
Electronic Structure calculations in Gaussian 
 
It is imperative to preoptimize any geometry using semi-empirical methods 
(PM3 etc before submitting to ab initio calculations. In cases where PM3 arrives at 
unreasonable minima, it may be useful to submit directly to ab initio calculations. 
The easiest way to set up calculations in Gaussian is with the aid of the graphical 
user interface (GUI) WebMO. The cartesian file generated in MOPAC, Gaussview 
or any other text editing  program can be uploaded into WebMO. Details on 
using WebMO are not described here as they are described in the WebMO 
manual: 
 
http://www.webmo.net/download/WebMO_Users_Guide.pdf 
 
Keywords are specified with dropdown menus and can be further modified in 
the Generate window. 
 
 
1. Geometry optimization 
 
The following keyword input is typical for a ground state geometry 
optimization: 
 
#N B3LYP/6-31G(d) Opt Freq Test temperature=195 
 
 How much output is generated during a geometry optimization (and 
actually all other types of Gaussian calculations as well) depends on the 
beginning of the keyword line:�� 

#P  will provide somewhat more detailed output 

�# (#N)  will provide normal output� (normal is the default) 

#T  will provide somewhat less output�� (terse) 

 A geometry optimization (keyword opt) can be performed in three 
different types of coordinate systems. The way the geometry is defined in the 
input file is actually separate from deciding in which coordinate system the 
optimization will be performed: 

��opt=Z-Matrix will optimize the geometry in internal coordinates (as provided in 
the input file)� 

opt or opt=Redundant will optimize the geometry in redundant internal 
coordinates (chosen as default coordinate system) � 

opt=Cartesian will optimize the geometry in Cartesian coordinates 



 The level of theory in this example is the DFT method B3LYP. It is 
recommended over HF (Hartree Fock). The basis set is 6-31G(d). This is adequate for 
first and second row elements.  
 
2. Frequency calculations 
 
 The keyword Freq calls for a second calculation that computes the frequencies 
and with it the energy of the molecule. For all methods used in Gaussian, the energy 
will be given in atomic units (au). The atomic unit of energy is called Hartree and 
equates to kcal/mol as follows:�� 

1 Hartree = 627.509391 kcal/mol� 

��The energies of molecular systems as calculated by most ab initio methods are 
calculated relative to separate electrons and nuclei. Energies for molecular 
systems are therefore very large and negative. The energy to be reported is the 
Free Energy (and not the B3LYP energy, ZPE or Internal Energy). 

  

3. Specifying temperature and Isotopes: 

 If no temperature is specified, the energy is computed at room 
temperature of 298K. The temperature, however, can be specified as in the above 
example. It must reported in Kelvin (unit must not explicitly be reported). Note, 
that the geometry is independent of temperature. Therefore, specifying a 
temperature for a plain geometry optimization (without the Freq keyword) is 
nonsensical. For the same reason, an isotopic substitution will not change the 
geometry. To calculate the energy of an isotopically substitud structure, the 
keyword ReadIsotopes must be included inside the Freq command    

#N B3LYP/6-31G(d) Freq=ReadIsotopes 
 
0, 1 
[coordinates] 
    blank line 
195 1.0 0.9135   temperature,pressure,scaling factor 
[isotopic masses]  rounded to integer values and in same order as  
    coordinates above. An example is shown below: 
12 
2 (deuterium) 
1 
1 
7 
… 



4. Multiprocessor Computing (Parallel Processing) 

 If calculations are run on multi-core processors, the calculation can be run 
as a parallel job. In addition, memory must be allocated to each core. The default 
in Gaussian is 6 MW (1 MW=2 MB). In the following example, a job is run over 
eight cores each being allocated 1024 MW. Multicore processing should not be 
confused with parallel processing over separate computers. For this the 
additional Gaussian software Linda is required, which we currently do not have 
access to. 

%Mem=1024MW 
%NProcShared=8 
#N B3LYP/6-31G(d) Opt Freq Test temperature=195 
 

5. A Deeper Understanding of optimizations 

Here are a few important concepts of geometry optimizations for the wary 
practitioner: 

After each iteration of the geometry optimization, the output file contains a 
summary of the current stage of the optimization:� 

          Item                       Value       Threshold          Converged? 
 Maximum  Force                    0.021672     0.000450          NO 
 RMS            Force                    0.018596     0.000300          NO 
 Maximum  Displacement     0.038954     0.001800           NO 
 RMS            Displacement     0.033876     0.001200           NO 
 Predicted change in Energy=-1.250480D-03 
 
The first two lines contain the maximum remaining force on an atom in the 
system as well as the average (RMS, root mean square) force on all atoms. In any 
case of doubt, this information is given in atomic units (here: Hartrees/Bohr and 
Hartrees/Radians). Together with the actual value for the current structure 
appears the Threshold value. The third and fourth convergence criteria are the 
maximum displacement, that is, the maximum structural change of one 
coordinate as well as the average (RMS) change over all structural parameters in 
the last two iterations. Once the current values of all four criteria fall below the 
threshold, the optimization is complete. The convergence criteria can be changed 
in the following way: 
 
��Using the opt keyword 
 
�opt    without any additional information sets the RMS force  
   criterion to 3*10-4� 
opt=tight  will set the RMS force criterion to 1*10-5 and scale the other  
   three criteria accordingly� 



opt=verytight will set the RMS force criterion to 1*10-6 and scale the other  
   three criteria accordingly�� 
 
Choosing tighter convergence criteria will, of course, give improved results but 
will also need more computer time. The default settings are appropriate for small 
systems. Especially for large structures, however, convergence of the last two 
criteria can be very slow and it is sometimes advisable to stop optimizations 
before all four criteria are fulfilled. The maximum number of optimization cycles 
depends on the size of the system and is automatically adjusted by Gaussian. If a 
particular setting of optimization cycles is desired, however, this can be specified 
using �� 
 
opt=(maxcycles=n) �    (default maxcycle in Gaussian is n=20) 
 
The default optimization algorithm included in Gaussian is the "Berny algorithm" 
developed by Bernhard Schlegel. This algorithm uses the forces acting on the 
atoms of a given structure together with the second derivative matrix (called the 
Hessian matrix) to predict energetically more favorable structures and thus 
optimize the molecular structure towards the next local minimum on the 
potential energy surface. An explicit calculation of the second derivative matrix 
is quite costly, the Berny algorithm constructs an approximate Hessian at the 
beginning of the optimization procedure through application of a simple valence 
force field, and then uses the energies and first derivatives calculated along the 
optimization pathway to update this approximate Hessian matrix. The success of 
the optimization procedure therefore depends to some degree on how well the 
approximate Hessian represents the true situation at a given point. For many 
"normal" systems, the approximate Hessians work quite well, but in a few cases a 
better Hessian has to be used. Often it is sufficient to calculate the Hessian matrix 
explicitly once at the beginning of the calculation and then use the standard 
updating scheme of the Berny algorithm. This is specified using the�� 
 
opt=calcfc 
 
��keyword. In some very rare cases, the Hessian changes considerably between 
optimization steps and must then be recomputed after each optimization step 
using the �� 
 
opt=calcall � 
 
keyword.�� In case a number of different options are to be specified for a geometry 
optimization, the options must be given in parenthesis: 
 
��opt=(Z-Matrix,calcfc,tight,maxcycles=25) � 
 



6. Transition State optimization 
 

Two methods of locating transition state geometries will be desribed: 

 

(a) As in the case of ground state optimizations, it is essential to preoptimize 
the transition state geometry semi-empirically in MOPAC. The output of this 
calculation is then submitted to the ab initio calculation in Gaussian. 
Transition state calculations can be tricky and require tricks specific to each case. 
Let us consider the transition state of an amide mediated deprotonation: 
 

C H N
1 2 3

 
 
For any transition state, the imaginary vibrational frequency must be associated 
with the motion over the saddle point (i.e. the motion of the proton from carbon 
to nitrogen). In other words, the final optimized transition state should exhibit 
one negative (imaginary) frequency that corresponds to the translational motion 
of the proton from carbon to nitrogen. This principle serves as a final check for 
the validity of the transition state. For deprotonations the magnitude of the 
imaginary frequency should be around 1000 cm-1. For heavier atoms this 
frequency will be in the range of 100-300 cm-1. An excellent treatment of 
transition state theory can be found in “Chemical Kinetics and Reaction 
Dynamics”  by Paul L. Houston (Cornell University, Dover Publications, Inc. 
Mineola New York, 2006). 
 
We make use of the above stated principle and restrict the C-H and H-N bond 
lengths to a value close to ones previously established or chemical intuition: r(C-
H)~1.35 Å and r(H-N) ~1.42 Å. These bond lengths are unaltered during the 
transition state calculation and allow for a more expedient calculation. In a 
second transition state calculation we will release this constraint. 
 
The Gaussian input for the first calculation is the following: 
 
#N B3LYP/6-31G(d) Opt=(TS,EstmFC,noeigentest,ModRedundant) Test 
 
0,1 
[coordinates] 
 
1 2 1.35 F 
2 3 1.42 F 
 
1. We specify the optimization (Opt) to be a transition state (TS) optimizization. 
 
2. EstmFC means that the force constants (FC) are computed at the beginning of 



the calculation by constructing an approximate Hessian (see section 2). 
 
3. By default, the Berny optimization program checks the curvature (number of 
negative eigenvalues) of the approximate second derivative matrix at each step 
of a transition state optimization. If the number is not exactly one negative 
eigenvalue, the job is aborted. The test can be suppressed with the NoEigenTest 
option. It appears that Gaussian never finds a transition state unless the 
NoEigenTest keyword is included.  
 
4. ModRedundant allows us to explicity freeze (F) variables during the 
optimization. In this example we freeze the bondlength between atom number 1 
and 2 and atom number 2 and 3. The bondlength is given in Ångstroms. Note 
that there must be a space between the final line of the coordinates and the 
ModRedundant input. 
 
5. A note on the level of theory: DFT (B3LYP) has the great advantage of treating 
electron correlation quite well whereas HF does not treat it at all. Electron 
correlation is especially relevant for transition state calculations. It is therefore 
recommended to use DFT methods for such calculations. 
 
The calculation must now be rerun without any coordinate restrictions and is 
followed by a frequency calculation to arrive at the thermally corrected energy of 
the transition state. The imaginary frequency should be verified at this point and 
can be visualized in directly in WebMO. 
 
The input for the second transition state calculation is the following: 
 
#N B3LYP/6-31G(d) Opt=(TS, CalcFC, noeigentest) Freq Test temperature=195 
 
1. The Hessian is calculated exactly with CalcFC. 
 
2. The optimization can now freely adjust the bondlengths between atoms 1, 2 
and 3. 
 
3. The optimization is followed by a frequency calculation at 195 Kelvin. 
 



(b) The second method of locating transition state geometries is the ‘scanning’ 
technique. Identify the bondlength, bondangle or dihedral angle that most 
closely describes the imaginary frequency of the transition state and perform  a 
scan of this variable. An example is given below: 
 
#N B3LYP/6-31G(d) Opt=(ModRedundant) SCF=(Tight,NoSymm) Test 
 
0,1 
[coordinates] 
 
1 2 3 125.6 S 10 +2.5 
 
 
The ModRedundant keyword is used to perform a scan. This scanning method is 
also called a Relaxed Potential Energy Scan. In the above example the angle 
between atom number 1, 2 and 3 is first optimized at 125.6 and once completed 
increased by 2.5 degrees. Once this geometry is optimized the angle is again 
increased by the same amount. The process is repeated ten times. In WebMO the 
B3LYP energies can be viewed by clicking on the watchglass at the top of the 
geometry sequence box. Alternatively, the output file can be opened by 
Gaussview and the reaction coordinate can be viewed by selecting Scan under the 
Results menu. Ideally, one will find that the B3LYP energy during this sequency 
rises, reaches a maximum and subsequently decreases. Chose the geometry of 
maximum energy and submit this to a restricted transition state calculation as 
described in point (a). Selecting the appropriate scanning variable can be tricky. 
Sometimes scanning a bondangle instead of a bondlength or a dihedral angle 
instead of a bondangle may work better. To chose the ideal variable, attempt to 
understand what the key geometrical changes are that occur at the transition 
state. 
 
(c) Alternate ways of locating transition states are to use so called saddle-
point calculations: QST2 and QST3. In the former one submits the reactant and 
product structure and the program interpolates between the two structures to 
find a reasonable starting point for a transition state calculation. It is absolutely 
necessary for the atom numbering to be consisent between both structures. This 
can be achieved in Gaussview using the Connection Editor. QST3 requires in 
addition a best estimate for the transition state geometry. Thus far, I (ach) have 
not been able to use this method to my advantage  and therefore limit this section 
to simply mentioning it. 
 
 
7. IRC calculations 
 

Transition state geometries may be connected to ground state geometries with an 
intrinsic reaction coordinate (IRC) calculation. In the process one follows the path 
downhill from the transition state in either the forward or reverse direction. The 
direction does not correspond to the user’s understanding of forward and 



reverse for his/her particular chemical system. The calculation is set up in the 
following way: 

#N B3LYP/6-31G(d) IRC=(CalcFC,Forward) 
or 
#N B3LYP/6-31G(d) IRC=(CalcFC,Reverse) 
 
An IRC calculation will not reach the bottom of the energy well. Therefore, submit the 
output of the IRC to a geometry optimization to reach the ground state. 


