Hemp Processing, Extraction & Testing

Presented by Jamila La Malfa-Donaldson
Aberystwyth University (Wales, UK)
Cornell University Hemp Webinar Series 2023
Contents

1. Overview of Industrial Hemp
2. Hemp Processing
3. Cannabinoid Testing
4. Hemp Extraction Techniques
5. Solubility of Cannabinoids
6. Decarboxylation
7. Purification Technique: Crystallization
8. CBD Solubility Curves
9. Crystallization of Hemp Distillate
10. Crystallization Scale-Up
11. Summary
Overview of Industrial Hemp

Industrial Hemp (Cannabis sativa L.)
Hemp Processing

- Extraction
- Purification
- Isolation

Testing:
- Chemical Profile
- Microbes
- Pesticides
- Residual Solvents
- Heavy Metals
- Mycotoxins

Diagram shows:
- Sesquiterpenes
- Terpenes
- Flavonoids
- Sugars
- Fats
- Lignin
- Starches
- Waxes
- Pectins
- Cellulose

Chemical Profile:
- Cannabinoids
- Pigments
- Chlorophyll
- Waxes
- Pectins
- Cellulose
Cannabinoid Testing

- LC/MS analysis
- Major and minor cannabinoids & cannflavin A
- Sample prep for high sample throughput
- Methanol extraction
- 11 cannabinoids and cannflavin A in 25 mins
Hemp Extraction Techniques

Extraction techniques for Hemp (Cannabis sativa L.) extract

- Cold press (Seeds)
 - Hemp oil

- DM with solvents including methanol, ethanol, butane, chloroform and n-hexane (Seeds, plant)
 - Hemp oil
 - Cannabinoids

- PLE (Seeds, plant, seed cake)
 - Cannabinoids
 - Hemp oil

- SFE with CO₂ (Seeds, plant, seed cake)
 - Cannabinoids (CBD,CBDA)
 - Hemp oil
 - Polyphenols
 - Flavonoids

- UAE (Seeds, plant, seed cake)
 - Hemp oil

- MAE (Plant)
 - Solvent
 - SFE (pre-treatment)
 - Hemp oil

- Solvent
 - Cannabinoids (THC,CBD,CBN)
Solubility of Cannabinoids

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>Polarity</th>
<th>Molar mass (g mol⁻¹)</th>
<th>Boiling point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>C₂H₅OH</td>
<td>Polar</td>
<td>46.07</td>
<td>78.4</td>
</tr>
<tr>
<td>Butane</td>
<td>C₄H₁₀</td>
<td>Nonpolar</td>
<td>58.12</td>
<td>−1.0</td>
</tr>
<tr>
<td>Hexane</td>
<td>C₆H₁₄</td>
<td>Nonpolar</td>
<td>86.18</td>
<td>68.0</td>
</tr>
<tr>
<td>Methanol</td>
<td>CH₃OH</td>
<td>Polar</td>
<td>32.04</td>
<td>64.7</td>
</tr>
<tr>
<td>Acetone</td>
<td>C₃H₆O</td>
<td>Polar</td>
<td>58.08</td>
<td>56.0</td>
</tr>
</tbody>
</table>
Decarboxylation

Decarboxylation
- CO_2

CBG

CBDA synthase

CBDA

Decarboxylation
- CO_2

CBD

Δ^2-THCA synthase

Δ^2-THCA

Decarboxylation
- CO_2

Δ^2-THC
Purification Technique: Crystallization

General CBD Solubility Curve

- **Labile Zone:** The solution is unstable. Small CBD crystals form spontaneously.
- **Supersolubility Curve:** Varies with process conditions.
- **Metastable Zone Width:**
- **Solubility Curve:** Fixed for a given system.
- **Metastable Zone:** CBD crystals do not form spontaneously, but growth of existing crystals will occur.
- **Unsaturated Zone:** The solution is stable in this zone. Any CBD crystals dissolve.
CBD Solubility Curves

CBD isolate in…
- Pentane
- Hexane
- Heptane
- Octane
Crystallization of Hemp Distillate

<table>
<thead>
<tr>
<th>Solvent</th>
<th>CBD crystal purity</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heptane</td>
<td>90%</td>
<td>↑14%</td>
</tr>
<tr>
<td>Hexane</td>
<td>90%</td>
<td>↑14%</td>
</tr>
<tr>
<td>Pentane</td>
<td>91%</td>
<td>↑16%</td>
</tr>
<tr>
<td>Octane</td>
<td>97%</td>
<td>↑23%</td>
</tr>
</tbody>
</table>
Crystallization Scale-Up
Summary

- Industrial hemp as source of therapeutic compounds.
- Development and optimisation of processing methods for hemp.
- LC/MS cannabinoid profiling and testing.
- Existing and novel extraction techniques.
- Non-polar solvents better suited for cannabinoids.
- Decarboxylation of acid cannabinoids to neutral cannabinoids.
- Crystallization studies for CBD purification.
About Me

- PhD Industrial Hemp Researcher, Aberystwyth University (Wales, UK)
- MEng Chemical Engineering with Business
- +5 yrs Science Communicator
- Founder of PROHEMPOTIC
- Young Innovators Award 22-23 (Innovate UK)

Jamila La Malfa-Donaldson

contact@prohempotic.com
Thank You

Any Questions?

Acknowledgements:
PhD supervisors - Dr Ana Winters & Dr Barbara Hauck
Sponsors - TTS Pharma, KESS II & Technobis