Capital Area Ag Report
September 20, 2023

Calendar
Wednesday, October 11, 2023, 5:00 – 7:00pm—2023 Fall Round-Up Grazer Meeting, - Raising Pigs, at Stanton’s Feura Farm, 210 Onesquethaw Creek Road, Feura Bush, NY. Cost: $10/person. Register: https://caahp.ccext.net/civicrm/event/info?reset=1&id=179. Questions: Rachel Moody, (518)649-0267/ram72@cornell.edu. Topics: Raising pigs on pasture/outdoors; Pig nutritional needs; soil health assessment; tour

Wednesday, October 11, 2023, 11am—3 pm, Small Grains Meeting & Field Tour—Challenges & Opportunities of Winter Grains, Forages, & Cover Crops. At Mosher Farms, Bouckville, NY. Registration details forthcoming. Contact Erik Smith eas56@cornell.edu or Aaron Gabriel, adg12@cornell.edu, 518-380-1496.

“Stay-tuned” - Mid-November Small Grain Field Meetings—grains, forages, cover crops. Contact Aaron Gabriel, 518-380-1496, adg12@cornell.edu

FYI
Study Shows First Year Management Practices Critical to Maximizing Alfalfa Yield (from Morning AgClips). A two-page summary of the study. First year manure, potassium, and sulfur were associated with higher yields over the life of the stands.

Dicamba-resistant waterhemp in Iowa—this is a reminder that we need to take herbicide resistance seriously. I think that our weakest link in weed control is planning. We plant our crops, wait for the weeds to grow, then decide what to do. We need to plan weed management as part of our rotation strategies at least a couple years in advance.
Grain Safety Shorts—Bin Prep it is time to prepare grain storages for fall harvest. Think Safety.

Crop Scouting Observations & Comments—Aaron Gabriel

After a couple of nice days, we may be back into rainy weather. Think about soil compaction and how you will manage it during harvest: controlled traffic, tire air pressure, rye cover crop. Annual ryegrass makes a good cover crop but it must be drilled no later than mid-October.

Clean your combines so that you do not spread weed seeds to other fields or spread grain insects into the new grain crop. We have tall waterhemp in our region. Keeping it out of fields is the first line of defense. Grain insects will hang out in combines and other grain machinery. Clean like a maniac.

The translucence of these lesions on corn appear to be a bacterial disease. There are a few bacterial diseases of corn, all a bit difficult to tell apart. Most corn is not yet at black layer (physiological maturity, when the tissue layer between the cob and kernel dies and turns black, and when kernel development is complete). Leaves are senescing at the bottom and diseases are on leaves to varying degrees in the green canopy. However, the kernels are still putting on yield and starch as long as there is green tissue on the plant. If plants look a bit ugly, give them a chance. We are trying to produce starch, so chop corn silage when the whole-plant moisture is 68% down to 62% to get optimum yield and quality.

The other corn silage harvest consideration is to check stalk health, and if you have weak stalks that may fall over, harvest those fields before they lodge.

At the far right is a green and a purple corn plant. The purple plant is missing an ear. I placed a pocket knife where there was an ear. I believe that deer ate the ears in this field when they were only silking. The other picture shows where the ear was, just a dark stub. Since there is no ear to be a “sink” for all the sugars produced by photosynthesis, the plants accumulate sugars and anthocyanin pigments, turning purple. I am testing this corn to see if nitrates have also accumulated. This is why sweet corn fields turn red after harvest.

It is time to plant small grains. Mike Stanyard has given good and thorough information in the “Crop Alert” newsletter of the CCE Northwest NY Dairy, Livestock, and Field Crops Program. So, I will refer you to his comments in Crop Alert.

The next two articles are from the CCE Southwest NY Dairy, Livestock, and Field Crops Team.
BUNK SILO SAFETY
Tips To Stay Safe In Your Bunk Silo

Tractor and Truck Rollovers

- ROPS (roll-over protective structures) should be installed on all tractors.
- Never fill a bunk higher than the wall height.
- Maintain a 1:3 slope on the sides and ends of a drive-over pile.
- Back up steep slopes to prevent roll-backs.
- Establish a driving procedure to prevent collisions when there is 1<pack> tractor being used at one time.
- Sight rails and lights can be installed on the walls to indicate the location of the wall to the tractor operator.
- Only unload wagons or trucks when on a firm, flat surface.
- A tire rut, low tires on a side, uneven loading, and wind gusts increase the risk of machinery tipping.

Avalanche Risk

- Never stand near the feedout face.
- Stand far away from the face. Take the height of the silage, multiple by 3, and remain that many feet from the face.
- Piles should not be filled higher than the equipment can reach (most unloaders can reach 12-14 feet).
- Don’t pitch spoiled silage, this is a high fall and avalanche risk.
- Use proper unloading techniques, shave silage down the face.
- Never dig the bucket into the bottom of the silage.
- Never park near the feedout face.
- Wear a safety vest so you are visible in the bunk.

Entanglement/Run Over

- Never repair machine while it is running.
- Adjust rearview mirrors on all equipment.
- Install backup alarms.
- Never allow people in or near a bunk silo during filling.

Follow the “buddy rule”, you should never work alone in or near a bunker silo.

Check out Lallemand Silage Safety Handbook for more information!

Send all employees home to their families safe every day. This should be the goal for every day on the farm, and especially so during the busy and stressful crop harvest.
Soybean Cyst Nematode (SCN) is a plant-parasitic roundworm that feeds on the roots of various hosts such as beans (soy and dry), peas, and clovers. Its feeding slows root growth and decreases the uptake of water and nutrients. The symptomology of this pest is dependent on population density, soil texture, fertility, and rainfall. Often, damage can be confused with nutrient deficiencies, herbicide damage, and environmental stress. Due to the root feeding nature of this pest, soil-borne pathogens like white mold and sudden death syndrome are often introduced to the plant. The most common symptom though is stunted growth above ground, accompanied by yellow, wilted plants. Native to Japan, the pest has now spread throughout NY and is the #1 yield reducing pest of soybean. In 2016, the first NY county identified it; today that total is up to 38 counties in NYS. So, how do you know if you have SCN present in your field(s)? The only sure way to know is by taking samples and sending them into a lab for analysis. This pest can cause a 30% reduction in yield with no above-ground symptoms, so taking samples can be a preventative measure to ensure that you are getting the most from your soybeans.

This pest can spread by human activity and by nature. Humans move soil, whether it is tracked on shoes, or by equipment moving to different fields carrying soil or contaminated seeds and plants. Nature also spreads the pest by wind, water, and various wildlife. The most important management tool is prevention. Once this pest is identified in a field, it cannot be eradicated. Keeping your equipment clean is one of the biggest steps you can take to help reduce the spread of this pest.

Next is to identify the problem. Scouting can help identify the fields that appear lackluster and allow you to evaluate the reason further. It’s important to note that when scouting for SCN, you cannot pull the plants out of the ground because the nematodes will fall off. All plants should be dug out of the ground and the roots examined carefully for any possible nematodes present. The best places to look are fields entryways, low yielding areas, low areas in the field, previously flooded areas, high pH areas, near buildings, storage areas, and fences.

When it comes to Soybean Cyst Nematode, sampling efforts are made so producers can “know their number”. This phrase is used as a management tool because different populations of SCN can require different management techniques. The photo below refers to the number of SCN eggs/cup of soil. The higher that number is, the more severe the infestation. Knowing your number is important because SCN populations build up very fast. As the figure shows, SCN populations can multiply very quickly, making it important to know if it’s present and manage it appropriately.
if you have identified SCN in any of your fields, you should run equipment through them last to reduce the spread of the pest throughout your farm. This serves as a cultural management practice, along with crop rotation and planting resistant varieties. Although the pest has several hosts, rotating crops can decrease the SCN levels by 50% the following year. There is also biological/chemical management, specifically, seed treatments and nematicides. If you have tested for SCN, and are interested in these options, contact your local representative for more information.
Overall, some recommendations for management include:

Low infestations:
- Choose a high-yielding, SCN-resistant (soy) or tolerant (dry) variety
- Continue to rotate with non-host crops

Moderate to High infestations:
- Do an HG type test and choose a suitable resistant variety
- Continue to rotate with non-host crops

If populations remain consistently high (>10k eggs/cup):
- In addition to above, explore seed treatments BUT this cannot be your only tactic

SCN can create a yield loss of up to 30% without above ground symptoms. Taking samples can be a helpful preventative measure.

SCN spreads naturally, but is “helped” by human activity. It can move by carrying contaminated soil from field to field with equipment, wind, water, and wildlife.