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ABSTRACT: Mass spectrometry-based proteomics is constantly challenged by
the presence of contaminant background signals. In particular, protein
contaminants from reagents and sample handling are almost impossible to
avoid. For data-dependent acquisition (DDA) proteomics, an exclusion list can be
used to reduce the influence of protein contaminants. However, protein
contamination has not been evaluated and is rarely addressed in data-independent
acquisition (DIA). How protein contaminants influence proteomic data is also
unclear. In this study, we established new protein contaminant FASTA and
spectral libraries that are applicable to all proteomic workflows and evaluated the
impact of protein contaminants on both DDA and DIA proteomics. We
demonstrated that including our contaminant libraries can reduce false discoveries
and increase protein identifications, without influencing the quantification
accuracy in various proteomic software platforms. With the pressing need to standardize proteomic workflow in the research
community, we highly recommend including our contaminant FASTA and spectral libraries in all bottom-up proteomic data analysis.
Our contaminant libraries and a step-by-step tutorial to incorporate these libraries in various DDA and DIA data analysis platforms
can be valuable resources for proteomic researchers, freely accessible at https://github.com/HaoGroup-ProtContLib.

KEYWORDS: protein contaminant, contamination, spectral library, FASTA, DIA, DDA, DIA-NN, Spectronaut, keratin, trypsin

■ INTRODUCTION

Mass spectrometry (MS)-based proteomics is constantly
challenged by exogenous contaminants and interferences that
can be introduced into samples throughout the experimental
workflow. Contaminations from polymers, detergents, solvents,
ion sources, and other additives are often singly charged, which
can be avoided by the careful selection of reagents or removed
by ion mobility MS interface (e.g., FAIMS).1−3 However,
contaminant proteins and peptides are almost impossible to
eliminate from the experimental workflow. For example,
keratins from researchers’ skin and hair can be found on all
surfaces and dust during sample handling.4 Rodent and sheep
keratins can originate from animal facilities and wool clothing.
Residue cell culture medium can lead to bovine protein
contamination. Protein digestion enzymes (e.g., trypsin and
Lys-C) and the production of enzymes can introduce protein
contaminants into the bottom-up proteomic workflow.1

Additionally, bovine serum albumin (BSA), immobilized
antibodies, and affinity tags (e.g., streptavidin, FLAG, HA)
from affinity columns/beads also represent major contami-
nants in immunoassays and affinity purification MS.5,6 These
exogenous contaminant proteins/peptides can compete with
real samples in the MS ion source, occupy the cycle times in
the mass analyzer, reduce the number of useful peptide spectra,
and hinder the detection of low abundant proteins from
complex biological samples.

Sample-type-specific interferences have been evaluated
previously and are important proteomics resources, such as
nonspecific interactions in affinity purification and contami-
nation from plasma proteomics.6,7 It is important to note that
these interference proteins are specific to certain types of
experiments and may actually be useful proteins in other types
of proteomics studies. Therefore, these interference proteins
cannot be marked as universal exogenous contaminant proteins
for all proteomics experiments. Due to the negative effects of
protein contaminants in MS proteomics, various methods have
been implemented to combat this problem. Keratin contam-
ination can be reduced using a laminar flow hood and
fastidiously wiping down surfaces with ethanol and water.8

However, it is almost impossible to eliminate keratins from
proteomic experiments. Contamination from proteolytic
enzymes and affinity tags can be reduced by carefully
optimizing the amount of enzymes and beads. Nevertheless,
such practices may not be feasible for MS facilities and
biological samples with limited amounts. For data-dependent

Received: March 9, 2022

Articlepubs.acs.org/jpr

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.jproteome.2c00145
J. Proteome Res. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

G
E

O
R

G
E

 W
A

SH
IN

G
T

O
N

 U
N

IV
 o

n 
Ju

ly
 8

, 2
02

2 
at

 1
2:

50
:3

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ashley+M.+Frankenfield"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiawei+Ni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mustafa+Ahmed"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ling+Hao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jproteome.2c00145&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?goto=supporting-info&ref=pdf
https://github.com/HaoGroup-ProtContLib
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?fig=abs1&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00145?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org/jpr?ref=pdf


acquisition (DDA) proteomics, an exclusion list can be used to
disregard specific ions from being isolated for MS/MS
fragmentation.9−12 However, the exclusion list is highly specific
to liquid chromatography−MS (LC−MS) gradient and
instrumentation, which is difficult to transfer across different
MS platforms and laboratories. Peptides with similar m/z and
retention times could also be accidentally excluded in complex
biological samples. Contaminant peptides are not entirely
useless and can be used as quality control to evaluate sample
preparation reproducibility. Trypsin peptides can also be used
to normalize retention time.13 To mark contaminant proteins
from the data set, contaminant FASTA libraries can be used in
various DDA software platforms.14−18 The most widely used
contaminant FASTA files are from MaxQuant15 and cRAP
(https://www.thegpm.org/crap/). However, these FASTA
files have not been updated in years and contain many
deleted/unassigned UniProt entries and human protein
standards that are not contaminant proteins.
Despite various strategies to reduce the influence of protein

contaminants in DDA proteomics, protein contamination has
not been evaluated and is rarely addressed in data-independent
acquisition (DIA) proteomics. Many exogenous contaminants
from different species cannot be identified unless included in
FASTA or spectral libraries. The DDA exclusion list is not
compatible with DIA because all coeluting peptides within a
predetermined isolation window are fragmented together
regardless of precursor intensities in DIA. Due to the wide
isolation window in DIA, we hypothesized that contaminant
proteins/peptides could be especially problematic if left
unaddressed, leading to false identifications in DIA proteomics.
DIA data analysis can be conducted using spectral library-

based software tools (e.g., OpenSWATH,19 Spectronaut,20

DIA-NN,21 Skyline,22 EncylopeDIA,23 MaxDIA24) or library-
free strategies with in silico digested pseudopeptide spectra
based on FASTA protein sequences (e.g., DirectDIA,25 DIA-
NN,21 DIA-Umpire,26 PECAN,27,28 DeepDIA29). While
contaminant FASTA libraries are widely implemented in
DDA data analysis, they are rarely used for DIA data
analysis.13,30 The PRIDE31 website provided a contaminant
spectral library based on the commonly used cRAP list.
However, the cRAP contaminant list has not been updated for
10 years and contains many noncontaminant human protein
standards such as cathepsins, annexin, and myoglobin.
In this study, we created a series of contamination-only

samples to establish the universal contaminant protein spectral
and FASTA libraries that can be used in all bottom-up
proteomics experiments. We then evaluated how protein
contaminants and contaminant libraries influence identification
and quantification in DDA and DIA proteomics. The benefits
and applicability of these contaminant libraries were
demonstrated in various DDA and DIA data analysis platforms.
These contaminant FASTA and spectral libraries are freely
accessible at https://github.com/HaoGroup-ProtContLib with
a step-by-step user manual to promote standardized and
reproducible proteomics data analysis and reporting pipeline in
the broad proteomics community.32−34

■ MATERIALS AND METHODS

Generation of Contaminant-Only Samples

We generated a series of contaminant-only samples by adding
different proteolytic enzymes to the lysis buffer (1 M Urea in
50 mM Tris−HCl), commonly used beads coated with affinity

tags, and fetal bovine serum (FBS), which is commonly used
for cell culture medium. The proteolytic enzymes used here
include sequencing-grade trypsin (V5111), trypsin gold
(V5280), trypsin/Lys-C (PRV5073), and Lys-C (VA1170)
from Promega. The beads used here include Sero-Mag
streptavidin magnetic beads (Cytivia), anti-Flag M2 affinity
agarose beads (Sigma), and EZview Red anti-HA affinity
agarose beads (Sigma). Clean ungloved hands were purposely
rubbed together above these samples to increase keratin
contamination.

Human Cell Culture and Mouse Brain Tissues

HEK293 cells were maintained in DMEM/F12 HEPES
medium containing 10% FBS. Mouse brain samples were
obtained from wild-type mice (C57/B6) under protocols
approved by the George Washington University Institutional
Animal Care and Use Committee. HEK cells and mouse brain
samples were lysed in 8 M urea in 50 mM Tris−HCl buffer
and sonicated for 15 min in an ice-cold water bath using a
QSonica Q700 sonicator with alternating cycles of 1 min on
and 30 s off. Protein lysates were clarified by 15 min of
centrifugation at 12,000 rpm at 4 °C and stored at −80 °C.
Total protein concentrations were determined using a
detergent-compatible colorimetric protein assay (DCA, Bio-
Rad).

Proteomics Sample Preparation

The routine bottom-up proteomics workflow was conducted
for contaminant-only samples, HEK cells, and mouse brain
lysates as described previously.35,36 Briefly, disulfide bonds
were reduced using 5 mM Tris(2-carboxyethyl)phosphine
(TCEP) for 30 min, 15 mM iodoacetamide for 30 min in dark,
and 5 mM TCEP for 10 min on a ThermoMixer shaking at
1,200 rpm at 37 °C. Protein digestions were conducted using
various enzymes (contaminant-only samples) and trypsin/Lys-
C (HEK and mouse samples) for 18 h at 37 °C on the
ThermoMixer and quenched with 10% trifluoroacetic acid
until pH < 3. Peptides were then desalted on a Waters Oasis
HLB plate using the manufacturer’s protocol, dried down
under SpeedVac, and stored at −30 °C.
LC−MS/MS Analyses for DDA and DIA Proteomics

Peptide samples were analyzed on a Dionex UltiMate 3000
RSLCnano system coupled with a Thermo Fisher Q-Exactive
HF-X mass spectrometer. Mobile phase buffer A was 0.1%
formic acid in water, and buffer B was 0.1% formic acid in
acetonitrile. HEK cells and mouse brain samples were injected
onto an Acclaim PepMAP C18 trap column (3 μm, 100 Å, 75
μm × 2 cm) and further separated on an Easy-spray PepMap
C18 column (2 μm, 100 Å, 75 μm × 75 cm) with a flow rate of
0.2 μL/min, an LC gradient of 210 min, and a column
temperature of 55 °C. Contaminant-only samples were
analyzed with a 15 cm PepMap C18 column at a flow rate
of 0.3 μL/min with an LC gradient of 120 min. For DDA
analysis, MS scanned from m/z 380 to 1,500 with a resolving
power of 120 K (at m/z 200 FWHM), an automatic gain
control (AGC) target of 1 × 106, and a maximum injection
time (maxIT) of 50 ms. Precursors were isolated at a window
of m/z 1.4 and fragmented with a normalized collision energy
(NCE) of 30%, a resolving power of 7.5 K for MS/MS, and a
maxIT of 40 ms. For DIA analysis, MS scanned from m/z 400
to 1000 with a resolving power of 60 K, an AGC target of 1 ×
106, and a maxIT of 30 ms. The precursor isolation window
was set to m/z 8.0 (staggered) with 75 sequential DIA MS/MS
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scans between m/z 400 and 1000 at a resolving power of 30 K,
an AGC target of 5 × 105, a maxIT of 30 ms, and a NCE of
30%.

Repository Data from ProteomeXchange

Two repository data sets from the ProteomeXchange website
were downloaded and reanalyzed using our contaminant
libraries. Repository data set A is a HepG2 human cell DIA
data set (PXD022589) containing 27 raw data.24 Data set B is
a fractionated mouse cortex DIA data set (PXD005573)
containing 12 raw data.37 Additionally, a fractionated HEK and
HeLa cell DDA data set (PXD001468) was used to generate a
spectral library for library-based DIA data analysis.38

DDA Proteomics Data Analysis

All DDA proteomics data sets in this study were analyzed with
both MaxQuant (2.0.2.0) and Thermo Fisher Proteome
Discoverer (2.4.1.15) software programs. Contaminant-only
samples were analyzed with the new contaminant FASTA
library only. HEK cells and mouse brain samples were analyzed
using the Swiss-Prot Homo sapiens database (reviewed) and
Mus musculus database (reviewed), respectively, with and
without our contaminant FASTA library. The false discovery
rate (FDR) cutoff for protein and peptide spectral matches
(PSMs) identifications was set at 0.01. Trypsin or Lys-C
enzyme was used with a maximum missed cleavage of two. The
precursor tolerance was set to 20 ppm. The fixed modification

Figure 1. Schematic of building and using the contaminant libraries for DDA and DIA proteomics. A series of contaminant-only samples were
created by adding different proteolytic enzymes to keratin-contaminated lysis buffer, commonly used beads coated with affinity tags, and fetal
bovine serum (FBS) for cell culture medium. New contaminant FASTA and spectral libraries were created using DDA proteomic analyses of
contaminant-only samples. These new contaminant libraries were evaluated using different biological samples and repository data sets in various
DDA and DIA software platforms.

Figure 2. Characterization of the contaminant protein FASTA and spectral libraries. (A) Venn diagram comparison of contaminant protein lists
from our newly generated contaminant FASTA and commonly used MaxQuant and cRAP contaminant FASTA files. (B) Scatterplot of identified
contaminant peptides merged from contaminant-only samples in DDA LC−MS/MS analyses. (C) Scatterplot of contaminant peptides in our
contaminant spectral libraries, generated by Spectronaut Pulsar. iRT stands for in silico normalized retention time. (D) Comparison of DDA and
DIA protein and peptide identifications from HEK samples using our new contaminant FASTA in comparison to the MaxQuant and cRAP FASTA
libraries.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00145
J. Proteome Res. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00145?fig=fig2&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00145?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


was cysteine carbamidomethyl, and variable modifications were
methionine oxidation and protein N-terminus acetylation.

DIA Proteomics Data Analysis

Spectronaut Software. Several spectral libraries were
generated using Pulsar in Spectronaut 15 with “BGS Factory
settings”.20 The contaminant spectral library was generated
using the set of contaminant-only DDA data sets. Two spectral
libraries were generated for each sample type (mouse brain and
human cell) with and without including the contaminant-only
samples (Supporting Table S2). Specific trypsin digestion was
set with a maximum of two missed cleavages. A fixed
carbamidomethyl modification of cysteine and up to three
variable modifications for oxidation of methionine and
acetylation of the protein N-terminus were allowed. PSM,
peptide, and protein FDRs were set to 0.01. Both library-based
and library-free (DirectDIA) analyses were performed in
Spectronaut 15 using default settings. The quantification step
was modified to perform an interference correction that used
only identified peptides to train the machine-learning model.
No cross-run normalization or imputation of missing values
was used.
DIA-NN Software. DIA-NN (v1.8) was used for both

spectral library-based and library-free DIA analyses.21 Raw data
files were converted to the open-format.mzML using the
msConvert feature of the ProteoWizard package.39 Library-
based analysis was conducted in DIA-NN using the spectral
libraries established above in Spectronaut Pulsar. A fixed
carbamidomethyl modification of cysteine and up to three
variable modifications for oxidation of methionine and
acetylation of the protein N-terminus were allowed. Protein
interferences were removed based on gene ID. FDR (0.01) was
controlled by manually filtering the protein and peptide q-
values in the report file. For library-free analysis, the FASTA
digest was selected. The spectral libraries were also included to
train the deep learning model.

Data Filtering

To increase the confidence of protein/peptide identifications,
proteins that were identified with only one precursor or an
intensity below 10 were removed from all data sets using R.
Contaminant proteins can be easily filtered out from the results
by searching the “Cont_” prefix in the UniProt ID column
from the result files. Contaminant proteins were removed

before calculating the coefficient of variation and Spearman’s
correlation to evaluate proteomics quantification.
Data Availability

All raw files have been deposited to the ProteomeXchange
Consortium with data identifier PXD031139. The protein
contaminant library and step-by-step user tutorial are also
freely accessible at https://github.com/HaoGroup-
ProtContLib.

■ RESULTS AND DISCUSSION

Building New Contaminant Protein FASTA and Spectral
Libraries

Most exogenous contaminant proteins originating from
reagents and sample handling are commonly shared in all
bottom-up proteomics experiments. Therefore, we aim to build
universal contaminant protein libraries that can be used in all
bottom-up proteomics (Figure 1). Although widely used for
DDA proteomics, protein contaminant lists from MaxQuant
and cRAP have not been updated for years, containing many
deleted/unassigned UniProt IDs, sample-specific interference
(noncontaminant) proteins, and commercially available human
protein standards that are incorrectly listed as contaminant
proteins. Therefore, we first built a new contaminant FASTA
library by manually merging the available contaminant lists
online, updating their UniProt entry IDs, deleting non-
contaminant proteins, searching for new contaminant proteins
on UniProt, and combining them into a new FASTA file. Our
new contaminant FASTA library contains 381 contaminant
proteins including all human keratin-related proteins, bovine
contaminants from cell culture medium and affinity columns,
various proteolytic enzymes, affinity tags, and other contam-
inants (Supporting FASTA and Table S1). When compared to
the MaxQuant and cRAP contaminant lists, our new FASTA
library contains additional 166 contaminant proteins (Figure
2A). This new FASTA library can be used for both DDA and
DIA proteomics. We also added a “Cont_” prefix in each
contaminant entry in the FASTA library, allowing contaminant
proteins to be easily filtered and removed in the result files.
To establish comprehensive contaminant protein spectral

libraries for DIA proteomics, we created a series of
contaminant-only samples using various proteolytic enzymes,
affinity purification beads, and fetal bovine serum (FBS) that
are commonly used for cell culture medium. We validated the

Figure 3. Examples of protein false identifications caused by contaminant peptides when the contaminant library is not used in DIA data analysis.
Example contaminant peptide chromatograms and MS/MS fragments are shown in red, and real peptides of interest are shown in blue. (A) Lys-C
(proteolytic enzyme contaminant) was misidentified as KIF20B. (B) SERPINA1 (bovine contaminant) was misidentified as CFAP100.
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presence of each contaminant peptide by creating spectral
libraries in MaxQuant, Proteome Discoverer, and Spectronaut
Pulsar. Hundreds of contaminant peptides were detected
throughout the LC−MS gradient (Figure 2B and Supporting
Table S3). Since trypsin and Lys-C are the two most
commonly used enzymes for bottom-up proteomics, we
created two DIA spectral libraries using Spectronaut Pulsar:
tryptic contaminant peptides and Lys-C-digested contaminant
peptides. These spectral libraries are built from highly
confident fragment ions assigned to each peptide sequence
(Figure 2C and Supporting Table S4), also freely accessible on

ProteomeXchange (PXD031139). We compared our new
FASTA library to the existing contaminant FASTA from
MaxQuant and cRAP using DDA and DIA analyses of HEK
samples. Improved protein/peptide identifications were
achieved using the new library (Figure 2D). Further assess-
ment of the contaminant proteins showed that fetal bovine
serum proteins, human keratins, and the Lys-C enzyme
produced the largest number of contaminant PSMs. Lys-C
enzyme provides higher cleavage efficiency at lysine and is
therefore often used in combination with trypsin to improve
digestion efficiency.40 However, Lys-C enzyme contains almost

Figure 4. Evaluation of protein/peptide identifications influenced by the protein contaminant libraries in DDA and DIA proteomics. HEK cells and
mouse brain samples were analyzed by various DDA and DIA software platforms, with (blue) and without contaminant libraries (gray). Venn
diagrams showed the identified proteins from various data sets overlapping with the contaminant lists in the FASTA library (red). Bar graphs
showed the identified contaminants (red) and noncontaminant proteins/peptides with and without using contaminant libraries.
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twofold more arginine/lysine residues compared to trypsin,
leading to many contaminant peptides. Additionally, bovine
protein contaminants (albumin, etc.) were identified in all
affinity purification beads despite conducting prewashing steps.
Streptavidin-coated beads generated overwhelming streptavi-
din peptide signals.5 These exogenous contaminant proteins
originated from a different species will not be identified unless
the contaminant FASTA library is in use. Although our
libraries provided commonly observed contaminant proteins
for most proteomics experiments, contaminant proteins could
be sample-specific. For example, keratins may be biomarkers
for skin and oral cancer.41 In this special case, keratins may be
important proteins that should not be removed. Our new
FASTA library marked these common contaminant proteins
with “Cont_” in the UniProt ID, and we suggest that
researchers examine these protein IDs before removing them
from the results.

Contaminant Peptides Can Cause False Discoveries in DIA
Proteomics

The contaminant FASTA library has been widely used for
DDA proteomics but is rarely included in DIA data
analysis.30,35,42,43 Since DIA uses a much wider precursor
isolation window (4−15 Da) compared to DDA (0.4−2 Da),
contaminant peptides in DIA are more likely to be coeluted
and cofragmented with other peptides. If not addressed
properly, contaminant peptides may cause false identifications
of peptides/proteins. To evaluate the influence of contaminant
peptides, we analyzed several DIA proteomics data sets with
and without our contaminant FASTA library. As shown in
Figure 3A, when the contaminant FASTA library is not
included during data analysis, a contaminant Lys-C peptide
was misidentified as a KIF20B peptide due to numerous shared
peptide fragments. After including the contaminant library, the
peak picking algorithm identified an additional y3 ion and y7++

ion and assigned the fragmentation spectra to Lys-C instead of

KIF20B with higher confidence and lower peptide q-values.
This misidentification occurs frequently when trypsin/Lys-C
or Lys-C is used in multiple samples during library generation
and data processing (Supporting Figure S1A). A similar
scenario happened to bovine contaminant protein SERPINA1,
which was misidentified as CFAP100 (Figure 3B). Including
the contaminant library allows the identification of three
additional fragments to correctly assign to the SERPINA1
contaminant peptide. We carefully examined the identification
spectra in all data sets and found that these misidentifications
do not happen on a large scale, yet still represent clear evidence
of false discoveries caused by contaminant peptides when
contaminant protein libraries are not in use. Furthermore, as
contaminant peptides elute throughout the LC gradient and
mass range (Figure 2B), many contaminant peptides can be
coeluted and cofragmented with real peptides of interest
(Supporting Figure S1B−D). Although coelution and
cofragmentation are common in DIA proteomics, highly
abundant contaminant peptides can suppress the detection of
low abundant peptides by competing with them in an ion
source and mass analyzer. In proteomics, a target-decoy
strategy is commonly used to estimate the false discovery rate.
Highly abundant contaminant peptides can generate high
scores, potentially hindering the selection of low-score
biologically meaningful proteins.44 Therefore, carefully opti-
mizing experimental workflow to reduce contaminant signals
and integrating contaminant libraries into the data analysis
pipeline should be combined together to improve proteomics
data quality.

Including Contaminant Protein Library Improves Both
DDA and DIA Proteomics

Contaminant libraries can be integrated into the DDA and
DIA data analysis workflow via different strategies. DDA and
library-free DIA analyses only require the contaminant FASTA
protein sequences. Library-based DIA analysis requires both

Figure 5. Repository DIA proteomics data sets reanalyzed with and without the contaminant protein libraries. Various DIA data analysis platforms
were used to reanalyze two DIA data sets (human cells, PXD022589; mouse cortex, PXD005573) with (blue) and without contaminant libraries
(gray). The contaminant FASTA library and identified contaminant proteins are marked in red in the Venn diagrams and bar graphs.
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FASTA and spectral libraries. Contaminant spectral libraries
can be generated in two ways: (1) an integrated spectral library
built from contaminant-only raw data and custom proteomics
data together and (2) two separate spectral libraries for
contaminant and custom proteomics data. The contaminant
FASTA file is also required when building these spectral
libraries. In Spectronaut software, multiple spectral libraries
can be included during data analysis. We found that the
integrated spectral library performs similarly to two separate
libraries with slightly higher total protein identifications in
some data sets (Supporting Figure S2). Either method is better
compared to the results analyzed without the contaminant
library. However, many other DIA software platforms do not
allow the inclusion of multiple spectral libraries and thus
require an integrated spectral library. Including the additional
contaminant FASTA and spectral libraries did not increase the
software processing time for multiple DDA (Proteome
Discoverer, MaxQuant) and DIA (DIA-NN, Spectronaut)
platforms.

To demonstrate the benefits of contaminant protein libraries
for both DDA and DIA proteomics, HEK cells and mouse
brain samples were analyzed in DDA and DIA workflows in
various data analysis software (Figure 4). After removing the
contaminants, more peptides/proteins were identified when
contaminant libraries were in use. The overall increases in
protein and peptide identification were around 0.9 and 1.3%,
respectively, across all software and sample types. The
improvement in noncontaminant protein IDs is likely due to
decreased false identifications and altered target/decoy ratios
when including the contaminant libraries. For DDA data,
including contaminant FASTA improved noncontaminant
peptide identifications but protein IDs were not influenced.
Benefited from the additional contaminant spectral library,
library-based DIA platforms provided a greater increase of
identifications compared to library-free platforms. This is likely
due to the high quality and abundant contaminant peptide
spectra from our contaminant-only samples. For various DIA
platforms, library-free DIA-NN generated the highest number
of protein and peptide IDs possibly due to the deep learning

Figure 6. Protein quantification is not influenced by the protein contaminant libraries. Violin boxplots showing the coefficient of variance for
protein quantification with (blue) and without (gray) the contaminant library in HEK cells (A) and mouse brain tissue (B) DIA proteomics data
sets. Spearman’s correlations of protein intensities were calculated with and without the contaminant libraries in HEK cells (C) and mouse brain
tissue (D).
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model implemented in the search algorithm and interference
correction algorithm. Besides in-house generated proteomics
data, we also analyzed repository data sets with and without
contaminant libraries. Two DIA repository data sets were
downloaded from ProteomeXchange: repository data set A
from HepG2 human cell samples24 and data set B from mouse
brain samples.37 An increased number of proteins and peptides
were identified when the data were analyzed with contaminant
libraries (Figure 5). Particularly for repository data set A, more
than 5% of additional proteins and peptides (noncontami-
nants) were identified when the contaminant library was used
in the library-based Spectronaut platform. Many bovine
contaminant proteins were identified from repository data set
A, similar to our in-house generated HEK cell data set, which
can be traced back to the FBS used for human cell culture. To
minimize the contamination from cell culture media, we highly
recommend quick washes with phosphate-buffered saline
(PBS) 2−3 times during cell harvest.
Since our contaminant libraries can improve protein/peptide

identifications, we further assessed protein quantification with
and without contaminant libraries. Coefficient of variation
(CV) values of all quantified proteins from HEK cells (Figure
6A) and mouse brain samples (Figure 6B) were calculated
after removing the contaminant proteins. No significant
differences were observed with and without including
contaminant libraries. DIA-NN resulted in more protein
identification but higher CVs compared to the Spectronaut
platform. Library-based methods provided less variation and
better reproducibility compared to library-free methods,
consistent with other reported studies.23,45 Protein intensities
were not exactly the same when data were analyzed with or
without contaminant libraries, but they did correlate very well
with Spearman’s correlation close to 1 (Figure 6C,D). To rule
out the possibilities that differences in protein identification
and quantification may be caused by additional entries in the
libraries, we performed a control analysis where 381 random
proteins were removed from the human FASTA library
(Supporting Figure S4). Including contaminant library always
outperformed the method without contaminant library. No
major differences in quantification were observed in this
control analysis, demonstrating that including additional
contaminant libraries do not influence protein quantification.

■ CONCLUSIONS
To sum up, we highly recommend using our contaminant
libraries for both DDA and DIA proteomics data analyses. This
study addressed a critical gap in bottom-up proteomics by
establishing and evaluating contaminant protein libraries to
reduce false discoveries and improve identifications in both
DDA and DIA proteomics. Although the software programs
used here (Spectronaut, DIA-NN, MaxQuant, Proteome
Discoverer) are not an exhaustive list of all available data
analysis platforms, we believe that our contaminant libraries
can be universally applied to all bottom-up DIA and DDA
proteomics software platforms. In fact, we provided a step-by-
step tutorial on how to best incorporate our contaminant
FASTA and Spectral libraries for many other software
platforms such as Skyline,22 MaxDIA,24 and PECAN27

(Supporting Tutorial). Recognizing the different nature of
samples used in various proteomic experiments, our ongoing
efforts will continue updating and enriching our contaminant
libraries to include sample type-specific contaminant libraries
on our websi te (https://gi thub.com/HaoGroup-

ProtContLib). Currently available FASTA libraries include
the universal contaminant FASTA evaluated in this study, as
well as new FASTA libraries specifically for cell culture, mouse
tissue, and rat tissue. These freely accessible contaminant
FASTA and spectral libraries can be valuable resources for
proteomic researchers and facilitate the standardization of
proteomic data analysis across different laboratories.
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