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GRAPHICAL ABSTRACT

e A novel online software tool, Meta-
ndem, was developed for isobaric
labeling-based metabolomics.

e Metandem provides highly accurate
metabolite quantification on the MS/
MS level.

e Online  parameter optimization,
identification, and statistics can be
conducted simultaneously.

e Metandem was evaluated by various
MS platforms and multiplex isobaric
labeling experiments.
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Stable isotope labeling

Mass spectrometry-based stable isotope labeling provides the advantages of multiplexing capability and
accurate quantification but requires tailored bioinformatics tools for data analysis. Despite the rapid
advancements in analytical methodology, it is often challenging to analyze stable isotope labeling-based
metabolomics data, particularly for isobaric labeling using MS/MS reporter ions for quantification. We
report Metandem, a novel online software tool for isobaric labeling-based metabolomics, freely available
at http://metandem.com/web/. Metandem provides a comprehensive data analysis pipeline integrating
feature extraction, metabolite quantification, metabolite identification, batch processing of multiple data
files, online parameter optimization for custom datasets, data normalization, and statistical analysis.
Systematic evaluation of the Metandem tool was demonstrated on UPLC-MS/MS, nanoLC-MS/MS, CE-MS/
MS and MALDI-MS platforms, via duplex, 4-plex, 10-plex, and 12-plex isobaric labeling experiments and
the application to various biological samples.

© 2019 Elsevier B.V. All rights reserved.

* Corresponding author. School of Pharmacy, University of Wisconsin, Madison,

WI, 53705, USA.

E-mail address: lingjun.li@wisc.edu (L. Li).
2 Current address, Department of Chemistry, George Washington University,

Washington, D.C. 20052.

https://doi.org/10.1016/j.aca.2019.08.046

0003-2670/© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Metabolomics is an essential component of systems biology and
has embraced rapid advancements over the past decades. The
development of mass spectrometry (MS)-based techniques allows
metabolomics to be carried out with sophisticated methodologies
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as well as wide applications to biological and clinical studies [1-9].
MS-based metabolomics generates multidimensional datasets
where thousands of features can be measured in a single instru-
ment run, pressing significant challenges on data processing and
analysis. Particularly for large-scale metabolomics studies, state-of-
the-art analytical techniques must be paired up with proper bio-
informatics software for automated and efficient data analysis
[10—14].

MS-based metabolomic analysis is typically performed by label-
free or stable isotope labeling approaches. Stable isotope labeling,
in particular isobaric labeling, has gained substantial popularity in
proteomic and peptidomic studies and has also been successfully
adopted to quantify small molecules in recent years [15—25]. Bio-
molecules derivatized by multiplexed isobaric labels have nearly
identical mass shift of precursor ions, which can be fragmented into
a panel of MS/MS reporter ions. Each reporter ion intensity repre-
sents the relative abundance of the same molecule from the orig-
inal samples. Therefore, relative quantification of molecules from
different samples can be achieved by calculating the reporter ion
ratios in a single LC-MS/MS injection. Isobaric labeling experiments
can be conducted using commercial isobaric tags , such as TMT
[26,27] and iTRAQ [28] or custom synthesized reagents like DiLeu
[20,29,30], DiAla [31], DiVal [31], and DiART [32]. Besides amine-
reactive isobaric labels, aminoxyTMT was also developed to target
molecules with carbonyl groups such as carbohydrates and
steroids.

Stable isotope labeling provides the advantages of multiplexing
capability and accurate quantification but requires tailored bioin-
formatics tools for data analysis. Despite the variety of metab-
olomics software packages, such as XCMS [33—35], MZmine [36],
Compound Discoverer (Thermo), Progenesis QI (Waters), and
MetaboScape (Bruker), only few software packages can process
data with stable isotope labeling, particularly for MS/MS-based
isobaric labeling metabolomics [37—40]. Proteomics software
platforms cannot be easily adapted for small molecule analysis
because of their distinct isotope distribution and identification al-
gorithms. Scientists have to write their own program or script in
order to process MS/MS-based isobaric labeling datasets [20,27,32],
which are often not freely available to the public, impeding the
progress and applicability of isobaric labeling-based metabolomics.

To address this limitation and critical technological gap, we
developed Metandem, a novel online software platform for the data
analysis of isobaric labeling-based metabolomics. Metandem is
freely available at http://metandem.com/web/ and is very easy to
use through its graphic interface design. It provides a compre-
hensive data analysis pipeline that integrates feature extraction,
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metabolite relative quantification, metabolite identification, batch
processing of multiple data files, parameter optimization, data
normalization, and statistical analysis (Fig. 1). We evaluated the
Metandem software tool using duplex, 4-plex, 10-plex, and 12-plex
isobaric labeling on different LC-MS and MALDI-MS platforms, and
applied the complete isobaric labeling metabolomics workflow to
various biological samples.

2. Materials and methods
2.1. Metabolite sample preparation

Metabolite standard mixtures and metabolite fractions from
various biological samples were prepared in this study. Detailed
sample preparation procedures were described in our previous
publications [5,21,41,42]. Briefly, commercially-available pancreatic
cancer cells (PANC1) and breast cancer cells (MCF7) were pur-
chased from ATCC and routinely cultured in the lab in DMEM
supplemented with 10% fetal bovine serum (Gibco). Cells were
washed twice with phosphate buffer saline before being quenched
with methanol, pelleted, and snap-frozen in liquid nitrogen.
Cellular metabolites were extracted with a methanol/chloroform/
water extraction method. Mouse urine samples were collected in
metabolic cages, and urine samples were centrifuged at 10,000 g
for 10 min to remove cell debris. Urinary metabolite fractions were
obtained using 3 kDa molecular weight cut-off ultracentrifugation
filters [42]. Metabolite standard mixtures were prepared by mixing
individual stock solutions of 12 representative metabolites
including histidine, valine, tyrosine, leucine, lysine, phenylalanine,
tryptophan, alanine, serotonin, dopamine, y-aminobutyric acid,
and norepinephrine. Quality control samples were generated by
mixing a small aliquot from each sample from the same sample
type, which can be used to monitor instrument stability and
determine the data analysis parameters via parameter optimization
graphs in Metandem. Then these parameters can be used to process
the real sample set for the best performance.

Multiplexed isobaric DiLeu reagents were custom synthesized
following the procedure described previously with steps of
reductive dimethylation of leucine and 80 exchange [30]. Dried
DiLeu reagents were stored in a desiccator at 4 °C and activated to
the triazine ester form right before the labeling of amine groups. A
20-fold molar excess of activated DiLeu was reacted with metabo-
lite samples at a 70% of organic: aqueous ratio. Each plex of labeled
sample was combined, dried, and purified by SCX Ziptip as
described previously [20].
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Fig. 1. Pipeline of mass spectrometry-based isobaric labeling metabolomics using Metandem tool. Data analysis capability of Metandem is illustrated and highlighted in red color,
including metabolite quantification, identification, parameter optimization, and statistical visualization. (For interpretation of the references to color in this figure legend, the reader

is referred to the Web version of this article).
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2.2. Mass spectrometry analysis

Multiple MS instrument platforms were used in this study to
demonstrate the applicability of the Metandem tool, including a
Dionex UltiMate 3000 nanoLC system coupled with a Fusion™
Lumos™ Orbitrap MS, a Dionex nanoLC coupled with a Q Exactive™
HF Orbitrap MS, a Dionex UHPLC coupled with a Q Exactive™
Orbitrap MS, and a MALDI LTQ Orbitrap MS. For nanoLC-MS anal-
ysis, a C18 column was fabricated in-house with an integrated
emitter (75.1 um x 150 mm, 1.7 um, 100A) under a 40 min LC
gradient separation and a flow rate of 0.3 uL/min as described
previously [21]. For standard flow LC-MS, labeled metabolites were
separated with a 20 min gradient on a Phenomenex biphenyl col-
umn (2.1 x 100 mm, 2.6 p m, 100 A) at a flow rate of 0.3 ml/min as
described previously [5]. Mobile phase A was 0.1% formic acid in
water, and mobile phase B was 0.1% formic acid in acetonitrile. LC
separation was coupled with a top 20 data-dependent acquisition
on a mass spectrometer. Full MS scans were acquired from m/z 100
to 1000 at a resolution of 60K, automatic gain control at 5 x 10°,
and maximum injection time of 100 ms. MS/MS scans were ac-
quired at a resolution of 60 K, an isolation window of 1 m/z, and a
lower mass limit of 110 m/z. Normalized collision energy for MS/MS
fragmentation was 30% with higher-energy collisional dissociation
(HCD). CE-MS/MS analysis was conducted on an HP Agilent
G1600AX 3D CE system coupled with a Synapt-G2 mass spec-
trometer as described previously [20]. Samples were dissolved in
the background electrolyte solution (0.2% FA in 50% MeOH). Sample
injection was achieved by applying 50 mbar for 20 s at the inlet end
of a capillary column, which was followed by applying 30 kV at the
inlet for sample separation. MALDI MS/MS analysis was carried out
with a top 5 data-dependent acquisition and 30% HCD collision
energy.

2.3. Data analysis using metandem

Data analysis was achieved using the Metandem software tool,
which is freely available at http://metandem.com/web/. A detailed
step-by-step user manual is provided on the website and also in
Supplementary information. The web interface allows users to
select the number of reporter ions, input accurate mass and purity
of each reporter ion, and upload data sets. For Thermo .raw data file,
we recommend using COMPASS [43] to convert into .txt format. For
other vendor data files, ProteoWizard [44] can be used to convert
into .mgf format. After uploading the data files, reporter ion infor-
mation need to be defined based on the isobaric labeling experi-
ment. Reporter ion information of isobaric tags is summarized in
Supplementary Table S1 (DiLeu) and Table S2 (TMT, aminoxyTMT,
and iTRAQ). Data analysis parameters for the demonstration data
set were optimized using the parameter optimization graphs
(POGs), and optimal settings were set as the following: reporter ion
mass tolerance of 0.4 mDa, batch processing mass tolerance of
6 ppm, and batch processing retention tolerance of 0.5 min. Re-
porter ion intensities were extracted from the dataset for relative
quantification and statistical analysis. Molecular weight of the
detected compound can be calculated based on the charge and
mass shift caused by labeling, which was then searched against the
Human Metabolome Database [45] for putative metabolite identi-
fications. Metabolite identification can be further confirmed by
backbone fragmentations in MS/MS spectra.

3. Results and discussion
3.1. Metandem functionality and web interface

Metandem tool integrates feature extraction, relative

quantification, metabolite identification, batch processing of mul-
tiple data files, parameter optimization, median normalization, and
statistical analysis (Fig. 1). Relative quantification is achieved at the
MS/MS level by extracting reporter ion intensities from the isobaric
labeling experiment. The data analysis pipeline of Metandem for
isobaric labeling-based metabolomics can be summarized into five
steps: 1) upload data; 2) define reporter ion information; 3) opti-
mize parameters (optional); 4) submit job; and 5) generate output
and interpret results. Metandem can process both an individual
data file and multiple data files as batch processing. The graphic
interface of Metandem is shown in Fig. 2. Metandem also provides
the function of isotopic purity correction to account for the isotopic
interference and impurities from synthetic isotope reagents
[20,46,47]. In most cases, the option of “only output data containing
all reporter ions” is selected to ensure the best data quality (Fig. 2).
However, if some target molecules are known to be not present in
particular samples or with an extremely high fold change
compared to other samples, this option can be unselected.

Customization of parameters for data analysis software is crucial
to ensure the best performance, but it is often difficult and time-
consuming. Metandem provides straightforward online param-
eter optimization for custom datasets. By simply checking the box
for Output Parameter Optimization Graphs (POGs) and submitting
the job, Metandem runs with a range of parameter values to
generate POGs and allows users to select the best parameters for
their specific custom datasets. Three POGs are illustrated using the
demonstration dataset for the optimization of reporter ion mass
tolerance, batch processing mass tolerance, and batch processing
retention time tolerance (Fig. 3). The total number of features
containing reporter ions increases with a reporter ion mass
tolerance-dependent manner and then reaches a plateau, indi-
cating an optimal reporter ion mass tolerance of 0.4 mDa for the
demo dataset (Fig. 3A). With the increase of batch processing mass
tolerance (from 0.1 to 20 ppm), the total number of features drop-
ped as more features can be merged together. The shared features
among multiple input files rises and then reaches a plateau at a
mass tolerance of 6 ppm (Fig. 3B). For batch processing retention
time tolerance (0.1—2 min), if the tolerance is too high, distinctive
features are incorrectly merged together, causing a decrease in the
number of both total features and shared features. The optimal
retention time tolerance is 0.5 min for the demo dataset (Fig. 3C).
Depending on the size of the dataset, the parameter optimization
step can take from several seconds up to 10 min to complete. A Test
run function is also available to provide a quick evaluation of a
subset of data.

Results of data analysis are summarized into tables (.csv) and
statistical graphs. The output result tables include all individual file
tables, a merged table, and a metabolite identification table. If
median normalization is selected, another merged table after ratio
normalization will be generated. Molecular weight of the detected
compound can be calculated based on the charge and mass shift
caused by labeling, which was then searched against the Human
Metabolome Database (HMDB) [45] for putative metabolite iden-
tification. A major challenge for isobaric labeling-based metabolites
is that the resulting MS/MS fragments cannot be easily matched to
the available online database for metabolite identification. To
further confirm identification, MS/MS matching needs to be per-
formed by labeling standard compounds since chemical derivati-
zation may alter the fragmentation pattern of target molecules. For
the present test dataset, we confirmed the identities of some DiLeu-
labeled metabolites by matching to our in-house database con-
taining the MS1, MS/MS, and retention times of amino acids and
other common amine-containing metabolite standards. For relative
quantification and statistical analysis, reporter ion intensities are
extracted from the dataset, and reporter ion ratios are calculated
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3. 3axt

Individual file reporter ion results:

1. Process_l.csv
2. Process_2.csv
3. Process_3.csv

Merged results:
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Merged results after Median Normalization:
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Metabolite identification:
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Box plots for log2(reporter ion ratio)
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Fig. 2. Screenshot of the Metandem web interface. Output results of three demo data file are illustrated on the right which can be downloaded as.csv files. Parameter optimization
and statistical plots can be edited/visualized online. Demo data is available online at http://metandem.com/web/.
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from intensities with tag #1 as the denominator. The screenshots of
these results tables are provided in Fig. 4. Each individual result
table consists of precursor ion information, reporter ion intensities,
and ratios of all quantified features. When multiple data files are
uploaded for analysis, quantitative information is generated for
each file and merged among multiple files on the feature level. The
average reporter ion ratios and relative standard deviations (RSD)
of ratios in the merged file are calculated across all input data files.
All graphs are interactive, which can be visualized/edited online or
downloaded for offline analysis. Output statistical graphs include
histogram distribution of precursor mass (Fig. 3D), histogram dis-
tribution of retention time (Fig. 3E), and box plots of reporter ion
ratios before and after median normalization. These graphs are
generated with only the shared features among all merged files to
ensure the best data quality.

3.2. Evaluation and applicability

We performed systematic evaluation of the Metandem tool
using isobaric labeling experiments on UPLC-MS/MS, nanoLC-MS/
MS, CE-MS/MS and MALDI-MS platforms. Duplex, 4-plex, 10-plex,
and 12-plex isobaric DiLeu labeling was applied to a mixture of
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standards, biofluids, and cancer cell samples for metabolite relative
quantification and identification [5,20,30,41,48].

The accuracy and dynamic range of relative quantification are
evaluated by labeling the same sample with multiplexed reagents
which were then mixed at known ratios and analyzed by nanoLC-
MS/MS. Breast cancer cellular metabolites were labeled with 12-
plex isobaric DiLeu, generating a total of 3510 merged features
(Fig. 5A). Pancreatic cancer cellular metabolites were labeled with
duplex isobaric DiLeu and generated a total of 5456 merged fea-
tures (Fig. 5B). As shown in Fig. 5C, experimental average ratios can
be plotted against theoretical ratios, where a slope =1 represents
perfect accuracy and R?>=1 represents perfect consistency and
precision. Slopes for 12-plex and duplex labeling are 0.9691 and
1.122, respectively; R for 12-plex and duplex labeling are 0.999 and
0.998, respectively, indicating excellent relative quantification ac-
curacy and precision of the results generated by Metandem. In the
theoretical 1, 2, 5, 10, and 20 folds of mixed ratios for DiLeu labeling,
the median experimental ratios are 0.98, 2.12, 5.42, 9.69, and 19.59,
respectively. At least 20 folds of dynamic range can be accurately
quantified by DiLeu labeling. We found that an isobaric labeled-
metabolomics dataset is less prone to ratio suppression caused by
precursor coisolation and cofragmentation, which is a major
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5 4 193.1983 1 47.0625 5.47 1 0.14 5.27 4352 4635 1543 1327 11267 1575 23.11 0 0.18 005 0.03 0.03 005 003 0.02 0.07
6 5 231.1706 1 85.0347 5.60 1 1.33 0.81 0.84 118 1.47 1.64 1.72 4.70 4.25 0 0.15 0.14 0.08 0.27 0.05 0.13 0.20 0.09
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10 9 216.1598 1 70.0239 5.49 1 3.78 2.02 1.79 2.86 2.76 2.49 2.82 6.23 5.62 0 0.36 041 0.28 0.32 0.19 027 0.22 0.29
A B C D E F G H I J K L
Average pubchem_
Input  Precursor Average Average chemical_ monisotopic compound
1 Number (M+H) Charge MW Time dppm name formula _MW kegg_id _id hmdb_id
2 20 301.2075 1 155.0717 0.35 14.03 L-Histidine C6HIN302 155.0695 C00135 6274 HMDB00177
3 20 301.2075 1 155.0717 0.35 11.91 4-Phenylpyridine C11HSN 155.0735 C11310 13651 HMDB33123
4 32 235.1831 1 89.0473 0.56 4.29 L-Alanine C3H7NO2 89.0477 C00041 5950 HMDB00161
5 32 235.1831 1 89.0473 0.56 4.29 Sarcosine C3H7NO2 89.0477 C00213 1088 HMDB00271
6 32 235.1831 1 89.0473 0.56 4.29 Beta-Alanine C3H7NO2 89.0477 C00099 239 HMDB00056
7 32 235.1831 1 89.0473 0.56 4.29 D-Alanine C3H7NO2 89.0477 C00133 71080 HMDB01310

Fig. 4. Screenshots of the example result tables. Three demo files provided in the Metandem interface were used as input files. Panel A is the quantification result of an individual
file consisting of precursor ion information and reporter ion intensities and ratios. Panel B is the merged table. For each merged feature, average reporter ion ratios and relative
standard deviations (RSD) of the ratios are calculated across all input data files, followed by the original reporter ion intensities and ratios from each data file. Panel C is the
metabolite identification table with ID numbers from KEGG, PubChem and HMDB databases. Average MW is the average monoisotopic MW across all input files. Note that accurate
mass matching can generate multiple IDs from the same mass feature, which requires further examination and confirmation of metabolite identities by labeling metabolite standard

compounds.
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Fig. 5. Quantification accuracy of the Metandem tool demonstrated by isobaric DiLeu labeling of cellular metabolites. Boxplots of reporter ion ratios illustrate isobaric 12-plex DiLeu
labeling of MCF7 cellular metabolites (A) and isobaric duplex DiLeu labeling of PANC1 cellular metabolites (B). Box edges denote 25th and 75th percentiles; line inside the box
denotes the median; whisker denotes standard deviation. Excellent linearity and dynamic range of relative quantification was shown in (C) with the slope and R? close to 1.

challenge of isobaric labeling-based bottom-up proteomics. It is
probably because labeled metabolites have small molecular
weights and fewer charges compared to labeled peptide ions, and
the injected metabolite samples have less complex chromatog-
raphy than bottom-up proteomics.

In order to validate feature extraction and metabolite identifi-
cation functions of Metandem, data files from our previous study
using 4-plex DilLeu on CE-MS/MS and nanoLC-MS/MS platforms
were re-processed by Metandem [20]. Four-plex DiLeu labeled
mixture of 12 metabolite standards was also analyzed on a UPLC-
MS/MS platform. All 12 metabolite targets were successfully iden-
tified and quantified using Metandem. For complex samples like
mouse urine, MCF7 breast cancer cells, and PANC1 pancreatic
cancer cells, over 2000 features were quantified, and over 500
features can be identified as metabolites (Table 1). After putative
identification by Metandem, it is necessary to carefully examine
these IDs and further confirm their IDs by labeling metabolite
standard compounds. For instance, in PANC1 cells, we confirmed
the identities of 153 metabolites either through labeling standard

Table 1
Isobaric labeling results of various biological samples analyzed by Metandem.

compounds or matching with our in-house DiLeu-labeled metab-
olite database. The complete list of 153 metabolites can be found in
our previous publication [21].

Since stable isotope labels can be used to derivatize both pep-
tides and metabolites, paralleled proteomics and metabolomics can
be achieved from the same set of biological samples on the same
instrumental platform [21]. Isobaric tags label the N-terminus and
lysine side chain of all peptides in bottom-up proteomics experi-
ments. However, due to the heterogeneity of physical and chemical
properties of metabolites, a major pitfall of isobaric labeling-based
metabolomics is that only subsets of the metabolome can be
derivatized depending on the structure of the chemical tags. For
instance, TMT, iTRAQ and DilLeu target amine-containing small
molecules, and aminoxyTMT targets carbonyl-containing mole-
cules such as carbohydrates and steroids. Therefore, the results of
metabolite identification need to be examined to exclude unrea-
sonable matches from the database. On the other hand, these
additional functional group requirements also enhance the confi-
dence of metabolite identification.

Biological sample MS platform Isobaric labels Quantified feature® Identified feature
Standards mix UPLC-MS/MS 4-plex DiLeu 20 12

Standards mix nanoLC-MS/MS 4-plex DiLeu 14 12

Standards mix CE-MS/MS 4-plex DiLeu 16 12

Mouse urine MALDI MS/MS 4-plex DiLeu 55 9

Mouse urine nanoLC-MS/MS 10-plex DiLeu 2108 510

MCF7 cells nanoLC-MS/MS 12-plex DiLeu 3510 849

PANC1 cells nanoLC-MS/MS Duplex DiLeu 5456 861

¢ Quantified features often contain labeling artifacts that cannot be identified as metabolites.



L. Hao et al. / Analytica Chimica Acta 1088 (2019) 99—106 105

4. Conclusions

MS-based quantitative analysis has fostered the development of
state-of-the-art methodologies in both proteomic and metab-
olomic studies. There is a pressing need for associated software and
computational tools to process complex data automatically and
efficiently. Metandem fills a critical gap in the metabolomics field,
enabling MS/MS-based isobaric labeling dataset to be processed
with simple graphic interface design. Besides the basic functions of
relative quantification and identification, Metandem also provides
unique feature of online parameter optimization to ensure the best
performance of such large-scale metabolomic experiments. It is
fast, accurate, easy to use, and freely available at http://metandem.
com/web/.
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