An Introduction to Matroid Theory Through Lattice Paths

Joseph E. Bonin

The George Washington University

These slides and related papers are available at http://home.gwu.edu/~jbonin/

The material on lattice path matroids in the first part of this talk is based on joint work with

Anna de Mier and Marc Noy

Departament de Matemátiques
Universitat Politècnica de Catalunya, Barcelona

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

$(0,0)$

Lattice Paths

Lattice paths are sequences of east and north steps of unit length, starting at $(0,0)$.

Sets of Lattice Paths

Fix lattice paths P and Q from $(0,0)$ to (m, r) with P never going above Q.

Let \mathcal{P} be the set of lattice paths from $(0,0)$ to (m, r) that stay in the region that P and Q bound.

Sets of Lattice Paths

Fix lattice paths P and Q from $(0,0)$ to (m, r) with P never going above Q.

Let \mathcal{P} be the set of lattice paths from $(0,0)$ to (m, r) that stay in the region that P and Q bound.

What is $|\mathcal{P}|$?

A Simple Example

For $P=E^{m} N^{r}$ and $Q=N^{r} E^{m}$, we get

$$
|\mathcal{P}|=\binom{m+r}{r} .
$$

Finding the Number of Paths Recursively

$|\mathcal{P}|$ can be computed recursively.

Finding the Number of Paths Recursively

$|\mathcal{P}|$ can be computed recursively.

Finding the Number of Paths Recursively

$|\mathcal{P}|$ can be computed recursively.

Finding the Number of Paths Recursively

$|\mathcal{P}|$ can be computed recursively.

$1,1,2,5,14,42,132,429,1430, \ldots$

$$
\begin{aligned}
& C_{n}=\frac{1}{n+1}\binom{2 n}{n} \\
& \\
& 2 \\
& \hline
\end{aligned}
$$

Paths as Transversals of Set Systems

Each path in \mathcal{P} is determined by its north steps.

The lattice path with north steps
1, 3, 7, 9.

Paths as Transversals of Set Systems

Each path in \mathcal{P} is determined by its north steps.

The lattice path with north steps
1, 3, 7, 9.

Label each north step by its position in each path it is in.

Paths as Transversals of Set Systems

Each path in \mathcal{P} is determined by its north steps.

The lattice path with north steps
1, 3, 7, 9.

Label each north step by its position in each path it is in.
$N_{1}=\{1,2,3,4\}$

Paths as Transversals of Set Systems

Each path in \mathcal{P} is determined by its north steps.

The lattice path with north steps
1, 3, 7, 9.

Label each north step by its position in each path it is in.
$N_{1}=\{1,2,3,4\}$
$N_{2}=\{2,3,4,5,6\}$

Paths as Transversals of Set Systems

Each path in \mathcal{P} is determined by its north steps.

The lattice path with north steps
1, 3, 7, 9.

Label each north step by its position in each path it is in.

$$
\begin{aligned}
& N_{1}=\{1,2,3,4\} \\
& N_{2}=\{2,3,4,5,6\} \\
& N_{3}=\{4,5,6,7\}
\end{aligned}
$$

Paths as Transversals of Set Systems

Each path in \mathcal{P} is determined by its north steps.

The lattice path with north steps
1, 3, 7, 9.

Label each north step by its position in each path it is in.
$N_{1}=\{1,2,3,4\}$
$N_{2}=\{2,3,4,5,6\}$
$N_{3}=\{4,5,6,7\}$
$N_{4}=\{6,7,8,9,10\}$

Paths as Transversals of Set Systems

Each path in \mathcal{P} is determined by its north steps.

The lattice path with north steps
1, 3, 7, 9.

Label each north step by its position in each path it is in.
$N_{1}=\{1,2,3,4\}$
$N_{2}=\{2,3,4,5,6\}$
$N_{3}=\{4,5,6,7\}$
$N_{4}=\{6,7,8,9,10\}$
For $1 \leq i \leq r$, let N_{i} be the set
of all labels on the north steps
in row i of the diagram (from the bottom).

Set Systems, Transversals, and Partial Transversals

A set system is a (finite) multiset $\mathcal{A}=\left(A_{j}: j \in J\right)$ of subsets of a (finite) set S.

Example: $S=\{a, b, c, d, e, f, g, h\}$ and $\mathcal{A}=(A, B, C, D)$ with $A=\{a, b, e, f, h\}, \quad B=\{b, c, g\}, \quad C=\{d, e, g, h\}, D=\{d, f, h\}$

Set Systems, Transversals, and Partial Transversals

A set system is a multiset $\mathcal{A}=\left(A_{j}: j \in J\right)$ of subsets of a set S.
$A=\{a, b, e, f, h\}, \quad B=\{b, c, g\}, \quad C=\{d, e, g, h\}, \quad D=\{d, f, h\}$

A transversal of \mathcal{A} is a set $\left\{x_{j}: j \in J\right\}$ of $|J|$ distinct elements with $x_{j} \in A_{j}$ for all $j \in J$.

Some transversals: $\{a, b, e, h\},\{e, f, g, h\}$.
$A=\{a, b, \mathrm{e}, f, h\}, \quad B=\{b, c, \mathrm{~g}\}, \quad C=\{d, e, g, \mathrm{~h}\}, \quad D=\{d, \mathrm{f}, \mathrm{h}\}$
$A=\{a, b, e, f, h\}, \quad B=\{b, c, g\}, \quad C=\{d, \mathrm{e}, g, h\}, D=\{d, f, \mathrm{~h}\}$

Caution: a transversal is just a set whose elements can be matched with the sets in \mathcal{A}; the matchings are not part of the transversal.

Set Systems, Transversals, and Partial Transversals

$A=\{a, b, e, f, h\}, \quad B=\{b, c, g\}, \quad C=\{d, e, g, h\}, \quad D=\{d, f, h\}$

A transversal of \mathcal{A} is a set $\left\{x_{j}: j \in J\right\}$ of $|J|$ distinct elements with $x_{j} \in A_{j}$ for all $j \in J$.

A partial transversal of \mathcal{A} is a transversal of some subsystem $\left(A_{k}: k \in K\right)$ with $K \subseteq J$.

Some partial transversals: $\{a, b, e\},\{c\}, \emptyset$.

Set Systems, Transversals, and Partial Transversals

$A=\{a, b, e, f, h\}, \quad B=\{b, c, g\}, \quad C=\{d, e, g, h\}, \quad D=\{d, f, h\}$

A transversal of \mathcal{A} is a set $\left\{x_{j}: j \in J\right\}$ of $|J|$ distinct elements with $x_{j} \in A_{j}$ for all $j \in J$.

A partial transversal of \mathcal{A} is a transversal of some subsystem $\left(A_{k}: k \in K\right)$ with $K \subseteq J$.

Some partial transversals: $\{a, b, e\},\{c\}, \emptyset$.

Some sets that are not partial transversals: $\{a, b, c\},\{a, b, e, g\}$.

Matrix Perspective on Set Systems and Partial Transversals

$$
A=\{a, b, e, f, h\}, \quad B=\{b, c, g\}, \quad C=\{d, e, g, h\}, \quad D=\{d, f, h\}
$$

A
B
C
$D$$\left(\begin{array}{llllllll}a & b & c & d & e & f & g & h \\ * & * & 0 & 0 & * & * & 0 & * \\ 0 & * & * & 0 & 0 & 0 & * & 0 \\ 0 & 0 & 0 & * & * & 0 & * & * \\ 0 & 0 & 0 & * & 0 & * & 0 & *\end{array}\right)$

Matrix Perspective on Set Systems and Partial Transversals

$$
A=\{a, b, e, f, h\}, \quad B=\{b, c, g\}, \quad C=\{d, e, g, h\}, \quad D=\{d, f, h\}
$$

A
B
C
$D$$\left(\begin{array}{cccccccc}* & b & c & d & e & f & g & h\end{array} \quad \begin{array}{ccccccc}b & e & g & h \\ 0 & * & * & 0 & 0 & 0 & * \\ 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & * & 0 & * & 0 \\ *\end{array}\right) \quad\left(\begin{array}{ccc}x_{A, b} & x_{A, e} & 0 \\ x_{B, b} & 0 & x_{B, g} \\ 0 & x_{A, h} \\ 0 & 0 & x_{C, e} \\ x_{C, g} & x_{C, h} \\ 0 & 0 & x_{D, h}\end{array}\right)$
*s are algebraically independent.

Matrix Perspective on Set Systems and Partial Transversals

$$
A=\{a, b, e, f, h\}, \quad B=\{b, c, g\}, \quad C=\{d, e, g, h\}, \quad D=\{d, f, h\}
$$

A
B
C
$D$$\left(\begin{array}{cccccccc}* & b & c & d & e & f & g & h\end{array} \quad \begin{array}{ccccccc}b & e & g & h \\ 0 & * & * & 0 & 0 & 0 & * \\ 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & * & 0 & * & 0 \\ *\end{array}\right) \quad\left(\begin{array}{ccc}x_{A, b} & x_{A, e} & 0 \\ x_{B, b} & 0 & x_{B, g} \\ 0 & x_{A, h} \\ 0 & 0 & x_{C, e} \\ 0 & x_{C, g} & x_{C, h} \\ 0 & x_{D, h}\end{array}\right)$
*s are algebraically independent.
The determinant of this submatrix is

$$
-x_{A, b} x_{B, g} x_{C, e} x_{D, h}-x_{A, e} x_{B, b} x_{C, g} x_{D, h}
$$

Matrix Perspective on Set Systems and Partial Transversals

$$
A=\{a, b, e, f, h\}, \quad B=\{b, c, g\}, \quad C=\{d, e, g, h\}, \quad D=\{d, f, h\}
$$

	a	b	c	d	e	f	g	h	b	e	g	h
A	*	*	0	0	*	*			${ }^{x_{A, b}}$	$x_{A, e}$	0	$x_{A, h}$
B	0	*	*	0	0	0	*	0	$x_{B, b}$	0	$x_{B, g}$	0
C	0	0	0	*	*	0	*	*	0	$x_{C, e}$	$x_{C, g}$	$x_{C, h}$
D	0	0	0	*	0	*	0	*	(0	0	0	$x_{D, h}$

*s are algebraically independent.
The determinant of this submatrix is

$$
-x_{A, b} x_{B, g} x_{C, e} x_{D, h}-x_{A, e} x_{B, b} x_{C, g} x_{D, h}
$$

Recall, $\operatorname{det}\left(a_{i, j}\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}$.

$$
\operatorname{det}\left(\begin{array}{cccc}
x_{A, b} & x_{A, e} & 0 & x_{A, h} \\
x_{B, b} & 0 & x_{B, g} & 0 \\
0 & x_{C, e} & x_{C, g} & x_{C, h} \\
0 & 0 & 0 & x_{D, h}
\end{array}\right)=-x_{A, b} x_{B, g} x_{C, e} x_{D, h}-x_{A, e} x_{B, b} x_{C, g} x_{D, h}
$$

The determinant of a square submatrix with rows indexed by R and columns indexed by C is the sum, over all matchings $\phi: C \rightarrow R$, of the product arising from the matching, i.e., $\pm \prod_{i \in C} x_{\phi(i), i}$.
(Non-matchings (where $i \notin \phi(i)$ for some $i \in C$) have a zero in the corresponding product and so make no contribution.)

The nonzero entries are algebraically independent, so there is no cancellation, so partial transversals correspond to linearly independent sets of columns.

Matroids and Transversal Matroids

A matroid M is a finite set S and a set \mathcal{I} of subsets of S, the independent sets, such that
(i) $\emptyset \in \mathcal{I}$,
(ii) if $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$, and
(iii) if $A, B \in \mathcal{I}$ and $|B|<|A|$, then $B \cup x \in \mathcal{I}$ for some $x \in A-B$.
(Whitney, 1935)
Ex. Let the elements of S label the columns of a matrix over a field \mathbb{F}.
A subset A of S is in \mathcal{I} iff the corresponding columns are distinct and linearly independent.

A matroid M is a finite set S and a set \mathcal{I} of subsets of S, the independent sets, such that
(i) $\emptyset \in \mathcal{I}$,
(ii) if $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$, and
(iii) if $A, B \in \mathcal{I}$ and $|B|<|A|$, then $B \cup x \in \mathcal{I}$ for some $x \in A-B$.
(Whitney, 1935)
Ex. Let the elements of S label the columns of a matrix over a field \mathbb{F}.
A subset A of S is in \mathcal{I} iff the corresponding columns are distinct and linearly independent.

Theorem
The partial transversals of a set system \mathcal{A} are the independent sets of a matroid.
(Edmonds and Fulkerson, 1965)
\mathcal{A} is a presentation of this transversal matroid.

A Geometric Representation of a Transversal Matroid on a Simplex

Each transversal matroid has a representing matrix in which all entries are nonnegative real numbers.

Scale each nonzero column so the column sum is 1 .
A
B
C
$D$$\left(\begin{array}{cccccccc}a & b & c & d & e & f & g & h \\ 0 & p & 0 & 0 & r & s & 0 & u \\ 0 & 1-p & 1 & 0 & 0 & 0 & t & 0 \\ 0 & 0 & 0 & q & 1-r & 0 & 1-t & v \\ 0 & 0 & 0 & 1-q & 0 & 1-s & 0 & 1-u-v\end{array}\right)$

Nonzero columns in such a matrix are points in the convex hull of the standard basis vectors, i.e., a simplex.

A Geometric Perspective on Transversal Matroids

Theorem
A matroid is transversal if and only if it has a geometric realization on a simplex with all dependence arising from the structure of the simplex.
(Brylawski, 1975)

Respecting the structure of the simplex means, for example, if $\{a, b, c\}$ is dependent but all of its 2-subsets are independent, then a, b, c must be on an edge of the simplex.

Let P and Q be lattice paths from $(0,0)$ to (m, r) with P never going above Q.

Let \mathcal{P} and $N_{1}, N_{2}, \ldots, N_{r}$ be as before.

$$
\begin{aligned}
& N_{4}=\{6,7,8,9,10\} \\
& N_{3}=\{4,5,6,7\} \\
& N_{2}=\{2,3,4,5,6\} \\
& N_{1}=\{1,2,3,4\}
\end{aligned}
$$

The matroid $M[P, Q]$ is the transversal matroid on $\{1,2, \ldots, m+r\}$ with presentation $\left(N_{1}, N_{2}, \ldots, N_{r}\right)$.

A lattice path matroid is a matroid that is isomorphic to $M[P, Q]$ for some such P and Q.

An Example in Detail

$$
\begin{aligned}
& N_{3}=\{6,7\} \\
& N_{2}=\{3,4,5,6\}
\end{aligned}
$$

$$
N_{1}=\{1,2,3,4\}
$$

$$
\text { (6,7\}}
$$

Bases and Paths

The bases of a matroid are its maximal independent sets.

Theorem
$R \mapsto\{i \mid$ the i-th step of R is north $\}$ is a bijection between \mathcal{P} and the set of bases of $M[P, Q]$.

Corollary
The number of bases of $M[P, Q]$ is $|\mathcal{P}|$.

Bases and Paths

The bases of a matroid are its maximal independent sets.

Theorem
$R \mapsto\{i \mid$ the i-th step of R is north $\}$ is a bijection between \mathcal{P} and the set of bases of $M[P, Q]$.

Bases and Paths

The bases of a matroid are its maximal independent sets.

Theorem
$R \mapsto\{i \mid$ the i-th step of R is north $\}$ is a bijection between \mathcal{P} and the set of bases of $M[P, Q]$.

Bases and Paths

The bases of a matroid are its maximal independent sets.

Theorem
$R \mapsto\{i \mid$ the i-th step of R is north $\}$ is a bijection between \mathcal{P} and the set of bases of $M[P, Q]$.

The n-th Catalan matroid M_{n} is $M[P, Q]$ with
and

$$
P=\underbrace{E E E \cdots E}_{n} \underbrace{N N N \cdots N}_{n}=E^{n} N^{n}
$$

$$
Q=\underbrace{E N E N E N \cdots E N}_{n \text { pairs }}=(E N)^{n}
$$

Theorem
The number of bases of M_{n} is the n-th Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Duality

Duality

The dual M^{*} of M has $\{S-B \mid B$ is a basis of $M\}$ as its set of bases.

Theorem
The class of lattice path matroids is closed under duality.

Duality

The dual M^{*} of M has $\{S-B \mid B$ is a basis of $M\}$ as its set of bases.

Theorem
The class of lattice path matroids is closed under duality.

The class of transversal matroids is not closed under duality.

Catalan matroids are self-dual, but not identically self-dual.

Rotating the diagram 180° gives an isomorphic matroid; the natural order of the elements is reversed.

Deletion

Given a matroid M on S and $x \in S$, the deletion $M \backslash x$ is given by
(i) ground set: $S-x$
(ii) independent sets: independent sets I of M with $x \notin I$.

If x is not in all bases of M, then the bases of $M \backslash x$ are the bases
B of M with $x \notin B$.

Deletion

Given a matroid M on S and $x \in S$, the deletion $M \backslash x$ is given by
(i) ground set: $S-x$
(ii) independent sets: independent sets I of M with $x \notin I$.

If x is not in all bases of M, then the bases of $M \backslash x$ are the bases
B of M with $x \notin B$.

forbidden step
allowed step

Contraction is the dual operation: $M / x=\left(M^{*} \backslash x\right)^{*}$.
If $\{x\}$ is independent, then the independent sets of M / x are the sets / for which $I \cup x$ is independent.

Geometrically, M / x projects $M \backslash x$ onto a hyperplane from the perspective of the point x.

M

M / x

Minors

Minors result from any combination of deletions and contractions.

Theorem
The class of lattice path matroids is closed under minors.

Minors

Minors result from any combination of deletions and contractions.

Theorem
The class of lattice path matroids is closed under minors.

The class of transversal matroids is not closed under contraction.

The rank of $X \subseteq S$ is $r(X)=\max \{|I|: I \subseteq X, I$ independent $\}$.

The rank of $X \subseteq S$ is $r(X)=\max \{|I|: I \subseteq X, I$ independent $\}$.

The Tutte polynomial of M is

$$
T(M ; x, y)=\sum_{A \subseteq S}(x-1)^{r(S)-r(A)}(y-1)^{|A|-r(A)}
$$

Matroid Invariants - The Tutte Polynomial

The rank of $X \subseteq S$ is $r(X)=\max \{|I|: I \subseteq X, I$ independent $\}$.

The Tutte polynomial of M is

$$
T(M ; x, y)=\sum_{A \subseteq S}(x-1)^{r(S)-r(A)}(y-1)^{|A|-r(A)}
$$

From the Tutte polynomial, we get

- chromatic and flow polynomials of graphs,
- weight enumerators of linear codes,
- information about arrangements of hyperplanes,
- Jones polynomials of alternating knots,
- the partition function of the Ising model,
- and ... information about lattice paths.
- chromatic and flow polynomials of graphs,
- weight enumerators of linear codes,
- information about arrangements of hyperplanes,
- Jones polynomials of alternating knots,
- the partition function of the Ising model,
- and...

One reason the Tutte polynomial is so central is that it is the universal deletion-contraction invariant: any matroid invariant that satisfies a deletion-contraction rule,
e.g., $\chi(M ; x)=\chi(M \backslash e ; x)-\chi(M / e ; x)$ when e is not a coloop, is an evaluation of the Tutte polynomial.

- chromatic and flow polynomials of graphs,
- weight enumerators of linear codes,
- information about arrangements of hyperplanes,
- Jones polynomials of alternating knots,
- the partition function of the Ising model,
- and...

One reason the Tutte polynomial is so central is that it is the universal deletion-contraction invariant: any matroid invariant that satisfies a deletion-contraction rule,
e.g., $\chi(M ; x)=\chi(M \backslash e ; x)-\chi(M / e ; x)$ when e is not a coloop, is an evaluation of the Tutte polynomial.

For (transversal) matroids, computing $T(M ; x, y)$ is \#P hard.
Tutte polynomials of lattice path matroids are atypically accessible.

The Tutte Polynomial of a Catalan Matroid

$T\left(M_{5} ; x, y\right)$ is

$$
x y\left(\begin{array}{ccccc}
& \mathbf{5 x} & +\mathbf{5} x^{2} & +3 x^{3} & +x^{4} \\
+\mathbf{5 y} & +\mathbf{5 x y} & +3 x^{2} y & +x^{3} y & \\
+\mathbf{5} y^{2} & +3 x y^{2} & +x^{2} y^{2} & & \\
+3 y^{3} & +x y^{3} & & & \\
+y^{4} & & &
\end{array}\right)
$$

Sum of the coefficients: 42
Sum of the coefficients in the first "row": 14

The Tutte Polynomial of a Catalan Matroid

$T\left(M_{5} ; x, y\right)$ is

$$
x y\left(\begin{array}{ccccc}
& \mathbf{5 x} & +\mathbf{5} x^{2} & +3 x^{3} & +x^{4} \\
+\mathbf{5 y} & +\mathbf{5 x y} & +3 x^{2} y & +x^{3} y & \\
+\mathbf{5} y^{2} & +3 x y^{2} & +x^{2} y^{2} & & \\
+3 y^{3} & +x y^{3} & & & \\
+y^{4} & & &
\end{array}\right)
$$

Sum of the coefficients: 42
Sum of the coefficients in the first "row": 14

Catalan numbers: $1,1,2,5,14,42,132, \ldots$

The Tutte Polynomial of Another Catalan Matroid

$T\left(M_{6} ; x, y\right)$ is

$$
x y\left(\begin{array}{llllll}
& 14 x & +14 x^{2} & +9 x^{3} & +4 x^{4} & +x^{5} \\
+14 y & +14 x y & +9 x^{2} y & +4 x^{3} y & +x^{4} y & \\
+\mathbf{1 4 y} & +9 x y^{2} & +4 x^{2} y^{2} & +x^{3} y^{2} & & \\
+9 y^{3} & +4 x y^{3} & +x^{2} y^{3} & & & \\
+4 y^{4} & +x y^{4} & & & & \\
+y^{5} & & & &
\end{array}\right)
$$

Sum of the coefficients: 132
Sum of the coefficients in the first "row": 42

Catalan numbers: $1,1,2,5,14,42,132, \ldots$

Reformulation of the Tutte Polynomial via Basis Activities

Linearly order S.

Reformulation of the Tutte Polynomial via Basis Activities

Linearly order S.
The element b of a basis B is internally active for B if $b=\min \{x:(B-b) \cup x$ is a basis $\}$;
that is, replacing b by a lesser element never gives a basis;

Reformulation of the Tutte Polynomial via Basis Activities

Linearly order S.
The element b of a basis B is internally active for B if $b=\min \{x:(B-b) \cup x$ is a basis $\}$;
that is, replacing b by a lesser element never gives a basis; $i(B)$ is the number of such b.

Reformulation of the Tutte Polynomial via Basis Activities

Linearly order S.
The element b of a basis B is internally active for B if $b=\min \{x:(B-b) \cup x$ is a basis $\}$;
that is, replacing b by a lesser element never gives a basis; $i(B)$ is the number of such b.

The element $a \notin B$ is externally active for B if $a=\min \{x:(B \cup a)-x$ is a basis $\}$;
that is, replacing a lesser element by a never gives a basis;

Reformulation of the Tutte Polynomial via Basis Activities

Linearly order S.
The element b of a basis B is internally active for B if $b=\min \{x:(B-b) \cup x$ is a basis $\}$;
that is, replacing b by a lesser element never gives a basis; $i(B)$ is the number of such b.

The element $a \notin B$ is externally active for B if $a=\min \{x:(B \cup a)-x$ is a basis $\}$;
that is, replacing a lesser element by a never gives a basis; $e(B)$ is the number of such a.

Reformulation of the Tutte Polynomial via Basis Activities

Linearly order S.
The element b of a basis B is internally active for B if $b=\min \{x:(B-b) \cup x$ is a basis $\}$;
that is, replacing b by a lesser element never gives a basis; $i(B)$ is the number of such b.

The element $a \notin B$ is externally active for B if $a=\min \{x:(B \cup a)-x$ is a basis $\}$;
that is, replacing a lesser element by a never gives a basis; $e(B)$ is the number of such a.

Theorem

$$
T(M ; x, y)=\sum_{\text {bases } B} x^{i(B)} y^{e(B)}
$$

A Corollary of the Reformulation of the Tutte Polynomial

$$
T(M ; x, y)=\sum_{\text {bases } B} x^{i(B)} y^{e(B)}
$$

Corollary
$T(M ; 1,1)$ is the number of bases of M.

More Corollaries of the Reformulation of the Tutte Polynomial

Internally active: $b=\min \{x:(B-b) \cup x$ is a basis $\}$.
Externally active: $a=\min \{x:(B \cup a)-x$ is a basis $\}$.

Lemma
The element b is internally active for B in M
if and only if b is externally active for $S-B$ in M^{*}.

More Corollaries of the Reformulation of the Tutte Polynomial

Internally active: $b=\min \{x:(B-b) \cup x$ is a basis $\}$.
Externally active: $a=\min \{x:(B \cup a)-x$ is a basis $\}$.

Lemma
The element b is internally active for B in M
if and only if b is externally active for $S-B$ in M^{*}.

Corollary
$T\left(M^{*} ; x, y\right)=T(M ; y, x)$

More Corollaries of the Reformulation of the Tutte Polynomial

Internally active: $b=\min \{x:(B-b) \cup x$ is a basis $\}$.
Externally active: $a=\min \{x:(B \cup a)-x$ is a basis $\}$.

Lemma
The element b is internally active for B in M
if and only if b is externally active for $S-B$ in M^{*}.

Corollary
$T\left(M^{*} ; x, y\right)=T(M ; y, x)$

Corollary
If M is self-dual, then $T(M ; x, y)$ is symmetric in x and y.

Order: $1<2<\cdots<m+r$.
Internally active: $b=\min \{x:(B-b) \cup x$ is a basis $\}$.
Theorem
The internally active elements in B correspond to the north steps of the associated path P_{B} that are on the upper bounding path Q.

Order: $1<2<\cdots<m+r$.
Internally active: $b=\min \{x:(B-b) \cup x$ is a basis $\}$.
Theorem
The internally active elements in B correspond to the north steps of the associated path P_{B} that are on the upper bounding path Q.

Order: $1<2<\cdots<m+r$.
Internally active: $b=\min \{x:(B-b) \cup x$ is a basis $\}$.
Theorem
The internally active elements in B correspond to the north steps of the associated path P_{B} that are on the upper bounding path Q.

Order: $1<2<\cdots<m+r$.
Internally active: $b=\min \{x:(B-b) \cup x$ is a basis $\}$.
Theorem
The internally active elements in B correspond to the north steps of the associated path P_{B} that are on the upper bounding path Q.

Order: $1<2<\cdots<m+r$.
Internally active: $b=\min \{x:(B-b) \cup x$ is a basis $\}$.
Theorem
The internally active elements in B correspond to the north steps of the associated path P_{B} that are on the upper bounding path Q.

Corollary
$e(B)$ is the number of east steps that P_{B} shares with the lower bounding path P.

Coefficients of Tutte Polynomials of Lattice Path Matroids

Theorem
The coefficient of $x^{i} y^{j}$ in the Tutte polynomial of $M[P, Q]$ is the number of paths in \mathcal{P} sharing i north steps with Q and j east steps with P.

A basis, realized as a path, that contributes $x^{2} y$ to the Tutte polynomial.

The recurrence to compute Tutte polynomials for lattice path matroids:

Corollary
The Tutte polynomial of a lattice path matroid can be computed in polynomial time.

A Change of Focus:
 A Brief Overview of Some of the Many Research Directions in Matroid Theory

Representability

A matroid is representable over a field \mathbb{F} if it is isomorphic to the matroid induced on the columns of a matrix over \mathbb{F} by linear independence.

Representability

A matroid is representable over a field \mathbb{F} if it is isomorphic to the matroid induced on the columns of a matrix over \mathbb{F} by linear independence.

Theorem

A transversal matroid is representable over every sufficiently large field, in particular, over every infinite field.
(Piff and Welsh, 1970)

Representability Is Conjectured To Be Rare

Conjecture

Asymptotically, almost no matroid is representable over any field. That is, the limit of the ratio
$\frac{\# \text { of matroids on }\{1, \ldots, n\} \text { having matrix representations }}{\# \text { of matroids on }\{1, \ldots, n\}}$
is 0 as n goes to ∞.

Representability Is Conjectured To Be Rare

Conjecture

Asymptotically, almost no matroid is representable over any field.
That is, the limit of the ratio
$\frac{\# \text { of matroids on }\{1, \ldots, n\} \text { having matrix representations }}{\# \text { of matroids on }\{1, \ldots, n\}}$
is 0 as n goes to ∞.
(Mayhew, Newman, Welsh, and Whittle, 2011.)

Theorem
For a fixed field \mathbb{F}, asymptotically, almost no matroid is representable over \mathbb{F}.

A Matroid That Cannot Be Represented Over Any Field

The matroid below is the Vámos matroid.
Its independent sets are the sets of size at most four except $\left\{a, a^{\prime}, c, c^{\prime}\right\},\left\{a, a^{\prime}, d, d^{\prime}\right\},\left\{b, b^{\prime}, c, c^{\prime}\right\},\left\{b, b^{\prime}, d, d^{\prime}\right\},\left\{c, c^{\prime}, d, d^{\prime}\right\}$.

A Matroid That Cannot Be Represented Over Any Field

The matroid below is the Vámos matroid.
Its independent sets are the sets of size at most four except $\left\{a, a^{\prime}, c, c^{\prime}\right\},\left\{a, a^{\prime}, d, d^{\prime}\right\},\left\{b, b^{\prime}, c, c^{\prime}\right\},\left\{b, b^{\prime}, d, d^{\prime}\right\},\left\{c, c^{\prime}, d, d^{\prime}\right\}$.

A Matroid That Cannot Be Represented Over Any Field

The matroid below is the Vámos matroid.
Its independent sets are the sets of size at most four except $\left\{a, a^{\prime}, c, c^{\prime}\right\},\left\{a, a^{\prime}, d, d^{\prime}\right\},\left\{b, b^{\prime}, c, c^{\prime}\right\},\left\{b, b^{\prime}, d, d^{\prime}\right\},\left\{c, c^{\prime}, d, d^{\prime}\right\}$.

A Matroid That Cannot Be Represented Over Any Field

The matroid below is the Vámos matroid.
Its independent sets are the sets of size at most four except $\left\{a, a^{\prime}, c, c^{\prime}\right\},\left\{a, a^{\prime}, d, d^{\prime}\right\},\left\{b, b^{\prime}, c, c^{\prime}\right\},\left\{b, b^{\prime}, d, d^{\prime}\right\},\left\{c, c^{\prime}, d, d^{\prime}\right\}$.

A Matroid That Cannot Be Represented Over Any Field

The matroid below is the Vámos matroid.
Its independent sets are the sets of size at most four except $\left\{a, a^{\prime}, c, c^{\prime}\right\},\left\{a, a^{\prime}, d, d^{\prime}\right\},\left\{b, b^{\prime}, c, c^{\prime}\right\},\left\{b, b^{\prime}, d, d^{\prime}\right\},\left\{c, c^{\prime}, d, d^{\prime}\right\}$.

If M is representable over \mathbb{F}, then so are its minors.
One way to characterize the matroids are representable over \mathbb{F} is to find the minor-minimal matroids that are not.
These minor-minimal obstructions are the excluded minors.

The Problem of Characterizing Representable Matroids

If M is representable over \mathbb{F}, then so are its minors.
One way to characterize the matroids are representable over \mathbb{F} is to find the minor-minimal matroids that are not.

These minor-minimal obstructions are the excluded minors.
Theorem
A matroid is representable over \mathbb{F}_{2} (binary)
iff it does not have $U_{2,4}$ as a minor.

(Tutte, 1958)

The Problem of Characterizing Representable Matroids

If M is representable over \mathbb{F}, then so are its minors.
One way to characterize the matroids are representable over \mathbb{F} is to find the minor-minimal matroids that are not.

These minor-minimal obstructions are the excluded minors.
Theorem
A matroid is representable over \mathbb{F}_{2} (binary) iff it does not have $U_{2,4}$ as a minor.
(Tutte, 1958)

Theorem
A matroid is representable over all fields iff it has none of $U_{2,4}, F_{7}$, and F_{7}^{*} as minors.
(Tutte, 1958)

F_{7}

More Representability Results

Theorem
The excluded minors for representability over \mathbb{F}_{3} (ternary matroids)
are $U_{2,5}, U_{3,5}, F_{7}$, and F_{7}^{*}.
(Reid, 1972, unpublished; Seymour, 1979; Bixby, 1979)

More Representability Results

Theorem
The excluded minors for representability over \mathbb{F}_{3} (ternary matroids) are $U_{2,5}, U_{3,5}, F_{7}$, and F_{7}^{*}.
(Reid, 1972, unpublished; Seymour, 1979; Bixby, 1979)

Geelen, Gerards, and Kapoor (2000) proved the excluded minor characterization of representability over \mathbb{F}_{4}.

More Representability Results

Theorem
The excluded minors for representability over \mathbb{F}_{3} (ternary matroids) are $U_{2,5}, U_{3,5}, F_{7}$, and F_{7}^{*}.
(Reid, 1972, unpublished; Seymour, 1979; Bixby, 1979)

Geelen, Gerards, and Kapoor (2000) proved the excluded minor characterization of representability over \mathbb{F}_{4}.

Currently, over 500 excluded minors for representability over \mathbb{F}_{5} are known.

Rota's conjecture (1971) has now been proven

Theorem
If \mathbb{F} is a finite field, then there are only finitely many excluded minors for representability over \mathbb{F}.
(Geelen, Gerards, Whittle, announced 2013)

The class of lattice path matroids is minor-closed; the (infinitely many) excluded minors are known.

Infinite Antichains and Another Major Recent Advance

The Graph Minors Theorem
In any infinite set of (finite) graphs, some graph is isomorphic to a minor of another.
(N. Robertson and P. Seymour)

The Graph Minors Theorem
In any infinite set of (finite) graphs, some graph is isomorphic to a minor of another.
(N. Robertson and P. Seymour)

There are infinite antichains of matroids.

The Graph Minors Theorem
In any infinite set of (finite) graphs, some graph is isomorphic to a minor of another.

There are infinite antichains of matroids.

-••

The Matroid Minors Theorem
For any fixed finite field \mathbb{F}, in any infinite set of \mathbb{F}-representable matroids, some matroid is isomorphic to a minor of another.
(Geelen, Gerards, Whittle, announced, 2013)

More Directions in Matroid Theory - Extremal Matroid Theory

Theorem

Let ex $(H ; n)$ be the maximum number of edges in a simple graph on n vertices that has no H-subgraph. Then

$$
\lim _{n \rightarrow \infty} \frac{e x(H ; n)}{\binom{n}{2}}=1-\frac{1}{\chi(H)-1}
$$

(Erdös and Stone, 1946)

More Directions in Matroid Theory - Extremal Matroid Theory

Theorem

Let ex $(H ; n)$ be the maximum number of edges in a simple graph on n vertices that has no H-subgraph. Then

$$
\lim _{n \rightarrow \infty} \frac{e x(H ; n)}{\binom{n}{2}}=1-\frac{1}{\chi(H)-1}
$$

(Erdös and Stone, 1946)
Theorem
Let $e x_{q}(H ; n)$ be the maximum number of elements in a simple \mathbb{F}_{q}-representable matroid that has no H-restriction. Then

$$
\lim _{n \rightarrow \infty} \frac{e x_{q}(H ; n)}{\frac{q^{n}-1}{q-1}}=1-q^{1-c}
$$

where c is the minimum number so that H can be partitioned into c restrictions, each of which is affine over \mathbb{F}_{q}. (Geelen and Nelson, 2015)

More Directions in Matroid Theory - Extremal Matroid Theory

Theorem

Let \mathcal{C} be any minor-closed class of matroids. Either

1. \mathcal{C} contains all simple rank-2 matroids, or
2. there is a $c \in \mathbb{R}$ with $|E(M)| \leq c \cdot r(M)$ for all simple M in \mathcal{C}, or
3. \mathcal{C} contains all graphic matroids and there is a $c \in \mathbb{R}$ with $|E(M)| \leq c \cdot(r(M))^{2}$ for all simple M in \mathcal{C}, or
4. there is a prime power q and a $c \in \mathbb{R}$ so that \mathcal{C} contains all $\mathbb{F}_{q^{-}}$-representable matroids and $|E(M)| \leq c \cdot q^{r(M)}$ for all simple M in \mathcal{C}.

More Directions in Matroid Theory - Asymptotic Properties

Theorem
Almost all matroids are 3-connected (Oxley, Semple, Warshauer, and Welsh)

Theorem
Almost all matroids are 3-connected (Oxley, Semple, Warshauer, and Welsh)
We have no model of a random matroid.
A matroid M is paving if $r(X)=|X|$ whenever $|X|<r(M)$. It is sparse paving if M and M^{*} are paving.

Conjecture
Almost all matroids are sparse paving.

Theorem
Almost all matroids are 3-connected (Oxley, Semple, Warshauer, and Welsh)
We have no model of a random matroid.
A matroid M is paving if $r(X)=|X|$ whenever $|X|<r(M)$. It is sparse paving if M and M^{*} are paving.

Conjecture
Almost all matroids are sparse paving.

Theorem
Almost all triangle-free graphs are bipartite.
(Erdös, Kleitman, and Rothschild, 1976)

Conjecture
Almost all binary matroids with no three points on a line are affine.

Constructions.

Special classes of matroids.
Binary matroids, graphic matroids, regular matroids, near-regular matroids, transversal matroids, base-orderable matroids, ...

Algebraic matroids.
Applications of the matroid structure theorem (from the matroid minors project).

Tutte polynomials, specializations, and generalizations.
Unimodality.
Generalizations, matroids with extra structure, and variations: greedoids, jump systems, Coxeter matroids, flag matroids, polymatroids, bimatroids, oriented matroids, antimatroids, ...
... and much, much more.

Thank you for listening.

