Mapping the Palmitoylation Sites of MBLAC2 by Click Chemistry

Jenelle Safadi

Linder Lab
August 11, 2017
What is palmitoylation?

- Palmitate: A 16-C fatty acid with a reactive carbonyl group
- Cysteine: An amino acid with a reactive thiol group

A 16-C fatty acid with a reactive carbonyl group

Amino acid with a reactive thiol group
MBLAC2: Metallo-beta-lactamase-domain-containing-protein-2

- 280 amino acid protein
- Enzyme of unknown function

KNOWN:
MBLAC2 is predicted to be palmitoylated

UNKNOWN:
Which of the three cysteines is/are palmitoylated
Mapping the Palmitoylation Sites of MBLAC2

WT
If palmitoylation occurs, one, two, or all of the Cys are palmitoylated.

C175A
If palmitoylation occurs, C211 and/or C253 are palmitoylated.

C211A
If palmitoylation occurs, C175 and/or C253 are palmitoylated.

C253A
If palmitoylation occurs, C175 and/or C211 are palmitoylated.

3CA
Negative control, no Cysteines, therefore no palmitoylation occurs.

Palmitate

Cysteine

C175A means that the Cysteine at the 175th position is mutated to an Alanine.
Outline of Experiment

Transfection ➔ 17-ODYA Labeling ➔ Cell Lysis

Gel Analysis ← Click Chemistry ← GFP Immuno-precipitation
1. Transfection

To monitor transfection efficiency, each construct was tagged with GFP (green fluorescent protein).
2. Labeling MBLAC2 with 17-ODYA

- Incubate the transfected cells with 17-ODYA for 6 hours
- A palmitate analog - has similar reactivity towards cysteines as palmitate
- Exchanges with palmitate, important for click chemistry

1. Transfection
2. 17-ODYA Labeling
3. Cell lysis
4. GFP Immuno-precipitation
5. Click Chemistry
6. Gel Analysis
3. Lysing the HEK cells

- Release cell contents
- Lysis Buffer
 - Use detergent to disrupt cell membrane
 - Disrupts hydrophobic-hydrophilic interactions of the membrane bilayer, breaking down the membrane
4. Pulldown of MBLAC2 using GFP-Affinity Beads

1. Transfection
2. 17-ODYA Labeling
3. Cell lysis
4. **GFP Immuno-precipitation**
5. Click Chemistry
6. Gel Analysis
• We have isolated the GFP-tagged, ODYA-labeled MBLAC2 from HEK cells.
• The alkyne group of 17-ODYA is critical for reacting with an azide group that allows for the attachment of a fluorescent reporter group.

Reporter group has a fluorescence at 647nm
5. Click Chemistry

- Energetically favorable reaction used to see ODYA labeling
- Contents:
 - **Alexa 647**: reporter group with reactive azide group, reacts with ODYA’s alkyne group
 - **CuSO\(_4\)**: catalyzes the reaction
 - **TCEP**: reducing agent, keeps the cysteines from getting oxidized
 - **TBTA**: ligand of Cu\(^{2+}\) to stabilize CuSO\(_4\)
 - **PBS**: maintains physiological pH and salt concentration
6. Gel Analysis

- The MBLAC2 protein was eluted from the beads and analyzed by gel electrophoresis.
- What we can learn from the gel:
 - MBLAC2 size
 - Palmitoylation (in-gel fluorescence at 647 nm)
 - Confirm MBLAC2-GFP expression using a Western Blot
Results

Length of MBLAC2 with tags ~ 56 kDa

Western Blot (α-GFP)

647 nm
Preliminary Conclusion and Future Directions

- C253 is the main site of palmitoylation
- Characterize MBLAC2:
 - Cellular localization
 - Enzyme interactions – determine what enzyme palmitoylates MBLAC2
 - Confirm predicted activity as a hydrolase
Acknowledgements

Huge thank you to the Linder Lab

Dr. Maurine E. Linder and

Martin Ian Malgapo

& Thank you CHAMPS Program

Dr. Lee, Dr. Crane,

Dr. Rutledge, & Nevjinder Singhota