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MELAS (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes) is a progressive

neurodegenerative disease caused by pathogenic mitochondrial DNA variants. The pathogenic

mechanism of MELAS remains enigmatic due to the exceptional clinical heterogeneity and the obscure

genotype–phenotype correlation among MELAS patients. To gain insights into the pathogenic signature

of MELAS, we designed a comprehensive strategy integrating proteomics and metabolomics in patient-

derived dermal fibroblasts harboring the ultra-rare MELAS pathogenic variant m.14453G4A, specifically

affecting the mitochondrial respiratory complex I. Global proteomics was achieved by data-dependent

acquisition (DDA) and verified by data-independent acquisition (DIA) using both Spectronaut and the

recently launched MaxDIA platforms. Comprehensive metabolite coverage was achieved for both polar

and nonpolar metabolites in both reverse phase and HILIC LC-MS/MS analyses. Our proof-of-principle

MELAS study with multi-omics integration revealed OXPHOS dysregulation with a predominant

deficiency of complex I subunits, as well as alterations in key bioenergetic pathways, glycolysis,

tricarboxylic acid cycle, and fatty acid b-oxidation. The most clinically relevant discovery is the

downregulation of the arginine biosynthesis pathway, likely due to blocked argininosuccinate synthase,

which is congruent with the MELAS cardinal symptom of stroke-like episodes and its current treatment

by arginine infusion. In conclusion, we demonstrated an integrated proteomic and metabolomic strategy

for patient-derived fibroblasts, which has great clinical potential to discover therapeutic targets and

design personalized interventions after validation with a larger patient cohort in the future.

Introduction

The maternally inherited mitochondrial disease MELAS
(mitochondrial encephalomyopathy, lactic acidosis, stroke-like
episodes syndrome) is a progressive neurodegenerative disease
with great genetic and clinical heterogeneity.1 MELAS has a

predominant childhood onset with no gender bias. The neurological
features of MELAS include stroke-like episodes, encephalopathy
with seizures, lactic acidosis, hearing loss, myopathy, neuropathy,
tremors, cognitive defects, and dementia. Non-neurological symp-
toms also present in MELAS patients, such as cardiomyopathy,
nephropathy, diabetes mellitus and gastrointestinal.1 MELAS is
caused by mitochondrial pathogenic variants affecting the oxida-
tive phosphorylation (OXPHOS) pathway, responsible for ATP
synthesis, thereby leading to a chronic energy deficit. About
80% of MELAS patients harbor the maternally inherited variant
m.3243A4G mapping in the MT-TL1 gene encoding the
mitochondrial tRNALeu(UUR).2,3 MELAS can also arise due to
additional mitochondrial pathogenic variants with a very low
frequency, such as m.1630A4G mapping in the MT-TV gene
encoding the mitochondrial tRNAVal,4–6 m.13514A4G mapping
in the ND5 gene encoding the NADH dehydrogenase 5 subunit of
Complex I,7 and m.14453G4A mapping in the ND6 gene
encoding the NADH dehydrogenase 6 subunit of Complex I.8

These mitochondrial MELAS variants only affect a subset of
the multi-copy mitochondrial genome, a phenomenon called
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heteroplasmy stemming from a variable ratio of mutant and
wild-type mitochondrial DNA (mtDNA) coexisting within cells.9

When the population of mutated mtDNAs overwhelms the wild-type
mtDNA population, mitochondria become dysfunctional in
terms of OXPHOS. Consequently, patients harboring a MELAS
variant generally are symptomatic when the load of
dysfunctional mitochondria exceeds a certain threshold of
heteroplasmy, a threshold that is tissue-specific and varies
among patients. This genetic heterogeneity compounded by
the unprecedented clinical heterogeneity among MELAS
patients has made the genotype–phenotype relationship elusive,
and consequently the pathogenic MELAS mechanism.10 These
hurdles have hampered progress toward curative interventions
and reliable biomarkers and therapeutic targets.

Recent advancements in multi-omics analysis have enabled
systematic insights into disease processes and correlations of
different classes of biomolecules in disease pathogenesis.11–16

In this study, we designed a global and integrated mass spectro-
metry (MS)-based strategy for parallel proteomics and meta-
bolomics to provide novel insights into the pathogenic pathways
of MELAS. Integrated omics experiments were conducted on
dermal fibroblasts derived from a female exhibiting the cardinal
symptoms of MELAS. This patient harbored the rare mitochondrial
variant m.14453G4A with a 65% heteroplasmy, specifically
affecting the mitochondrial-encoded subunit NADH dehydrogenase
6 of the OXPHOS Complex I. This pathogenic variant was not
detected in her mother’s fibroblasts, making this de novo
mitochondrial variant ultra-rare.

The strength of our study for understanding the MELAS
mitochondrial pathogenesis via proteomics and metabolomics
platforms is two-fold: (1) the ideal ex vivo cellular paradigm by
pairing dermal fibroblasts from the symptomatic MELAS
patient with her non-carrier mother as a negative control; and
(2) our comprehensive coverage and mutual verification of
identified proteins and metabolites using various modes of
LC-MS/MS with a combination of data-dependent (DDA) and
data-independent acquisitions (DIA). For the past decades,
DDA has been the first and standard strategy in shotgun
proteomics, where the most abundant sets of MS1 ions are
individually selected and isolated for sequential MS2

fragmentation.17–19 For label-free global proteomics, identification
is achieved at MS2 level, and quantification is often achieved at MS1
level. However, for complex biological samples, DDA proteomics
often faces challenges to identify low abundant and coeluting
peptides, as well as missing values from different biological/
technical replicates. As an alternative strategy to DDA proteomics,
DIA isolates and fragments all MS1 ions within a given m/z
window regardless of their intensities. Both identification and
quantification can be achieved at the MS2 level with fewer missing
values and often better reproducibility compared to DDA. But
DIA generates highly convoluted spectra and requires tailored
computational algorithms for data analysis. With the rapid
advancements of DIA data analysis, many software platforms
became available to analyze DIA data, such as Spectronaut,20

Skyline,21 DIA-Umpire,22 DIA-NN,23 and the most recently
developed MaxDIA24 in the Maxquant platform, to name but a few.

In this study, we conducted global DDA proteomics of MELAS
fibroblasts vs. controls and verified the findings with DIA
analysis. The performance of the newly launched MaxDIA
platform was evaluated in comparison to the widely used
Spectronaut platform. We report m.14453G4A-specific
proteomic and metabolomic fingerprints present in dermal
fibroblasts from a symptomatic MELAS patient compared to
her asymptomatic mother as a perfect negative control group,
revealing pathogenic pathways congruent with the patient’s
Complex I deficiency and chronic energy deficit.

Experimental
Subject, skin biopsy, and fibroblast culture

This study was approved by the Institutional Review Board of
the George Washington University and Children’s National
Medical Center. It was conducted in accordance with the
ethical principles of the Declaration of Helsinki of 1975 (revised
1983). Patient skin biopsy was performed only after receiving
written informed consent with permission to study the derived
dermal fibroblasts. Skin biopsy was performed on a 22-year-old
symptomatic female harboring the m.14453G4A variant and
her 53-year-old asymptomatic mother as a negative control.
Dermal fibroblasts were derived from a 2 mm punch skin
biopsy in Dulbecco’s Modified Eagle Medium (DMEM; Gibco)
supplemented with 2 mM glutamine, 2.5 mM pyruvate, 0.2 mM
uridine, FGF-2 (10 ng ml�1) and 20% fetal bovine serum as
described in a previous study.6 Derived dermal fibroblasts were
frozen at passage 2 and never used beyond passage 10.

Determination of heteroplasmy

Total DNA was extracted from cultured dermal fibroblasts at
passage 3 using the QIAmp DNA mini kit according to the
manufacturer’s recommendations (Qiagen). Heteroplasmy was
determined using a long-range PCR-based next-generation
sequencing approach.25 We applied a very stringent detection
method by choosing the very stringent cut-off of 1.33% hetero-
plasmy based on three standard deviation above the mean
error, which resulted in a 99.9% confidence.26

Lysis of dermal fibroblasts and biomolecule extraction

Dermal fibroblasts derived from the MELAS patient and her
noncarrier mother were grown in four independent biological
replicates. Fibroblasts were washed twice with phosphate-
buffered saline and immediately pelleted and flash-frozen in
liquid nitrogen. Proteins, polar metabolites, and nonpolar
metabolites/lipids were enriched from fibroblasts using
methanol/chloroform/water extraction.27,28 Briefly, 300 mL of ice-
cold methanol, chloroform, and MilliQ water were sequentially
added to each sample. The biphasic mixture was vigorously
vortexed, incubated on ice for 10 min, and clarified by centri-
fugation at 12 000 rpm for 15 min at 4 1C. The mixture stratified
into three layers: the top methanol/water fraction containing
polar small molecules, the middle layer of protein precipitate,
and the bottom chloroform fraction containing nonpolar
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metabolites and lipids. Different classes of biomolecules were
collected separately in Eppendorf tubes and stored at �80 1C.

Protein sample preparation

Protein pellets were dissolved in lysis buffer containing 150 mM
NaCl, 50 mM Tris, and 0.1% (w/v) Rapigest (Waters), and
sonicated with QSonica Q700 in an ice-cold water bath with
alternating cycles of 1 min on and 30 s off for a total of
15 min. The protein solution was clarified by centrifugation
at 12 000 rpm for 10 min at 4 1C. Total protein concentrations of
each sample were determined and normalized using DCA
colorimetric protein assay (Bio-Rad). Protein reduction and
alkylation were performed by adding tris(2-carboxylethyl)
phosphine (TCEP) at 5 mM for 30 min at 37 1C in a Thermo-
Mixer, followed by iodoacetamide (IAA) addition at 15 mM in
dark for 30 min at 37 1C. Another 5 mM TCEP was added for 10
min to quench excessive IAA. Trypsin/Lys-C mix (Promega) was
used for protein digestion (1 : 30 ratio w/w) for 16 h at 37 1C in a
ThermoMixer. Digestion reaction was quenched with 10%
trifluoroacetic acid until pH o 2, incubated at 37 1C for
45 min, and clarified by centrifugation at 12 000 rpm for
10 min at 4 1C to precipitate and remove Rapigest. Peptides
were desalted using a Waters C18 96-well extraction plate
following the manufacture protocol, dried, and stored at
�30 1C until LC-MS/MS analysis.

Metabolite sample preparation

Polar metabolites (methanol/water fraction) and nonpolar
metabolites and lipids (chloroform fraction) were dried
separately in SpeedVac and reconstituted in 50/50 acetonitrile/
water and 50/50 acetonitrile/isopropanol, respectively.
Metabolite samples were normalized based on total protein
concentrations. Samples were briefly sonicated, clarified by
centrifugation at 12 000 rpm for 10 min at 4 1C, and stored at
�30 1C until LC-MS/MS analysis.

NanoLC-MS/MS for DDA and DIA proteomics

A Dionex Ultimate 3000 RSLCnano system coupled with a
Thermo Scientific Q-Exactive HFX Orbitrap Mass Spectrometer
was used for proteomic analysis. The mobile phase A was 0.1%
formic acid (FA) in water, and mobile phase B was 0.1% FA in
acetonitrile. Peptides were injected onto an Acclaim PepMap
C18 trap column (3 mm, 100 Å, 75 mm � 2 cm) and separated on
an Easy-spray PepMap C18 column (2 mm, 100 Å, 75 mm �
75 cm) with a 210 min LC gradient and 55 1C column temperature.
The flow rate was 0.2 mL min�1. The quadrupole mass filtering was
set from m/z 380 to 1500 with a resolving power of 120 000 (at m/z
200 FWHM). For DDA analysis, a top 40 method was conducted
with an MS resolving power of 120 K and an MS/MS resolving
power of 7500. Parent masses were isolated with an m/z 1.4 window
and fragmented with higher-energy collision dissociation at a
normalized collision energy (NCE) of 30%. The maximum injection
times (maxIT) were 50 ms for MS and 35 ms for MS/MS. The
dynamic exclusion time was 30 s. The automatic gain control (AGC)
was 1 � 106 for MS and 2 � 105 for MS/MS. For DIA analysis, the
resolving power was 30 K, NCE was 30%, and the isolation window

was 8 Da (staggered). AGC target was 5� 105, and the maxIT was 20
ms. MS precursor scan was acquired in parallel to the DIA scan
with a mass range of m/z 380–1500, a resolving power of 60 K,
maxIT of 30 ms, and AGC of 1 � 106.

UHPLC-MS/MS for polar and nonpolar metabolomics

A Vanquish Duo UHPLC system coupled with a Thermo
Scientific Q-Exactive HFX Orbitrap Mass Spectrometer was used
for metabolomic analysis. The same sample was analyzed
twice on a reverse phase (RP) and a hydrophilic interaction
chromatography (HILIC) column. For RPLC-MS, metabolites
were separated using a Luna Omega Polar C18 column (1.6 mm,
100 Å, 100 � 2.1 mm) with a 20 min gradient and 30 1C column
temperature. RP aqueous buffer was 0.1% FA in water, and RP
organic buffer was 0.1% FA in acetonitrile. The flowrate was
0.3 mL min�1. The quadrupole mass filtering was set from m/z
70 to 800 with a resolving power of 45 000 (at m/z 200 FWHM),
operated on positive electrospray ionization (ESI) mode. For
HILIC LC-MS, a Kinetex HILIC column (2.6 mm, 100 Å, 150 �
2.1 mm) was used with a 37 min gradient and 30 1C column
temperature. HILIC aqueous buffer was 95% water, 5%
acetonitrile with 10 mM ammonium acetate. HILIC organic
buffer was 5% water, 95% acetonitrile with 10 mM ammonium
acetate. The flowrate was 0.3 mL min�1. MS data acquisition for
each replicate was obtained in full MS mode. The quadrupole
mass filtering was set from m/z 70 to 1000 with a resolving
power of 45 000 (at m/z 200 FWHM), operated on both positive
and negative ESI mode. The maximum injection times were
50 ms for full MS mode. The automatic gain control (AGC) was
1 � 106 for full MS mode.

Two quality control (QC) samples were created by pooling
a small aliquot from each sample for polar and nonpolar
fractions. The QC sample was injected in conditions described
above but in Top 10 DDA modes to assist with confident
metabolite identification. MS resolving power was 45 000 and
MS2 resolving power was 7500, with an isolation window of m/z
1.2, NCE of 30%, and dynamic exclusion of 30 s.

Metabolite standard mixture containing 66 metabolites (e.g.,
amino acids, nucleotides, neurotransmitters, organic acids,
and metabolites from metabolic energy pathways) from our
in-house metabolomics library was analyzed (20 mM) using the
same RPLC-MS and HILIC-MS methods described above.
LC-MS/MS analyses of QC samples and metabolite standards
were used for metabolite identification based on our previously
established metabolite identification flowchart.29

DDA and DIA proteomics data analysis

The DDA proteomics dataset was analyzed with Thermo Fisher
Proteome Discoverer (PD, 2.4.1.15) software with the
SequestHT search engine. Swiss-Prot Homo sapiens database
(reviewed) was used for human protein identification with 1%
false discovery rate cut-off. Proteomics contamination database
(from Max Planck Institute of Biochemistry) was included as
the contamination marker. Known mitochondrial proteins
from Uniprot were included as the mitochondrial marker.
Trypsin was used as the enzyme with 3 maximum missed
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cleavages. Methionine oxidation and acetylation of protein
N-terminus were included as variable modifications. Cysteine
carbamidomethylation was included as a fixed modification.
Chromatographic alignment was conducted with a maximum
retention time shift of 2 min and a minimum signal-to-noise
ratio of 5. Precursor mass tolerance was 25 ppm. The max fold
change is set to 500. Data was normalized by total peptide
amount with no missing value imputation.

The DIA dataset was analyzed using two software platforms:
Spectronaut 1520 (Biognosys) and recently launched MaxDIA24

using MaxQuant (2.0.1.0). The default parameters were used,
and the enzyme and modification settings were the same as the
DDA data analysis. In Spectronaut, swiss-Prot Homo sapiens
database (reviewed) was used in library-free directDIA mode.
The global imputing function for missing values was turned off.
In Maxquant, MaxDIA was used in discovery mode using FASTA
file UP000005640_9606 (H. sapiens) and in silico generated
spectral library files as suggested by the MaxDIA software.24

Metabolomics data analysis

Metabolomics dataset was analyzed with Thermo Fisher
Compound Discoverer (3.2) software. The maximum retention
time shift was 1 min. Mass tolerance was 5 ppm. The minimum
peak intensity was 1 � 105, and the signal-to-noise ratio was 3.
DDA acquisitions of QC samples were included for metabolite
identification. Four datasets were analyzed separately for
polar-RP, polar-HILIC, nonpolar-RP and nonpolar-HILIC data.
Positive and negative ESI modes were combined in each
dataset. Metabolite identification was conducted based on
our previously established flowchart that includes accurate
mass matching and MS/MS matching to online metabolite
databases as well as spectral matching to the in-house standard
library.29,30 MzCloud, ChemSpider, HMDB, KEGG, and LIPID
MAPS were selected as metabolite libraries in the Compound
Discoverer software. The in-house metabolite standard library
contained the retention time, MS1, MS/MS, and detected LC
mode for 66 common metabolites, such as amino acids,
nucleotides, neurotransmitters, organic acids, and metabolites
from TCA cycle and glycolysis.

Statistical analysis and bioinformatics

Proteomics data were exported in the excel format and further
analyzed with R for statistical analysis (t-test) and Spearman’s
correlation.31 Metabolomics data from 4 different LC modes
were combined for further multivariate statistical analysis.
Principal component analysis (PCA) and joint pathway analysis
were conducted with MetaboAnalyst 5.0.32

Results & discussion
Advantages of ex vivo patient-derived fibroblasts system

We obtained skin biopsies to derive dermal fibroblast from the
symptomatic MELAS female and her noncarrier mother as a
negative control group. We opted for this ex vivo cellular MELAS
paradigm because of several advantages:33,34 (1) skin biopsy is a

non-invasive procedure; (2) the derived fibroblasts can be
propagated and stored for future studies to identity personalized
biomarkers, genetic markers, and therapeutic targets; (3) hetero-
plasmy of a specific mitochondrial pathogenic variant in dermal
fibroblasts does not decline with age of the patient nor vary
between genders, essential to decipher the MELAS pathogenic
mechanism by integrating omic-driven phenotypes, hetero-
plasmic severity, and disease burden;35 and (4) fibroblasts
provide intact mitochondria in contrast with biofluid samples
like blood and urine;9,36 (5) fibroblast culture is suitable for high-
throughput multi-omics analysis.

Experimental workflow of integrated proteomics and
metabolomics

The overall workflow is illustrated in Fig. 1. We simultaneously
extracted proteins, polar metabolites, as well as nonpolar
metabolites and lipids from the symptomatic patient’s fibroblasts
and those of her asymptomatic and noncarrier mother as a
control group using the methanol/chloroform/water extraction.
Proteomics was conducted with DDA and verified by DIA. We
comparatively evaluated the proteomic results from DDA (PD),
DirectDIA (Spectronaut),20 and the newly launched MaxDIA24

(Maxquant). Metabolomics was performed in both RP and HILIC
LC-MS platforms for polar and nonpolar metabolites to achieve a
comprehensive metabolome coverage and mutual verification.
Additional analyses of pooled samples and metabolite standards
ensured the confident identification of metabolites. Quantitative
and qualitative information of all identified proteins and
metabolites were combined into the same molecular processes
and pathways to understand mitochondrial dysfunctions and
pathogenesis involved in MELAS.

Comparative evaluation of DDA and DIA proteomics

To identify the MELAS proteomic signature specific for the
pathogenic m.14453G4A variant, we performed DDA proteomic
analysis followed by DIA for verification. After removing
contaminants and decoys, a total of 7144 protein groups were
identified from human fibroblasts, 65% of which overlapped in
at least two datasets from DDA (PD), directDIA (Spectronaut) and
MaxDIA (MaxQuant) platforms (Fig. 2A). Majority of proteins
(94%) identified in directDIA overlapped with DDA result, but
not with MaxDIA. MaxDIA identified more total proteins but has
significantly more missing values compared to directDIA. DDA
method generated the most protein IDs (6994) compared to
library-free directDIA (4587) and maxDIA (4868). As patient-
derived fibroblasts with pathogenic variant were difficult to scale
up, we didn’t conduct fractionation or generating DIA spectral
library in this study. But for other unlimited sample materials,
protein identifications could be further increased by offline LC
fractionation or building a comprehensive spectral library.37,38

Without using missing value imputation, DirectDIA notably
returned minimum missing values (0.02%), whereas DDA and
MaxDIA results contained 9.1% and 13.7% missing values,
respectively. From these identified protein groups, 5487
from DDA, 4587 from directDIA, and 3141 from MaxDIA were
reproducibly quantified in at least 3 replicates in one group
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(MELAS or control) (Fig. 2B). Among the commonly quantified
2054 protein groups, 1243 proteins (60.5%) shared a consistent
trend (increase or decrease) in MELAS vs. Ctrl groups in all
3 datasets. The complete DDA and DIA proteomics datasets were
merged in Table S1 (ESI†). When we examined the proteins that
reach statistical significance (p-value o0.05), 174 proteins were

significantly altered in all 3 datasets, 170 of which have the same
changing trend (Fig. 2C). Spearman’s correlations of these three
data analysis platforms indicated overall consistent protein fold
changes (Fig. 2D). But discrepancies and outliers do exist in
DDA vs. DIA datasets, demonstrating the necessity to verify
proteomics results in multiple analytical or data analysis

Fig. 2 MELAS proteomic results comparing DDA (Proteome Discoverer), DirectDIA (Spectronaut), and MaxDIA (Maxquant) software platforms. Venn
diagrams of three software platforms for total protein identifications (A), reproducibly quantified proteins (B), and significantly changed proteins with
p-value o0.05 (C). (D) Spearman’s correlation of protein fold changes (MELAS/Ctrl) in DDA, DirectDIA and MaxDIA. (E) Principal component analyses.
The ellipses indicate 95% confidence region. (F) Volcano plots of MELAS vs. Ctrl proteomics from three software platforms. Dash lines indicate p-value =
0.05 and fold change = 1.5.

Fig. 1 Schematic workflow of integrated MS-based proteomics and metabolomics of MELAS. Proteins, nonpolar metabolites, and polar metabolites
were extracted simultaneously from patient and control dermal fibroblast cultures. LC-MS-based proteomics and metabolomics were conducted in
parallel and integrated for pathway analysis.
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platforms. PCA results of DDA, directDIA, and MaxDIA data all
showed complete separation between the MELAS (symptomatic
daughter) and the control (asymptomatic mother) groups
(Fig. 2E). While we have extended our data mining using two
DIA software, we acknowledge that this is not an exhaustive
comparison of DIA methods. Other DIA platforms can also be used
here, such as DIA-Umpire,22 PECAN,39 Skyline,21 DIA-NN,23 etc.

Global MELAS proteomics revealed the deficits in the OXPHOS
complexes

As the MELAS patient in this study harbors the m.14453G4A
variant that specifically affects the OXPHOS Complex I, we
highlighted the mitochondrial Complex I subunits identified
in our dataset (Fig. 2F). Indeed, many mitochondrial Complex I
subunits showed consistent down-regulation in all three
datasets. However, many proteins didn’t reach statistical
significance possibly due to the limited sample size (N = 4)
originated from the difficulty to scale up fibroblast culture from
patient with mtDNA mutation. Mitochondrial isolation from
cultured fibroblasts via density gradient ultracentrifugation
could increase the sensitivity to detect mitochondrial proteins,
but such approach cannot be used for patient’s mitochondria
with mtDNA mutation, which are very fragile and unable to be
enriched with ultracentrifugation. Besides Complex I subunit
proteins, we further examined the mitochondrial respiratory
chain deficiency in all five OXPHOS complexes (Fig. 3). The
OXPHOS system is composed of a series of distinct respiratory
complexes, Complex I to IV, and an ATP synthase, also referred
to as Complex V. Mitochondrial ATP synthesis is the result of
electron transfer through the first four complexes, with
Complex I and Complex II being the two points of entry, and
ATP synthesis occurring at Complex V.40,41 Electrons are
provided by oxidation of the reducing equivalents, NADH and
FADH2, originating from the metabolic pathways, glycolysis,
the tricarboxylic acid (TCA) cycle, and fatty acid oxidation.
Complex I is an L-shaped multi-subunit complex with a

hydrophobic membrane arm anchored in the mitochondrial
inner membrane that is perpendicularly linked to a hydrophilic
peripheral or matrix protruding into the mitochondrial
matrix.42 The ND6 subunit is required for the proper assembly
of Complex I.43,44 Among the downregulated expression levels
of nuclear-encoded subunits, it is worth highlighting the
subunits NDUFS2, NDUFS8, NDUFA9, and NDUFB8, which
interact with ND6 during the early steps of the membrane arm
assembly.45 Equally important is the dysregulation of the two
NDUFV1 and NDUFV2 core subunits of the N module, along
with the structural subunit NDUFS6, thereby affecting the
binding of the reduced agent NADH and consequently
accepting electrons by Complex I prior to their transfer to the
downstream OXPHOS complexes for ATP synthesis. Subunits of
Complex IV were also mostly down-regulated (Fig. 3). Interestingly,
our proteomic results revealed deregulated expression of COX6B1
and NDUFA4, which are required for the last two steps of Complex
IV assembly, also known to harbor pathogenic variants linked to
mitochondrial diseases with an OXPHOS deficit. Of note is the
detected upregulated subunits of Complex V (ATP synthase), a
potential compensatory response for the patient’s Complex I
deficiency caused by the m.14453G4A variant.

Comprehensive metabolomics revealed dysregulated fatty acid
metabolism in MELAS

Metabolites can reflect the downstream results of endogenous
genetic/protein regulations and exogenous influences.
MS-based metabolomic technique is particularly useful to under-
stand the molecular processes underlying disease phenotypes
and discover potential therapeutic targets for disease diagnosis
and management.46–49 Over 1200 metabolite were identified
from a total of B20 K LC-MS peaks from different LC-MS modes
(Table S2, ESI†). As shown in Fig. 4A, from the polar metabolite
fraction, 661 metabolites were identified in RP mode and 460
metabolites from HILIC mode. From the nonpolar fraction, 262
metabolites were identified in RP and 181 from HILIC. PCA and

Fig. 3 Identified and quantified mitochondrial OXPHOS protein subunits in MELAS vs. Ctrl proteomics. Proteins fold changes from DDA, DirectDIA and
MaxDIA were plotted in different shapes. Stroked dots indicate the changes were statistically significant (p-value o0.05).
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volcano plots of each LC-MS modes were included in the Fig. S1
and S2 (ESI†). All the B20 K features from different LC modes
were then combined to conduct PCA, where complete separation
was achieved between the MELAS group (symptomatic carrier
daughter) and the control group (asymptomatic and noncarrier
mother) (Fig. 4B). As shown in an example volcano plot in
Fig. 4C, key metabolites related to bioenergetic pathways were
altered in MELAS group compared to the control group. The
wide range of dysregulated metabolisms may be due to redox
imbalance in MELAS patient. Redox imbalance is a direct
consequence of the uncoupled electron transport chain.9

Deficiency in Complex I is common in MELAS syndrome.50,51

Complex I deficit impact not only the electron transport chain,
but also the TCA cycle, since Complex I facilitates the conversion
of a-ketoglutarate to succinyl-CoA in the TCA cycle. Most notably
are the decreased levels of acylcarnitines in the presence of the
MELAS m.14453G4A variant, indicative of a defective fatty acid
metabolism in the patient-derived fibroblasts. Acylcarnitines

modulate the mitochondrial energy metabolism by converting
long-chain fatty acids into long-chain acyl-CoAs to overcome the
permeability barrier of the inner mitochondrial membrane,
thereby allowing their transport into the mitochondrial matrix
for fatty acid oxidation and ATP synthesis (Fig. 5B). This
deficiency in acylcarnitine levels further aggravates the chronic
energy deficit due to the patient’s Complex I deficiency caused by
the m.14453G4A variant.

Multi-omics joint pathway analysis highlighted the deficit in
arginine biosynthesis in MELAS

To unmask the m14453G4A specific bioenergetic signature, we
performed a protein-metabolite joint pathway analysis using
the significantly changed proteins and metabolite IDs (Fig. 5A
and Table S3, ESI†). After selecting the significantly altered
pathways, all identified metabolites and proteins were included
in the pathway nodes despite statistical significance to reveal
the overall molecular changes of selected pathways. Among

Fig. 4 Comprehensive metabolomic fingerprints of MELAS fibroblasts. (A) Venn diagram of identified metabolites from polar/nonpolar fractions using
RP or HILIC mode. (B) Principal component analysis from all combined features detected from different LC-MS modes. The ellipses indicate 95%
confidence regions. (C) Example volcano plot of MELAS vs. control groups from polar metabolites in RP HPLC-MS.

Fig. 5 Joint proteomic and metabolomic pathway analysis. (A) Scatter plot showing the impacts and p-values of key joint pathways. (B) Highlighted key
metabolic pathway segments with both protein and metabolite coverage.
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these dysregulated pathways, the arginine biosynthesis pathway
has the highest clinical relevance to the MELAS pathophysiology.
The key nodal enzyme, arginosuccinate synthase 1 (ASS1), is
significantly downregulated, causing the decreased level of
arginine (Fig. 2F and 5B). Decreased plasma levels of arginine
has been reported in MELAS patients harboring the most
frequent mitochondrial variant m.3243A4G.1 Our fibroblast
metabolomic analysis also revealed a deficit in arginine level
in the context of the m.14453G4A variant, despite the patient’s
current treatment of arginine administration (Fig. 4C). Arginine
deficiency may be worsened by the upregulation of nitric oxide
synthase (NOS) enzymes, which convert arginine into nitric oxide
(NO) and citrulline, a precursor of arginine via the enzymes
ASS1 and arginosuccinate lyase (ASL1). The increased levels of
citrulline and ASL1 enzyme may represent the compensatory
response of cells to regulate arginine biosynthesis but fails to
rescue the damage caused by ASS1 deficiency. The prevailing
pathogenic mechanism of stroke-like episodes observed in
MELAS patients postulates decreased NO availability in the
vascular endothelial cells due to endothelial dysfunction causing
impaired patency of small cerebral arteries and arterioles.52,53

Further aggravating the endothelial NO deficit is the proliferation
of dysfunctional mitochondria housing an increased cytochrome
c oxidase activity, which promotes binding and sequestration of
NO.54 Thus, the patient’s arginine biosynthesis fingerprint in
our multi-omics study validated the most prevalent clinical
manifestations of recurrent stroke-like episodes in this patient.
In MELAS patients, stroke-like episodes are nonischemic and the
result of impaired blood flow in small intracerebral arteries and
arterioles, caused by abnormal proliferation of dysfunctional
mitochondria in the vascular endothelial cells and smooth muscle
cells in combination of low plasma levels of arginine.1,55

Conclusions

In summary, we designed an integrated multi-omics workflow
to achieve a comprehensive proteome and metabolome
coverage in patient-derived fibroblasts. Our proteomic results
provided clues on Complex I deficit, disassembled OXPHOS
complexes, and genotype–phenotype correlation of mitochondrial
dysfunction caused by the m.14453G4A variant. Impaired
mitochondrial energy production is a hallmark of the MELAS
pathology, which results in a plethora of phenotypic manifesta-
tions targeting several organs. The energy-demanding cells, such
as muscle cells and neurons, are particularly vulnerable to
such energy deficiency, congruent with two of the cardinal
symptoms of MELAS, encephalopathy and myopathy. Our MELAS
metabolomic analysis and multi-omics integration revealed
dysregulations of fatty acid metabolism, glycerolipid metabolism,
sphingolipid signaling pathway, purine metabolism, and
glutathione metabolism. Particularly, our multi-omics integration
highlighted the dysregulated arginine biosynthesis despite the
patient’s daily arginine administration. Decreased arginine level
and elevated citrulline level, as well as downregulated ASS1
protein level could serve as potential therapeutic targets for

treatment. Our findings suggest that the conversion of citrulline
into arginine was impeded at the level of ASS1 enzyme.
Insufficient arginine level may further aggravate the NO deficiency
and therefore the stroke-like episodes in MELAS patients. While
this ultra-rare de novo MELAS patient and her healthy mother
served as an ideal pair to study the maternally inherited
mitochondrial disease, we acknowledge that the biological
implications in this study require further validation due to the
limited cohort size. Nonetheless, with various highlighted
proteins, metabolites, and metabolic pathways, this pilot study
set the stage for future MELAS biomarker studies using a larger
cohort of MELAS patients.

Data availability

The proteomics and metabolomics datasets have been deposited
in the MassIVE online depository (https://massive.ucsd.edu) with
the identifier MSV000088237.
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