DIRECT SURFACE PATTERNING THROUGH PHOTOCHEMISTRY

By: Brittney Moncrieffe Fors Lab
Insight behind Surface Patterning

- Methods for developing surface functionality
- Simple patterns like binary patterns follow on/off scheme
- Complex grayscale patterns show various degrees of functionality

Binary Pattern

01001000 01101001

Grayscale Pattern

Real-World Applications

Biological Assays

Antibiofouling Surfaces

Specialized Antifouling Surface
Inhibits Bacterial Growth on Surface

J. Mater. Chem., 2008, 18, 3405-3413
Patterning Techniques

Micro-contact printing
- Marks a Specific Area of a Surface with Functionality.
- Similar to a Stamp

Physical Vapor Deposition
- Process Used to Deposit Thin Layers of Material
Limitations of Conventional Patterning Methods

1. Fail to Create High Resolution Grayscale Patterns
 - Large Length-Scales (cm scale)

2. Multistep Process
 - Costly
 - Time Consuming
PHOTO-MEDIATED REACTIONS

Goal: A New Surface Patterning Method

- A Direct Surface Patterning Method
 - Single Step to Functionalization

- Create New Patterning Agents
 - Vary Hydrophobicity of Groups
 - (eg. Perflouranated agents, carbon chains, etc)

- Characterize Using Water/Surface Contact Angle
Proposed Synthesis of Patterning Agents
Patterned Agent Synthesis: Acid Catalyzed Acetal Synthesis

ROH + MeCHO → Me

CaCl₂

0.1 eq p-TsOH

ROOR

3 eq 1 eq

R = C_{12}H_{25}, \% yield = 74 \%

R = \text{triethyl}, \% yield = 73\%
Patterning Agent Synthesis: Chlorination/Nucleophilic Substitution

\[
\text{RO} \quad \text{OR} \quad + \quad \text{BCl}_3 \quad \xrightarrow{\text{DCM}, -78^\circ\text{C} \text{ to } \text{RT}} \quad \text{RO} \quad \text{Cl} \quad \text{Me}
\]

1.5 eq 1 eq

\[
\text{R} = \text{C}_{12}\text{H}_{25}
\]
Patterning Agent Synthesis: Chlorination/Nucleophilic Substitution

\[\text{ROOR} + \text{BCl}_3 \xrightarrow{\text{DCM} -78^\circ \text{C} \text{ to RT}} \text{ROCl} \]

\[\text{R = C}_{12}\text{H}_{25} \]

\[\text{S} \xrightarrow{\text{NaS} \xrightarrow{\text{NEt}_2}} \]

\[\text{DCM} \]
Proposed Synthesis of Patterning Agents: Round 2
Proposed Synthesis of Patterning Agents: Round 2
Patterned Agent Synthesis: Transetherification

\[\text{ROH} + \overset{\text{1 eq}}{\text{2 eq}} \overset{1 \text{ mol}\% [\text{Ir(COD)Cl]}_2}{\overset{0.6 \text{ eq Na}_2\text{CO}_3}{\text{Toluene, 100 °C}}} \overset{\text{RO}}{\text{R}} \]

- \(\text{R} = \text{C}_{12}\text{H}_{25}; \text{ % yield} = 59\% \)
- \(\text{R} = \text{C}_{8}\text{H}_4\text{F}_{13}; \text{ % yield} = 45\% \)
Patterning Agent Synthesis: Chlorination/Nucleophilic Substitution

\[
\begin{align*}
\text{RO} & \xrightarrow{\text{HCl, Et}_2\text{O}} \text{ROCl} & \text{Me} & \xrightarrow{\text{NaSNEt}_2, \text{Et}_2\text{O, RT}} & \text{RO} & \text{S} & \text{S} & \text{NEt}_2 \\
\text{R} = \text{C}_{12}\text{H}_{25} & ; \text{yield} = 43\% & \text{R} = \text{C}_8\text{H}_4\text{F}_{13} & ; \text{yield} = 18\%
\end{align*}
\]
Patterning Test Reaction:
Small Molecule Acetal Formation

\[
\text{R = C}_{12}\text{H}_{25}, \ 80\% \ \text{Conversion} \\
\text{R = C}_{8}\text{H}_{4}\text{F}_{13}, \ 52\% \ \text{Conversion}
\]
Patterning Test Reaction: Small Molecule Acetal Formation

`C_6F_{13}OCH(OEt)_2S(S)NEt_2 + OH OH OH OH \xrightarrow{[\text{Ir}(dF(CF_3)ppy)_2(dCF_3bpy)]PF_6} \frac{\text{MeCN}, 450 \text{ nm}, 30 \text{ min}}{\text{Si} \quad \text{Si}} \frac{\text{Me}}{\frac{\text{C}_6\text{F}_{13}}{\text{OR} \quad \text{OR} \quad \text{OR}}} \quad \text{Water/Surface Contact Angle:}

CA = 15°

CA = 81°
Conclusion:

- Synthesized new Patterning Agents
- Expanded Scope of Patterning Reaction
- Mastered the art of running my own columns and evaluating TLC test
Acknowledgements:

Fors Group
Mike Supej
Dr. Brett Fors
Dr. Quentin Michaudel
Dillon Gentekos
Jacob Trotta
Veronika Kottisch
Brian Peterson
Stephanie Rosenbloom
Renee Sifri
Parker Singleton
Katherine Stawiasz
Nancy Shen
Allison Wong
Shelby Shankel

Champs Program
Dr. Stephen Lee
Dr. Brian Crane
Nev Singhota
Rebecca Broome