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starting at (0, 0).
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Sets of Lattice Paths

Fix lattice paths P and Q from (0, 0) to (m, r) with P never going
above Q.

Let P be the set of lattice paths from (0, 0) to (m, r) that stay in
the region that P and Q bound.

P

Q

.

.



Sets of Lattice Paths

Fix lattice paths P and Q from (0, 0) to (m, r) with P never going
above Q.

Let P be the set of lattice paths from (0, 0) to (m, r) that stay in
the region that P and Q bound.

P

Q

.

.

What is |P|?



A Simple Example

For P = EmNr

and Q = NrEm,
we get

|P| =

(
m + r

r

)

.

(0, 0)

(m, r)



Finding the Number of Paths Recursively

|P| can be computed recursively.
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Finding the Number of Paths Recursively

|P| can be computed recursively.

a a

a

a
a

b

a + b

.
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The Catalan Numbers

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

Cn =
1

n + 1

(
2n

n

)

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7

2 5 9 14 20 27

5 14 28 48 75

14 42 90 165

42 132 297

132 429

429



Paths as Transversals of Set Systems

Each path in P is determined by its north steps.

The lattice path
with north steps
1, 3, 7, 9.

.
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Paths as Transversals of Set Systems

Each path in P is determined by its north steps.

The lattice path
with north steps
1, 3, 7, 9.
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2 4 5 6
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Label each north step by its position in each path it is in.

N1 = {1, 2, 3, 4}
N2 = {2, 3, 4, 5, 6}
N3 = {4, 5, 6, 7}
N4 = {6, 7, 8, 9, 10}

For 1 ≤ i ≤ r , let Ni be the set
of all labels on the north steps
in row i of the diagram (from
the bottom).



Set Systems, Transversals, and Partial Transversals

A set system is a (finite) multiset A = (Aj : j ∈ J) of subsets of a
(finite) set S .

Example: S = {a, b, c , d , e, f , g , h} and A = (A,B ,C ,D) with

A = {a, b, e, f , h}, B = {b, c , g}, C = {d , e, g , h}, D = {d , f , h}



Set Systems, Transversals, and Partial Transversals

A set system is a multiset A = (Aj : j ∈ J) of subsets of a set S .

A = {a, b, e, f , h}, B = {b, c , g}, C = {d , e, g , h}, D = {d , f , h}

A transversal of A is a set {xj : j ∈ J} of |J| distinct elements with
xj ∈ Aj for all j ∈ J.

Some transversals: {a, b, e, h}, {e, f , g , h}.

A = {a, b, e, f , h}, B = {b, c ,g}, C = {d , e, g ,h}, D = {d , f, h}
A = {a, b, e, f, h}, B = {b, c ,g}, C = {d , e, g , h}, D = {d , f ,h}

Caution: a transversal is just a set whose elements can be matched with the

sets in A; the matchings are not part of the transversal.
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A = {a, b, e, f , h}, B = {b, c , g}, C = {d , e, g , h}, D = {d , f , h}

A transversal of A is a set {xj : j ∈ J} of |J| distinct elements
with xj ∈ Aj for all j ∈ J.

A partial transversal of A is a transversal of some subsystem
(Ak : k ∈ K ) with K ⊆ J.

Some partial transversals: {a, b, e}, {c}, ∅.

Some sets that are not partial transversals: {a, b, c}, {a, b, e, g}.



Matrix Perspective on Set Systems and Partial Transversals

A = {a, b, e, f , h}, B = {b, c , g}, C = {d , e, g , h}, D = {d , f , h}

A
B
C
D







a b c d e f g h

∗ ∗ 0 0 ∗ ∗ 0 ∗
0 ∗ ∗ 0 0 0 ∗ 0
0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 ∗ 0 ∗ 0 ∗
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b e g h

xA,b xA,e 0 xA,h
xB,b 0 xB,g 0
0 xC ,e xC ,g xC ,h

0 0 0 xD,h
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b e g h
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The determinant of this submatrix is

−xA,bxB,gxC ,exD,h − xA,exB,bxC ,gxD,h.
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b e g h

xA,b xA,e 0 xA,h
xB,b 0 xB,g 0
0 xC ,e xC ,g xC ,h

0 0 0 xD,h







The determinant of this submatrix is

−xA,bxB,gxC ,exD,h − xA,exB,bxC ,gxD,h.

Recall, det(ai ,j) =
∑

σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n).



The Permutation Expansion of Determinants Reflects Matchings

det







xA,b xA,e 0 xA,h
xB,b 0 xB,g 0
0 xC ,e xC ,g xC ,h

0 0 0 xD,h







= −xA,bxB,gxC ,exD,h−xA,exB,bxC ,gxD,h

The determinant of a square submatrix with rows indexed by R and
columns indexed by C is the sum, over all matchings φ : C → R ,

of the product arising from the matching, i.e., ±
∏

i∈C

xφ(i),i .

(Non-matchings (where i 6∈ φ(i) for some i ∈ C ) have a zero in the
corresponding product and so make no contribution.)

The nonzero entries are algebraically independent, so there is no
cancellation, so partial transversals correspond to linearly
independent sets of columns.



Matroids and Transversal Matroids

A matroid M is a finite set S and a set I of subsets of S , the
independent sets, such that
(i) ∅ ∈ I,
(ii) if A ∈ I and B ⊆ A, then B ∈ I, and
(iii) if A,B ∈ I and |B | < |A|, then B ∪ x ∈ I for some x ∈ A−B .

(Whitney, 1935)

Ex. Let the elements of S label the columns of a matrix over a
field F.
A subset A of S is in I iff the corresponding columns are distinct
and linearly independent.



Matroids and Transversal Matroids

A matroid M is a finite set S and a set I of subsets of S , the
independent sets, such that
(i) ∅ ∈ I,
(ii) if A ∈ I and B ⊆ A, then B ∈ I, and
(iii) if A,B ∈ I and |B | < |A|, then B ∪ x ∈ I for some x ∈ A−B .

(Whitney, 1935)

Ex. Let the elements of S label the columns of a matrix over a
field F.
A subset A of S is in I iff the corresponding columns are distinct
and linearly independent.

Theorem
The partial transversals of a set system A are the independent sets
of a matroid. (Edmonds and Fulkerson, 1965)

A is a presentation of this transversal matroid.



A Geometric Representation of a Transversal Matroid on a Simplex

Each transversal matroid has a representing matrix in which all
entries are nonnegative real numbers.

Scale each nonzero column so the column sum is 1.

A
B
C
D







a b c d e f g h

1 p 0 0 r s 0 u
0 1− p 1 0 0 0 t 0
0 0 0 q 1− r 0 1− t v
0 0 0 1− q 0 1− s 0 1− u − v







Nonzero columns in such a matrix
are points in the convex hull of the
standard basis vectors, i.e., a
simplex.

a

b

c

de

f

gh
e1

e4

e3

e2



A Geometric Perspective on Transversal Matroids

Theorem
A matroid is transversal if and only if it has a geometric realization
on a simplex with all dependence arising from the structure of the
simplex. (Brylawski, 1975)

Respecting the structure of the simplex

means, for example, if {a, b, c} is

dependent but all of its 2-subsets are

independent, then a,b, c must be on

an edge of the simplex.

a

b

c

de

f

gh
e1

e4

e3

e2



Lattice Path Matroids

Let P and Q be lattice paths from (0, 0) to (m, r) with P never
going above Q.

Let P and N1,N2, . . . ,Nr be as before.

N4 = {6, 7, 8, 9, 10}
N3 = {4, 5, 6, 7}
N2 = {2, 3, 4, 5, 6}
N1 = {1, 2, 3, 4} P

Q

.

.

1

3

7

9

2 3 4

2 4 5 6

4 5 6

6 7 8 10

The matroid M[P ,Q] is the transversal matroid on
{1, 2, . . . ,m + r} with presentation (N1,N2, . . . ,Nr ).

A lattice path matroid is a matroid that is isomorphic to M[P ,Q]
for some such P and Q.



An Example in Detail

N3

N2

N1





1 2 3 4 5 6 7

0 0 0 0 0 ∗ ∗
0 0 ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ 0 0 0





1 2 3 4

3 4 5 6

6 7

N1 = {1, 2, 3, 4}

N2 = {3, 4, 5, 6}

N3 = {6, 7}

{1, 2, 3, 4} {3, 4, 5, 6}

{6, 7}

1
2 3 4

5

6

7

.



Bases and Paths

The bases of a matroid are its maximal independent sets.

Theorem
R 7→ {i | the i-th step of R is north} is a bijection between P and
the set of bases of M[P ,Q].

Corollary

The number of bases of M[P ,Q] is |P|.
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The bases of a matroid are its maximal independent sets.

Theorem
R 7→ {i | the i-th step of R is north} is a bijection between P and
the set of bases of M[P ,Q].
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Catalan Matroids

The n-th Catalan matroid Mn is M[P ,Q] with

P = EEE · · ·E
︸ ︷︷ ︸

n

NNN · · ·N
︸ ︷︷ ︸

n

= EnNn

and
Q = ENENEN · · ·EN

︸ ︷︷ ︸

n pairs

= (EN)n.

.

. Theorem
The number of bases of Mn is the n-th
Catalan number

Cn =
1

n + 1

(
2n

n

)

.



Duality

.

.

.



Duality

The dual M∗ of M has {S − B | B is a basis of M} as its set of
bases.

Theorem
The class of lattice path
matroids is closed under
duality.

.

.
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Duality

The dual M∗ of M has {S − B | B is a basis of M} as its set of
bases.

Theorem
The class of lattice path
matroids is closed under
duality.

.

.

.

The class of transversal
matroids is not closed
under duality.

a

b

c d

e

f e f

c d

a b

.



Catalan Matroids are Isomorphic to their Duals

Catalan matroids are self-dual, but not identically self-dual.

dual

flip about y = x

isomorphism

rotate

.

.

Rotating the diagram 180◦ gives an isomorphic matroid; the
natural order of the elements is reversed.



Deletion

Given a matroid M on S and x ∈ S , the deletion M\x is given by
(i) ground set: S − x
(ii) independent sets: independent sets I of M with x 6∈ I .

If x is not in all bases of M, then the bases of M\x are the bases
B of M with x 6∈ B .



Deletion

Given a matroid M on S and x ∈ S , the deletion M\x is given by
(i) ground set: S − x
(ii) independent sets: independent sets I of M with x 6∈ I .

If x is not in all bases of M, then the bases of M\x are the bases
B of M with x 6∈ B .

x

x

x

x

x

x

forbidden step

allowed step

x

.

.

.



Contraction

Contraction is the dual operation: M/x = (M∗\x)∗.

If {x} is independent, then the independent sets of M/x are the
sets I for which I ∪ x is independent.

Geometrically, M/x projects M\x onto a hyperplane from the
perspective of the point x .

M

x

. .

.

.

M/x



Minors

Minors result from any combination of deletions and contractions.

Theorem
The class of lattice path matroids is closed under minors.



Minors

Minors result from any combination of deletions and contractions.

Theorem
The class of lattice path matroids is closed under minors.

The class of transversal matroids is not closed under contraction.

M

x

. .

.

.

M/x



Matroid Invariants — The Tutte Polynomial

The rank of X ⊆ S is r(X ) = max{ |I | : I ⊆ X , I independent}.
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The rank of X ⊆ S is r(X ) = max{ |I | : I ⊆ X , I independent}.

The Tutte polynomial of M is

T (M; x , y) =
∑

A⊆S

(x − 1)r(S)−r(A)(y − 1)|A|−r(A).

From the Tutte polynomial, we get
◦ chromatic and flow polynomials of graphs,
◦ weight enumerators of linear codes,
◦ information about arrangements of hyperplanes,
◦ Jones polynomials of alternating knots,
◦ the partition function of the Ising model,
◦ and . . . information about lattice paths.
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◦ chromatic and flow polynomials of graphs,
◦ weight enumerators of linear codes,
◦ information about arrangements of hyperplanes,
◦ Jones polynomials of alternating knots,
◦ the partition function of the Ising model,
◦ and . . .

One reason the Tutte polynomial is so central is that it is the
universal deletion-contraction invariant: any matroid invariant that
satisfies a deletion-contraction rule,

e.g., χ(M; x) = χ(M\e; x) − χ(M/e; x) when e is not a coloop,
is an evaluation of the Tutte polynomial.



Matroid Invariants — The Tutte Polynomial

◦ chromatic and flow polynomials of graphs,
◦ weight enumerators of linear codes,
◦ information about arrangements of hyperplanes,
◦ Jones polynomials of alternating knots,
◦ the partition function of the Ising model,
◦ and . . .

One reason the Tutte polynomial is so central is that it is the
universal deletion-contraction invariant: any matroid invariant that
satisfies a deletion-contraction rule,

e.g., χ(M; x) = χ(M\e; x) − χ(M/e; x) when e is not a coloop,
is an evaluation of the Tutte polynomial.

For (transversal) matroids, computing T (M; x , y) is #P hard.

Tutte polynomials of lattice path matroids are atypically accessible.



The Tutte Polynomial of a Catalan Matroid

T (M5; x , y) is

xy









5x + 5x2 +3x3 + x4

+ 5y + 5xy +3x2y + x3y
+ 5y2 +3xy2 + x2y2

+3y3 + xy3

+ y4









Sum of the coefficients: 42
Sum of the coefficients in the first “row”: 14



The Tutte Polynomial of a Catalan Matroid

T (M5; x , y) is

xy









5x + 5x2 +3x3 + x4

+ 5y + 5xy +3x2y + x3y
+ 5y2 +3xy2 + x2y2

+3y3 + xy3

+ y4









Sum of the coefficients: 42
Sum of the coefficients in the first “row”: 14

Catalan numbers: 1, 1, 2, 5, 14, 42, 132, . . .



The Tutte Polynomial of Another Catalan Matroid

T (M6; x , y) is

xy











14x + 14x2 +9x3 +4x4 + x5

+ 14y + 14xy +9x2y +4x3y + x4y
+ 14y2 +9xy2 +4x2y2 + x3y2

+9y3 +4xy3 + x2y3

+4y4 +xy4

+ y5











Sum of the coefficients: 132
Sum of the coefficients in the first “row”: 42

Catalan numbers: 1, 1, 2, 5, 14, 42, 132, . . .



Reformulation of the Tutte Polynomial via Basis Activities

Linearly order S .
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that is, replacing b by a lesser element never gives a basis;
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Reformulation of the Tutte Polynomial via Basis Activities

Linearly order S .

The element b of a basis B is internally active for B if
b = min{x : (B − b) ∪ x is a basis};

that is, replacing b by a lesser element never gives a basis;

i(B) is the number of such b.

The element a 6∈ B is externally active for B if
a = min{x : (B ∪ a)− x is a basis};

that is, replacing a lesser element by a never gives a basis;

e(B) is the number of such a.

Theorem

T (M; x , y) =
∑

bases B

x i(B)y e(B)

(Crapo, 1967)



A Corollary of the Reformulation of the Tutte Polynomial

T (M; x , y) =
∑

bases B

x i(B)y e(B)

Corollary

T (M; 1, 1) is the number of bases of M.



More Corollaries of the Reformulation of the Tutte Polynomial

Internally active: b = min{x : (B − b) ∪ x is a basis}.

Externally active: a = min{x : (B ∪ a)− x is a basis}.

Lemma
The element b is internally active for B in M
if and only if b is externally active for S − B in M∗.
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More Corollaries of the Reformulation of the Tutte Polynomial

Internally active: b = min{x : (B − b) ∪ x is a basis}.

Externally active: a = min{x : (B ∪ a)− x is a basis}.

Lemma
The element b is internally active for B in M
if and only if b is externally active for S − B in M∗.

Corollary

T (M∗; x , y) = T (M; y , x)

Corollary

If M is self-dual, then T (M; x , y) is symmetric in x and y.



The Lattice Path Interpretation of Activities

Order: 1 < 2 < · · · < m + r .

Internally active: b = min{x : (B − b) ∪ x is a basis}.

Theorem
The internally active elements in B correspond to the north steps
of the associated path PB that are on the upper bounding path Q.
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The Lattice Path Interpretation of Activities

Order: 1 < 2 < · · · < m + r .

Internally active: b = min{x : (B − b) ∪ x is a basis}.

Theorem
The internally active elements in B correspond to the north steps
of the associated path PB that are on the upper bounding path Q.

P

Q

.

.

Corollary

e(B) is the number of east steps that PB shares with the lower
bounding path P.



Coefficients of Tutte Polynomials of Lattice Path Matroids

Theorem
The coefficient of x iy j in the Tutte polynomial of M[P ,Q] is the
number of paths in P sharing i north steps with Q and j east steps
with P.

A basis, realized as a
path, that contributes
x2y to the Tutte
polynomial. P

Q

.

.

x

x
y



A Polynomial-Time Algorithm for Computing Tutte Polynomials of Lattice Path Matroids

The recurrence to compute Tutte polynomials for lattice path
matroids:

f(x, y) y f(x, y)

f(x, y)

x f(x, y)f(x, y)

g(x, y)

f(x, y) + g(x, y)

1 y y2

x
x + y

x2 + xy

x + y + y2

x2 + xy + x + y + y2

Corollary

The Tutte polynomial of a lattice path matroid can be computed
in polynomial time.



A Change of Focus:

A Brief Overview of Some of the Many Research

Directions in Matroid Theory



Representability

A matroid is representable over a field F if it is isomorphic to the
matroid induced on the columns of a matrix over F by linear
independence.



Representability

A matroid is representable over a field F if it is isomorphic to the
matroid induced on the columns of a matrix over F by linear
independence.

Theorem
A transversal matroid is
representable over every
sufficiently large field, in
particular, over every
infinite field.

(Piff and Welsh, 1970)

matroids

matroids representable
over some field

matroids
representable over R

transversal
matroids

cotransversal
matroids

lattice
path

matroids

.

.

.

.



Representability Is Conjectured To Be Rare

Conjecture

Asymptotically, almost no matroid is representable over any field.
That is, the limit of the ratio

# of matroids on {1, . . . , n} having matrix representations

# of matroids on {1, . . . , n}

is 0 as n goes to ∞.
(Mayhew, Newman, Welsh, and Whittle, 2011.)



Representability Is Conjectured To Be Rare

Conjecture

Asymptotically, almost no matroid is representable over any field.
That is, the limit of the ratio

# of matroids on {1, . . . , n} having matrix representations

# of matroids on {1, . . . , n}

is 0 as n goes to ∞.
(Mayhew, Newman, Welsh, and Whittle, 2011.)

Theorem
For a fixed field F, asymptotically, almost no matroid is
representable over F. (Ronyai, Babai, Ganapathy, 2001.)



A Matroid That Cannot Be Represented Over Any Field

The matroid below is the Vámos matroid.

Its independent sets are the sets of size at most four except
{a, a′, c , c ′}, {a, a′, d , d ′}, {b, b′, c , c ′}, {b, b′, d , d ′}, {c , c ′, d , d ′}.
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The Problem of Characterizing Representable Matroids

If M is representable over F, then so are its minors.

One way to characterize the matroids are representable over F is to
find the minor-minimal matroids that are not.

These minor-minimal obstructions are the excluded minors.



The Problem of Characterizing Representable Matroids

If M is representable over F, then so are its minors.

One way to characterize the matroids are representable over F is to
find the minor-minimal matroids that are not.

These minor-minimal obstructions are the excluded minors.

Theorem
A matroid is representable over F2 (binary)
iff it does not have U2,4 as a minor.

(Tutte, 1958)
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The Problem of Characterizing Representable Matroids

If M is representable over F, then so are its minors.

One way to characterize the matroids are representable over F is to
find the minor-minimal matroids that are not.

These minor-minimal obstructions are the excluded minors.

Theorem
A matroid is representable over F2 (binary)
iff it does not have U2,4 as a minor.

(Tutte, 1958)

U2,4

. ..

Theorem
A matroid is representable over all fields iff
it has none of U2,4, F7, and F ∗

7 as minors.
(Tutte, 1958)

F7

. .

.



More Representability Results

Theorem
The excluded minors for representability over F3 (ternary matroids)
are U2,5, U3,5, F7, and F ∗

7 .
(Reid, 1972, unpublished; Seymour, 1979; Bixby, 1979)
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More Representability Results

Theorem
The excluded minors for representability over F3 (ternary matroids)
are U2,5, U3,5, F7, and F ∗

7 .
(Reid, 1972, unpublished; Seymour, 1979; Bixby, 1979)

Geelen, Gerards, and Kapoor (2000) proved the excluded minor
characterization of representability over F4.

Currently, over 500 excluded minors for representability over F5 are
known.



Rota’s conjecture (1971) has now been proven

Theorem
If F is a finite field, then there are only finitely many excluded
minors for representability over F.

(Geelen, Gerards, Whittle, announced 2013)



The Excluded Minors for Lattice Path Matroids

The class of lattice path matroids is minor-closed;
the (infinitely many) excluded minors are known. (Bonin, 2010)

A3

.
B2,2

B3,2 C4,2 D4 E4

.

R4

R3

W3 W3



Infinite Antichains and Another Major Recent Advance

The Graph Minors Theorem

In any infinite set of (finite) graphs, some graph is isomorphic to a
minor of another. (N. Robertson and P. Seymour)
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In any infinite set of (finite) graphs, some graph is isomorphic to a
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Infinite Antichains and Another Major Recent Advance

The Graph Minors Theorem

In any infinite set of (finite) graphs, some graph is isomorphic to a
minor of another. (N. Robertson and P. Seymour)

There are infinite antichains of matroids.

.

.

.

The Matroid Minors Theorem
For any fixed finite field F, in any infinite set of F-representable
matroids, some matroid is isomorphic to a minor of another.

(Geelen, Gerards, Whittle, announced, 2013)



More Directions in Matroid Theory — Extremal Matroid Theory

Theorem
Let ex(H; n) be the maximum number of edges in a simple graph
on n vertices that has no H-subgraph. Then

lim
n→∞

ex(H; n)
(n
2

) = 1−
1

χ(H) − 1
.

(Erdös and Stone, 1946)



More Directions in Matroid Theory — Extremal Matroid Theory

Theorem
Let ex(H; n) be the maximum number of edges in a simple graph
on n vertices that has no H-subgraph. Then

lim
n→∞

ex(H; n)
(n
2

) = 1−
1

χ(H) − 1
.

(Erdös and Stone, 1946)

Theorem
Let exq(H; n) be the maximum number of elements in a simple
Fq-representable matroid that has no H-restriction. Then

lim
n→∞

exq(H; n)
qn−1
q−1

= 1− q1−c

where c is the minimum number so that H can be partitioned into
c restrictions, each of which is affine over Fq. (Geelen and Nelson, 2015)



More Directions in Matroid Theory — Extremal Matroid Theory

Theorem
Let C be any minor-closed class of matroids. Either

1. C contains all simple rank-2 matroids, or

2. there is a c ∈ R with |E (M)| ≤ c · r(M) for all simple M in C,
or

3. C contains all graphic matroids and there is a c ∈ R with
|E (M)| ≤ c · (r(M))2 for all simple M in C, or

4. there is a prime power q and a c ∈ R so that C contains all
Fq-representable matroids and |E (M)| ≤ c · qr(M) for all
simple M in C.

(Geelen, Kung, and Whittle, 2008)



More Directions in Matroid Theory — Asymptotic Properties

Theorem
Almost all matroids are 3-connected (Oxley, Semple, Warshauer, and Welsh)
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We have no model of a random matroid.

A matroid M is paving if r(X ) = |X | whenever |X | < r(M).
It is sparse paving if M and M∗ are paving.

Conjecture

Almost all matroids are sparse paving.



More Directions in Matroid Theory — Asymptotic Properties

Theorem
Almost all matroids are 3-connected (Oxley, Semple, Warshauer, and Welsh)

We have no model of a random matroid.

A matroid M is paving if r(X ) = |X | whenever |X | < r(M).
It is sparse paving if M and M∗ are paving.

Conjecture

Almost all matroids are sparse paving.

Theorem
Almost all triangle-free graphs are bipartite.

(Erdös, Kleitman, and Rothschild, 1976)

Conjecture

Almost all binary matroids with no three points on a line are affine.



More Directions in Matroid Theory

Constructions.

Special classes of matroids.
Binary matroids, graphic matroids, regular matroids, near-regular
matroids, transversal matroids, base-orderable matroids, . . .

Algebraic matroids.

Applications of the matroid structure theorem (from the matroid
minors project).

Tutte polynomials, specializations, and generalizations.

Unimodality.

Generalizations, matroids with extra structure, and variations:
greedoids, jump systems, Coxeter matroids, flag matroids,
polymatroids, bimatroids, oriented matroids, antimatroids, . . .

. . . and much, much more.



Thank you for listening.


