /vp ~ 1ps. From the main text, we have 7,, =
0.19 — 0.39 ps; 7, should be on the same order and hence is small compared to 7,,. We also note
that the particle-particle collision mean free path is [,,, = 7,p,vr ~ 190 — 390 nm, corresponding to
a Knudsen number Kn= [,,/W ~ 0.19 — 0.39, which is small compared to unity. Together, these
two conditions justify the hydrodynamic limit. As observed in this work and in ref. 8, for the usual
range of carrier density n < 10'? cm™2 accessed in a graphene experiment, v ~ 0.1 — 0.4m?/s,
which corresponds to D, ~ 300 — 600 nm. For W = 1 um, the resulting .J,, calculated with Eq.
1 of the main text is within 4% to 1% of an ideal viscous profile with the same total current. This
is consistent with our observation that there is no discernible variation in the current profile at

different carrier densities.

25



12 Effect of photo-doping on scanning magnetometry experiment

Exposure to light is known to lead to photo-induced doping in an hBN-encapsulated graphene

device fabricated on an SiO./doped Si substrate® '°

. The mechanism is that defects residing in
hBN are photo-dissociated, leading to free positive and negative charges that can migrate within
the hBN layer. At any value of gate voltage V,, the free charges experience the electric field and
migrate accordingly. The charges that migrate towards the graphene dope the graphene; however,
the charges that migrate towards SiO» cannot exit the hBN layer, remain trapped in hBN, and serve
to screen the electric field!!'2. Hence, upon light exposure, the system moves towards the CNP
over time, and the steady state is the CNP. Nevertheless, the rate is slow enough that we can obtain

scanning NV magnetic measurements as a function of carrier density range. In this section, we

describe the relevant analysis to examine the effect of photo-doping in scanning measurement.

In scanning NV magnetometry, photo-induced doping occurs as the graphene device is
exposed to the NV-excitation light scattered from the diamond probe. We observe photo-doping
dynamics with the following experiment. With the probe retracted (about 10 um above the
device) and light focused on the probe, we set V; to a finite value, and monitor the resistivity p as
a function of time. The density-dependent transport curve p vs n of this device is shown in the
middle panel of Fig. S8. In Fig. S12, we show p as a function of time for V; = —10V (left panel)
and V;, = +10V (right panel). In both cases, the resistivity increases and saturates at the
resistivity associated with the CNP ~ 1.5 k() (see the middle panel of Fig. S8). This indicates the

evolution of the system towards CNP and that the CNP is the steady state under light illumination.
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Figure S12: Time-dependent evolution of resistivity p under exposure to NV-excitation light
scattered from the diamond probe. The measurement is done with the probe retracted at about

10 zm above the device. Time evolution is measured with V;; set to —10 V (left) and +10 V (right).

Note that while ref. * observed photo-induced doping to occur only for V, < 0 at 77 K, here we
observe photo-induced doping regardless of the sign of V, at room temperature. Our observation

is consistent with the result of ref. 1°.

Once the system has been photo-doped to the CNP, it is stable under light illumination. In
the left panel of Fig. S13, we show p measured throughout the course of a scanning
magnetometry measurement when the device has been photo-doped to the CNP. Negligible

variation in p is observed.

Photo-induced doping presents complication for a scanning magnetometry measurement
away from the CNP. The time scale of the dynamics presented in Fig. S12 is on the order of

hours, but this is under the situation when the probe is retracted. When the probe is on the device,
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the evolution becomes significantly faster. Nevertheless, the dynamics is slow enough that during
a scanning magnetometry measurement, which lasts about 1.5 hours, the system evolves across a
range of carrier density, but does not completely reach the CNP. For the data presented in Fig. 4a
of the main text, we first photo-dope the system to shift the CNP to V, = —20V. Then, we set
Vy = 0V, and perform scanning magnetometry measurements. Before and after each set of
scanning magnetometry measurements, we monitor the resistivity p to determine the carrier
density range that the system has evolved across by matching the measured resistivity to the
transport curve shown in the middle panel of Fig. S8. In the right panel of Fig. S13, we show the
same transport curve as in the middle panel of Fig. S8, and shade the ranges of carrier density that
the system has evolved across during the two measurements at finite carrier density shown in Fig.
4a of the main text. The carrier density range is n = 0.3 — 1.5 x 102cm™2 and

n=0.1—-0.3 x 102 cm ™2 respectively.

Unlike a device where gating is provided by a Si back gate separated from the device with an
SiO, layer, a device where gating is provided by a graphite gate, separated from the graphene only
by an hBN layer, does not undergo photo-induced doping'?. Therefore, the graphene-on-diamond
device, where gating is provided by a graphite top gate separated from the graphene by an hBN

layer, does not suffer from photo-induced doping.
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Figure S13: Left panel: resistivity monitored as a function of piezo scanner voltage during a
scanning NV magnetometry measurement. Right panel: transport curve p vs n from the middle
panel of Fig. S8, and carrier density range (green checkers and blue vertical stripes) covered by the
two scanning magnetometry measurements at finite carrier density shown in Fig. 4a of the main

text. The carrier density ranges are n = 0.3 — 1.5 x 102 cm 2 and n = 0.1 — 0.3 x 102 cm 2.
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13 Comparison of current reconstruction methods for scanning magnetometry

In this section, we compare the current reconstruction method for scanning magnetometry
described in the main text with an alternative approach where one directly inverts the Biot-Savart
law in Fourier space (Eqgs. S3, S4, S6). We refer to the latter approach as Fourier inversion. We
show that the main text method gives the same bulk current profile as Fourier inversion; however,
unlike Fourier inversion, the main text method preserves sharp edges in the current profile (if

present) without amplifying noise.

In Fig. S14, we show the current profile in graphene from Fig. 2e of the main text along with
current profiles obtained from the same scanning magnetometry data using the Fourier inversion
method for several values of standoff distance d. Regularization is achieved via placing a cutoff
k. in Fourier space, with k. chosen in each case such that the variation in the background (i.e., for
|z| > TW/2) is similar to the peak error bar from the data of Fig. 2e. Over the range of d expected
for the experiment, we see that the current profile obtained with the main text method is consistent

with that obtained from Fourier inversion.

In Fig. S15, we show the dependence on Fourier cutoff k. for d = 30 nm. The qualitative
shape of the current density - a parabolic profile - is insensitive to the choice of k., which is
consistent with the expectation for a smooth profile. The only difference k. makes is the amount
of noise and the prominence of the dip feature close to the center of the profile. The optimal cutoff

for this measurement is k./(27) = 3 um™—.
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In Fig. S16, we show the current profile in Pd from Fig. 2e of the main text along with current
profiles obtained from the same data using the Fourier inversion method with d = 70 nm and for
several values of k.. For low k., the influence of high spatial frequency noise on the reconstruction
is minimal, but sharp features in the current profile are washed out. As one increases k., one begins
to recover sharp edges, but when the sharp features are comparable to those of the reconstructed
current profile from the main text (lower right panel), high spatial frequency noise is severely

amplified. Lastly, we see that the width of the rise at the edges is given by 1/k...

From this analysis, we see that the main text reconstruction method gives the same result
as Fourier inversion when there are no sharp spatial features in the current profile. Compared to

Fourier inversion, the main text method is able to preserve sharp features without amplifying noise.
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Figure S14: Comparison of current profile in graphene from Fig. 2e of the main text (red circles)
to current profile extracted with Fourier inversion using several standoff distances d. Left panel:
black stars are for d = 15 nm. Middle panel: blue open diamonds are for d = 30 nm. Right panel:
green open squares are for d = 50 nm. In each case where Fourier inversion is applied, a cutoff in
Fourier space is chosen such that the resulting noise in the background is comparable to the peak

error bar of the red data points.
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Figure S15: Comparison of current profile in graphene from Fig. 2e of the main text (red circles)
to current profile extracted with Fourier inversion (blue diamond) at d = 30 nm using several
Fourier cutoffs k.. Upper left: k./(27) = 1.7 um~'. Upper right: k./(27) = 3 um ™. Lower left:

k./(2m) = 4.4 pm~!. Lower right: k./(27) = 5.7 um~1.
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Figure S16: Comparison of current profile in Pd from Fig. 2e of the main text (red circles) to
current profile extracted with Fourier inversion at d = 70nm using several Fourier cutoffs k..
Upper left (purple): k./(27) = 2.1 um~'. Upper right (blue): k./(27) = 3.2 um™'. Lower left
(black): k./(27) = 4.3 um~'. Lower right (green): k./(27) = 4.6 um~'. For each panel, the light
blue points are located at +(7W — k_!), and the light blue bars extend from the light blue points

with a length 1/k...
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14 Heating due to laser and microwave delivery in wide-field imaging

To estimate heating due to laser and microwave delivery, we use the Fourier law q = —kVT', where
q is the heat flux and & is the thermal conductivity. Here, we use k£ = 2200 W/(mK) for diamond.
If the heat is being deposited at a power () over an area Az?, where Az is the characteristic length
scale of the heating, then based on the Fourier law we can write Q/Ax? ~ kAT/Ax and hence

AT =~ Q/(kAx).

For wide-field imaging, about 10 mW of laser illuminates an area of about 5 pm in diameter.
If we assume the laser is completely absorbed on the diamond surface, then with () ~ 10 mW and

Az =~ 5 pum, we get an upper bound on the temperature change to be AT < 1 K.

Microwave delivery for wide-field imaging consists of a -35 dBm signal amplified at 45 dB
gain. Therefore, about 10 mW of power is sent through the microwave delivery. Once again, if we
assume this power is entirely deposited on the diamond in the vicinity of the device, and using the

dimension of the microwave delivery to estimate Ax ~ 10 ym, we get AT < 1K.

In both cases, we see that heating due to laser and microwave delivery is negligible in wide-

field imaging.
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15 Estimate fluctuation potential for high impurity device

One of the devices measured has higher charge impurity, as shown by the lower resistivity at the
Dirac peak. The current profile for this device is shown as the right-most profile in Fig. 2f and its
transport curve p vs. n is shown in the right-most panel of Fig. S8. In this section, we estimate the

fluctuation potential . as a measure of the impurity level for this device.

It is insightful to plot the transport measurement data in the form of conductivity o vs. Fermi
wave vector kp = y/mn = Egp/(hvp) (Fig. S17). For both the standard device and high impurity
device, the data shows that initially for small kg, o remains close to constant, and for large kp,
there is a linear trend that extrapolates to an x-intercept corresponding to kp = kgT'/(hvg). The
difference between the standard device and the high impurity device is that the latter has a higher

minimal conductivity.

In the viscous Poiseuille (D, > W) regime, the conductivity can be written as o0 = AEp /v
where A = €?TW?/(127h?). Note that the same form o o Ep can be written in the Ohmic case,
except that the relevant quantity that determines transport is 7,,,, instead of v, and that W disappears

from the dependence. The data of o vs kr data can be described by the following model:

A(/{ZBT -+ 5,“/)/VDF Er < ]CBT + (5,LL
o= (S24)

A(EF — k?BT)/l/FL EF > kBT + (5[,L

In this model, v is treated as taking on a constant value vpr near the CNP (the Dirac fluid

regime), and another constant value vp;, in the finite-density Fermi-liquid regime. Such
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approximation is justified from the result shown in Fig. 4b.

In this model, the minimal conductivity oy, ~ (kg7 + 0p)/vpp. Assuming vpp is an
intrinsic property of the system and hence is independent of inhomogeneity, what sets o,,;, at a
given temperature is du. Therefore, when comparing two minimal conductivities, we have
Omin1/Omin2 = (kT + 6p1)/(kgT + dp2). We use two values of ou for the standard device:
dp = 0 and 5 = 50K, which is typical for encapsulated device!*. This allows us to estimate the
fluctuation potential for the high impurity device: du = 450 — 570 K, which is large compared to

the thermal energy.
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Figure S17: Conductivity o as a function of Fermi wave vector kr = +/7mn. Red, black, and
green circles correspond to transport measurements shown in the left, middle, and right panels of
Fig. S8. Red and black data are from standard devices, and green data is from the high-impurity
device. The corresponding solid curves are linear fits to the data for kx > 100 um~"'. Shaded blue
region corresponds to kr < kgT'/(hvp). Red (green) horizontal dashed lines correspond to the

minimal conductivity for the standard devices (high-impurity device).
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16 Transport regime of Pd

Here we substantiate that the transport regime of the Pd wire is Ohmic. Refs. >! have each
obtained palladium /,,,, to be 9 nm and 25 nm respectively. The Fermi energy is Fr = 8.16eV,
and with effective mass m*/m = 0.4, this gives us the Fermi velocity vp = 2.7 x 10°m/s.
We then have the elastic (momentum-relaxing) scattering time 7,,, = 3 — 9fs. The mobility
~ 10cm?/(Vs) is four magnitude lower compared to that of high quality graphene device such as in
our experiment. For the Fermi liquid regime valid for Pd, the electron-electron scattering time can
be estimated 7., ~ hEp/(kgT)? = 8 ps >> Ty,. With such a short momentum-relaxing scattering

time compared to the electron-electron scattering time, transport in Pd is diffusive (Ohmic).
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17 Estimate of the slip-length

Poiseuille current flow only occurs with a no-slip boundary condition'” u,(x = +W/2) = 0,
where IV is the channel width. In general, the boundary condition can be parameterized by the

slip-length (, defined as ( = ‘%’”

/u, evaluated at the boundary'”. A no-slip boundary condition
applies for ( < W, where the other limit is the no-stress boundary condition { > W. In the
case of no-stress boundary condition, current flow in a channel is uniform despite the presence of

viscosity.

The boundary condition for (lithographically patterned) graphene was not known prior to our
work. Viscous flow of an electron fluid in doped graphene has been explored either via a vortex

8,18,19

whirlpool detected using a negative vicinity voltage or superballistic conduction measured

t2°. Formation of a vortex whirlpool is insensitive to the boundary condition®.

with a point contac
Superballistic flow through a point contact has a profile that is analogous to Poiseuille flow across

a channel, but does not require a no-slip boundary condition; e.g., the analysis of ref. 2 was

performed with a no-stress boundary condition.

In our graphene experiments, we find that the current continuously decreases away from the
center of the channel, vanishing at the boundary. This observation indicates a no-slip boundary
condition at the room temperature. Kiselev and Schmalian!’ estimate ¢ & 0.61,, for the diffuse
limit likely appropriate for lithographically patterned graphene. The authors also discuss a nearly

Ap

specular limit with ¢ ~ 0.008 ( ;3

) lpp- Here, A\r = vph/(kgT) is the thermal wavelength and

the two length scales h and /' are the roughness of the edge. The authors use h = k' = 250 A.
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Thus in the nearly specular limit, the ratio A3./(h*h") ~ 1 and ¢ = 0.008(,,. This is much smaller
compared to the diffuse limit, and since we are interested to establish an upper bound on ¢ from

the authors’ estimate, it is appropriate to consider the diffuse limit.

In order to estimate ¢, we need [,;, = vpT,p. The viscous scattering time 7,, determined in our
work is not the same as 7,,,. However, 7, is measured in ref. ?! to be 7,, = 575, so we use that value
here. At'T" = 300 K we have 7,,, = 127 fs and hence [, = 127nm. This gives ( ~ 76 nm < W,

consistent with the no-slip boundary condition observed in our experiment.

We note that a recent work ref. 22 estimates ¢ ~ 500 nm in their system at 7' = 75 K. With
such a longer slip-length, Poiseuille flow persists because a wider channel is employed in the work,
with W' = 4.7 ym. In addition, I, ~ 0.16W = 750 nm, which is much larger than in our system
because of lower temperature. Hence one still has ¢ ~ 0.6/,,. In another word, the slip-length is

large at lower temperature, and decreases as temperature increases.

As discussed in ref. 7, a large slip-length below 100 K is consistent with the observation by
the Manchester group that the Gurzhi effect is not observed up to 100 K. However, at much higher
temperature, the slip-length decreases significantly; according to ref. 7, the slip-length would reach
a sub-100 nm value at room temperature, consistent with our experimental observation of no-slip

boundary condition.
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18 Field-dependence of viscous profiles

To check if there is significant field dependence to the observed current profiles in graphene, we
performed scanning NV magnetometry at the CNP for several applied bias magnetic fields
(Fig. S18). The bias field was aligned with the orientation of the NV and the values were By =50,
200, 389 G. The out-of-plane field is B, , = By/ V3 =29, 115, and 225 G. At all magnetic field
values, the observed current profiles maintain the overall shape for Poiseuille flow and do not

have significant, qualitative change.

The corresponding cyclotron radius is rc = Fr/(evpB) = 8.9, 2.2, and 1.1 pm at the three
bias field values. Here, we use Fr = kgT'. In the regime where the cyclotron radius is larger than
the width W, a hydrodynamic current profile is not expected to change??, which is consistent with

our experimental observation.
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Figure S18: Current profiles at the CNP for three different out-of-plane bias magnetic fields. The
current density .J is normalized by average flux I /TW. The x-axis is normalized by the width W.
The out-of-plane field is 29 (green), 115 (red), and 225 G (blue), corresponding to cyclotron radius

re =8.9,2.2,and 1.1 um. Solid black curve is for ideal viscous flow.
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19 Analysis of transport characterization of graphene device for scanning measurement

Here, we provide further analysis of the transport characterization of a graphene device studied
with scanning NV magnetometry. Analysis is performed for the data shown in the middle panel
of Fig. S8. The data shown in the left-most panel of Fig. S8 is almost identical, so here we only
show analysis of one set of data. The data shown in the right-most panel of Fig. S8 corresponds
to a device with significantly larger charge impurity; an analysis of the impurity level is shown in

Section 15 of the Supplementary Information.

First, we extract the mobility 1+ = o /(en) from the standard formula. For Er = hopy/mn <
kgT, we use n such that Fr(n) = kgT', both here and in the subsequent analysis. j as a function of
n 1s shown in Fig. S19a. The benchmark of device quality is seen in the high-density regime where
mobility is fairly constant. In that regime, we have ~ 6 x 10*cm?/(Vs), which is on par with
the 5 x 10*cm?/(Vs) value typical for a high mobility encapsulated graphene device cited in the

literature (see for example the mobility of a typical device in the Manchester group experiment®).

Next, we extract the momentum-relaxing scattering length [, and viscous scattering length
I, = v/vp. For ly,, one could apply the standard Drude formula l,,, = oh/(2¢?ky) where the
Fermi wave vector kg = /7n. This formula is applicable where the current profile is uniform.
The resulting /., is shown as black dashed curve in Fig. S19b. Given that we observed a parabolic
current profile, the Drude formula will not accurately assess /,,,,. In order to assess the scattering
length scales in the Poiseuille regime, we make use of the results for three values of the kinematic

viscosity v from the main text Fig. 4b, each corresponding to a value of D, /W. [, can be obtained
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from the definition of the Gurzhi length D, = \/l,,,,v/vr and the value of v corresponding to each
value of D, /W. [, corresponding to D, /W = 0.3, 0.5 are shown in Fig. S19b. Note that [, is
not shown for D, /W = oo because it corresponds to l,,,, = co. The viscous scattering length is

then given by the definition [, = v /v, as shown in Fig. S19c.

Lastly, we show the ratio of the scattering lengths [, /l,,., which is the same as 7, /7., for
D, /W = 0.3 (red) and 0.5 (green) in Fig. S19d. While 7, is not necessarily the same as 7,,,,, they
are expected to be on the same order, and hence 7, /7, provides a measure to assess the validity
of hydrodynamics. We found 7, /7y, is bounded above by 0.4 and hence significantly smaller than
unity. Thus, we see that the transport measurement provides a self-consistent check that the system

is in the hydrodynamic regime.
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Figure S19: (a) Mobility y vs. carrier density n. (b) Momentum-relaxing mean free path /,,,. Black
dashed curve is the data from the Drude formula. Red and green curves are from a hydrodynamic
analysis with D,,/TW = 0.3 and 0.5. (c) Viscous scattering length [, extracted from a hydrodynamic
analysis with D,,/W = 0.3 (red), 0.5 (green), and co (blue). (d) Ratio of scattering times 7, /T, =

I/l for D, /W = 0.3 (red) and 0.5 (green).
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20 Range of channel width for Poiseuille flow in graphene at room temperature

In this section, we discuss the range of channel width ¥ in which one may observe Poiseuille
current flow in graphene at room temperature. As discussed in Supplementary Information
Section 11, one expects D, ~ 300 — 600 nm. Hence, W < 3D, ~ 1 — 2 um is the necessary
regime to observe a parabolic current profile. On the other hand, W' cannot be small such that the

slip-length ( starts to become significant. Based on the work in ref. !’

, Supplementary
Information Section 17 estimates ( ~ 80 nm. It is reasonable to place 10¢ < W as the criterion

for Poiseuille flow. Therefore, the range in which one can expect to observe Poiseuille flow is

0.8um S W < 2pum.

Previous works obtained a signature of viscous Poiseuille flow in the scaling of the resistivity
p o< W2 in a graphene point contact?® and WP, (ref. 2*). The graphene point contact experiment
covered a range of point contact width from 0.1 to 0.8 pm, a factor of 8, while the experiment with
WP;, ribbon covered a range of ribbon width from 0.4 to 9 pm, a factor of 22.5. In contrast, the
range of graphene channel width at room temperature discussed above corresponds to a factor of
2.5. Hence it will be difficult to observe the resistivity scaling in the case of a graphene channel at

room temperature due to the narrow range in which one has to conduct such an experiment.
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21 Verification of continuity equation from the wide-field imaging experiment

In this section, we show line-cuts of J, at a few different y-values, and demonstrate that the
continuity equation V - J = 0 is satisfied. First, we show line-cuts J, at several y-values in
Fig S20b. J, becomes flatter as one approaches the lower part of the channel where the current

starts to bend around a corner towards the drain on the left.

In order to verify that this dynamics is real and not an imaging artifact, we probe the
divergence of the current to check that the continuity equation is satisfied. In Fig. S20c, we show
an example of the divergence of the current density V - J from the wide-field imaging experiment.
In the channel where we investigate Poiseuille flow, the largest value of the divergence is around
§(AJ/Ax) =~ 170uA/um?.  As the pixel size of the image is Az = 0.1um, we can provide
another independent assessment of the error on the current to be Azd(AJ/Az)/2 ~ 9 A/m. The
factor of 2 in the denominator comes from error propagation in calculating the divergence, where
one needs to make use of values of the current density at four points. This error estimate is

consistent with the assessment from uncertainty of the stand-off distance.

We note that V - J at the bottom-left side-probe is significantly larger compared to that in
the main channel. This is due to the large magnetic gradient arising from the highly concentrated
current, which leads to a distorted ODMR spectrum and inaccurate determination of the magnetic
field. Due to such artifacts, one expects a much larger error in the extracted local current and hence

divergence for images at this part of the device.
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Next, we check that the continuity equation is satisfied in an alternative way. We can reliably
obtain vertical flux [ d J, in the channel above the top gate metallic contact, and we observe the
flux agrees with the source-drain current /;4 = 100pA within 9uA, which is also consistent with
6J = 9pA/pm. In addition, we checked that the horizontal flux [ dy J, at the bottom left side

probe (at around x = —1pm) agrees with /4.

Therefore, we conclude that the data is consistent with the continuity equation within the
error bar. The check of the continuity equation benchmarks the reliability of our imaging technique.
Given that we verify the continuity equation, we conclude that the observed spatial evolution of
the current density is real and not an artifact in the measurement. Presumably, this involves higher
order dynamics of the electron fluid as the current bends around the device corner, which leads the

system to deviate from the equilibrium ideal Poiseuille flow in the lower part of the channel.
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Figure S20: (a) The same image from Fig. 3b for reference. (b) Line-cuts of J, at a few different

y. The values of y (units in pum) corresponding to each set of data is shown in the legend. (c)

Example of measured divergence of current density V - J in graphene from wide-field imaging

experiment. (d) Vertical flux [ dz J, as a function of y. The gray band corresponds to the region

within 420 nm (imaging resolution) of the metallic top gate contact; in this region, imaging is

distorted due to the presence of the contact. Blue band corresponds to +9 A of the source-drain

current [gq = 100 pA.
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22 Magneto-Transport Measurement

Magneto-transport measurement provides a way to determine whether transport is ballistic in
graphene as a function of temperature. The measurement is performed with the hBN-encapsulated
graphene device whose measured current profile is shown in Fig. 2e of the main text. An optical
image of the device, together with the schematic of the transport measurement, is shown in
Fig. S21a. We measure the four-terminal resistivity p as a function of an out-of-plane magnetic
field B and carrier density n. The measurement is carried out in a Janis SVI/MAGNET cryostat.
A 2D plot of the data is shown in Fig. S21b for temperature at 10 K and 270 K. At finite doping,
the data for 10 K shows two prominent maxima in the resistivity, whereas the data for 270 K is
largely featureless. To further highlight the difference at the two temperatures, we show line-cuts
along B at several values of n. The horizontal axis is shown in units of W/R¢, where W = 1 um
is the device width and R = hkp/(eB) is the cyclotron radius. Here kr = +/7n is the Fermi
wave vector. At 10 K, a peak in p occurs at W/Rc ~ =1, and a kink occurs at W/R¢o ~ £2.

2425 Hence, the device is

These are well-known signatures of ballistic transport in graphene
demonstrated to exhibit ballistic transport at low temperatures, as expected for a standard
hBN-encapsulated graphene device. As temperature increases, ballistic transport will disappear at

some point. For our data at 270 K, the signatures of ballistic transport have disappeared. Hence

we conclude that ballistic transport is no longer present at 270 K and above.
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Figure S21: Magneto-transport measurements of hBN-encapsulated graphene device at 10 K and
270 K. (a) Schematic of the magneto-transport experiment, performed via measurements of the
four-terminal resistivity p. (b) Resistivity p as a function of carrier density n and out-of-plane
magnetic field B. The range of p displayed is chosen to make the relevant features visible in the
colormap. At low temperature (10K), we observe a double-peak feature in p as B is varied. This

feature is absent at 270 K. (c) 1D line-cuts of (b). The horizontal axis is shown in units of W/R¢,
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where W = 1 umis the device width and R = hkp/(eB) is the cyclotron radius. Here kp = \/mn
is the Fermi wave vector. Each linecut is offset vertically. Line-cuts are shown for n = 5.67 x 10*!
to 1.36 x 102 cm~2 at 3.78 x 10! cm~2 intervals. At 10 K, a peak in p occurs at W/R¢ ~ +1,

and a kink occurs at W/R¢ &~ +2. These features are absent at 270 K.
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23 Current Reconstruction from Scanning NV Microscopy

Scanning NV microscopy measures only one projection of the magnetic field generated by current
through the device. However, the Biot-Savart law together with continuity equation, which has the
form k,j, + k,j, = 0 in Fourier space, requires the map of one projection of the magnetic field to
contain all information of a 2D current distribution. In our experiment, the NV has an orientation
vector U = (\/2/_3COS 0, \/%sin 0, \/W) where 0 is the angle between the NV orientation
projected on the zy plane and the z-axis. Here, the device being studied is used to define the
coordinate axis, with the long direction of the device taken as the y-direction. Therefore, the
projected field is B)|(z) = 1/2/3 cos 0B, (x) + 1/1/3B.(z). The sample is placed on the setup in

such a way as to minimize 6.

There are two challenges with applying the Fourier inversion method described previously
to scanning measurements. First, B)| involves B, which has a long ~ 1 /x tail. Direct inversion
requires measurement over a large field of view or otherwise leads to long-wavelength artifacts
(e.g., offsets or a slope), which in general can be corrected but nevertheless are inconvenient.
Second, current reconstruction involves inverting a low-pass filter which, in the absence of other
low-pass filter such as optical diffraction, leads to amplification of noise at high frequencies.
Therefore, regularization is required®®. However, regularization needs to be performed with care:
a naive application of a global regularization can smoothen out a sharp feature, such as at the

edges.

The goal is to have a current reconstruction procedure that is generally applicable to an
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arbitrary current profile J,(x) flowing in a channel oriented along the y-direction. First, the current
density is parameterized as J, = J,({a,}, x), with {a, } being free parameters that determine .J,,.
It is convenient to capture the expected overall shape of the current profile with a minimal number
of parameters in a function called Jy. For this purpose, the functional form of Eq. 1 of the main text
is chosen, which can vary from a parabola to a rectangular function. While J; is the solution of the
electronic Navier Stoke equation, it is used here merely to set the functional form without assuming
hydrodynamics. The second part of the parameterization AJ captures the remaining variation; it
is a linear interpolation with /N equally spaced points inside the channel and parametrized by the
values a,, = AJ (z,), where z,, = —% + n% forn =0, 1, ..., N is the n'" equally-spaced point
along the width of the channel. Since the behavior at the edges is already captured by Jy, it is

allowed to set ag, ay = 0. The mathematical expression for the parameterization is

Jy(z, W, D, {a,}) = AoJo(z,W,D)+ AJ(z,W,N,{a,}), (525)
_ cosh(z/D)
N
AJ(I‘7 W? N7 {an}) = Z Jlin<x - (.Tn_l + In)/27 W/NJ Ap—1, an) 3 (827)
n=1
b— +b
Jin(z, AW, a,b) = ((AW“) z+ 2 . )H(x/AW). (S28)

Here, I1(x) is the rectangular function, which is unity for || < 1/2 and zero otherwise. Note that
no particular model is assumed for the current density; also the parameterization described above
allows J, to take on any functional form. The only prior knowledge exploited in this procedure is

the fact that the current density is zero outside the channel.
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With this parameterization, functional can be constructed that generates B)| for a given J,:

2
Bj(x, &eer, W, D, {an},d,0,By) = Bo+ \/;cos(e)am(x, d) * Jy(x — ete, W, D, {ay })

+ %az(ﬂc, d) * Jy(x — xete, W, D, {an}). (S29)

Here, x., is the center of the channel, d is the stand-off distance, By is an offset that accounts for
potential contribution in B, from far away current flowing not strictly in the y-direction, * denotes

a 1D convolution, and the kernels are

a(z,d) = %ﬁ (S30)
a(z,d) = —g—iﬁ. (S31)

To obtain the parameters {z.,, W, D, {a,},d, 0, By}, the cost function is minimized:
X> =Y |By(@i, Tar, W, D, {an}, d. 0, By) — B, (S32)

7

where {x;, B ;} is the experimental data.

Inverting the Biot-Savart law, which acts as a low-pass filter, without regularization leads to
unphysical amplification of high-frequency noises on the magnetic field, and therefore
regularization is routinely required for the inverse problem. Here, regularization is performed by

subjecting the x? minimization to a global constraint |AJ”| < AJ”._, where AJ” is the

(numerical) second derivative of AJ. This is equivalent to a low-pass filter of the form k2 in
Fourier space. The constraint AJ”__ is chosen such that the reduced y? is close to unity,
X2 = x*/[0B*(Nq — N,,)] =~ 1. Here, 4B is the typical error bar of the data, Ny is the number of
data points and /N, are the number of free parameters in the functional. We note that J itself is

well-behaved, and therefore only regularization on A.J is necessary.
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24 Comparison of imaging techniques

In this section, we provide a summary of different imaging techniques for probing electronic

transport in graphene®*2’-32

and discuss their utility in the context of imaging hydrodynamic
current flow. The table below provides a summary of the key specifications for each technique.
The most critical requirement is the ability to operate above 100 K, which is the temperature
range of hydrodynamic current flow in graphene. This requirement excludes Josephson junction,
SQUID, and scanning gate microscopy. Note that scanning gate microscopy has been applied to

probe electron hydrodynamic in a 2D electron gas®!, where hydrodynamics is observed at a much

lower temperature compared to graphene.
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