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In a nutshell

The cocycle invariant introduced by Carter, Jelsovsky,
Kamada, Langford and Saito admits a ternary generalization
that uses ternary cohomology.

A ribbon category can be constructed from ternary structures,
twisted by cohomology. This gives a “quantum” version of the
cocycle invariant.

This paradigm generalizes to symmetric monoidal categories,
where now we have self-distributive objects.

There are several examples from Hopf algebras and Lie
algebras.
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Recall quandles

Definition

A quandle is a set X togehter with a binary operation
∗ : X × X −→ X satisfying the following three axioms

x ∗ x = x , for all x ∈ X ,

the right multiplicaiton map − ∗ x : X −→ X is a bijection for
all x ∈ X , where − is a placeholder,

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), for all x , y , z ∈ X .

Remark

The three axioms in the definition of quandle correspond to
Reidmeister moves of type I, II and III.
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Examples of quandles

Any group G with operation given by conjugation:
x ∗ y = y−1xy .

Z/nZ with operation given by x ∗ y = 2y − x .

Any Λ(= Z[t, t−1])-module M is a quandle with
a ∗ b := ta + (1− t)b, for a, b ∈ M, and is called an
Alexander quandle.

Given a group G and an automorpism f ∈ Aut(G ), it is easy
to show that x ∗ y := f (xy−1)y defines a quandle structure.
This is called a generalized Alexander quandle.
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Ternary racks/quandles (TSD)

A set X together with a ternary operation
T : X × X × X −→ X satisfying the properties:

T (T (x , y , z), u, v) = T (T (x , u, v),T (y , u, v),T (z , u, v)) for
all x , y , z , u, v ∈ X .
The map T (−, y , z) : X −→ X is a bijection for all y , z ∈ X .
T (x , x , x) = x for all x ∈ X . .

Examples:

Iteration of binary self-distriutive operation:
T (x , y , z) = (x ∗ y) ∗ z .
Heap of a group: T (x , y , z) = xy−1z .
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Categorical TSD

In a symmetric monoidal category:

Comonoid object (X ,∆);

Morphism T : X ⊗ X ⊗ X −→ X such that

X⊗9 X⊗5

X⊗9 X⊗3

X⊗3 X

�

1
⊗3⊗∆⊗2

3

T⊗1⊗2

T⊗T⊗T T

T
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Examples

Linearize any set-theoretic TSD operation given above, with
∆(x) = x ⊗ x .

Quantum heap: Involutory Hopf algebra H with operation
x ⊗ y ⊗ z −→ xS(y)z .

Actually, any involutory Hopf monoid with same operation as
above.

Lie lagebra g. Define X = C⊕ g, TSD operation

T (a, x)⊗(b, y)⊗(c , z) = (abc, bcx+b[x , z ]+c[x , y ]+[[x , y ], z ].),

and ∆(a, x) = (a, x)⊗ (1, 0) + (1, 0)⊗ (0, x).
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Recall some cohomology

Define Cn(X ) to be the free abelian group generated by
(2n + 1)-tuples (x0, x1, · · · , x2n) of elements of a ternary rack
X .

Define differentials ∂nCn(X ) −→ Cn−1(X ) as:

∂n(x0, x1, · · · , x2n)

=
2n−1∑
i=1

(−1)i [(x1, · · · , x̂i , x̂i+1, · · · , xn)

−(T (x0, xi , xi+1), · · · ,T (xi−1, xi , xi+1), x̂i , x̂i+1, · · · , xn)].

Dualize to get cohomology.
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Set-theoretic invariants

Recall (Framed) Knot Diagrams:

Figure: Taken from Even-Zohar, Chaim. The writhe of permutations and
random framed knots. Random Struct. Algorithms 51 (2017): 121-142.
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Set-theoretic invariants

Define colorings of framed diagrams.

Define Boltzmann weights using diagrammatic interpretation
of ternary quandles.

Theorem

The Boltzmann sum

Θ(D) =
∑
C

∏
τ

B(φ, τ, C)

is an invariant of framed links.
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Quantum (linearized) version

Construct a category Rα(X ), from a ternary TSD set (X ,T ) , and
endow it with a braiding cα and a nontrivial twist θα, where α is a
TSD 2-cocycle: cαx ⊗ y ⊗ z ⊗ w =
α(x , z ,w)α(y , z ,w)z ⊗ w ⊗ T (x , z ,w)⊗ T (y , z ,w),
θαx ⊗ y = α(x , x , y)α(y , x , y)T (x , x , y)⊗ T (y , x , y).

Theorem

The category R∗α(X ) with braiding induced by cα and twisting
morphisms induced by θα is a ribbon category. Moreover, if
[α] = [β] the two categories R∗α(X ) and R∗β(X ) are equivalent.

Remark: Here the comultiplication is the natural diagonal map.
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Invariants

The previous category gives rise to an invariant of framed links,
ΨD(X ,T , α), as the quantum trace of an endomorphism of
R∗α(X ), associated to a framed braid representing the framed link.

Theorem

Fix a diagram D of L. Then the ribbon cocycle invariant
ΘD(X ,T , α) and the quantum invariant ΨD(X ,T , α) coincide.
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Symmetric monoidal categories

But the examples of TSD objects in set category are just examples
of TSD objects in symmetric monoidal categories!

Take linear symmetric monoidal categories and introduce a
notion of TSD 2-cocycles.

Construct braided categories from object X and categorical
2-cocycle α.

Get invariants when the symmetric monoidal category satisfies
some “finiteness” condition.
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Need: 2-cocycles

Convolution invertible morphism α : X ⊗ X ⊗ X −→ I is a
categorical 2-cocycles if the diagram

X⊗5 X⊗8 I⊗2

X⊗12 I⊗2 I

�1◦(∆3
1

2)

�2◦(∆1
2∆2

2)

αα◦(13T12)

αα◦(13T 3)

commutes.
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In modules

α(x (1) ⊗ y (1) ⊗ z(1)) · α(T (x (2) ⊗ y (2) ⊗ z(2))⊗ u ⊗ v)

= α(x (1) ⊗ u(1) ⊗ v (1))

·α(T (x (2) ⊗ u(2) ⊗ v (2))⊗ T (y ⊗ u(3) ⊗ v (3))⊗
⊗T (z ⊗ u(4) ⊗ v (4))).

Observe that if one takes a linearized TSD this coincides with
linearizing the 2-cocycle condition for set-theoretic structures given
before.
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Examples of cat 2-cocy’s

The obvious one: In linearized TSD structure, take “usual”
2-cocycle α and compose it with a group character.

A less obvious one: Take a (cocommutative) Hopf algebra H
and a Hopf 2-cocycle σ. Then composing (twice) the map
α(x ⊗ y) := σ(x (1) ⊗ y (1))σ−1(y (2) ⊗ S(y (3))x (2)y (4)) gives a
2-cocycle.
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Braiding from TSD objects

Basic assumption: We have a (cocommutative) TSD object in a
(linear) symmetric monoidal category, and a categorical 2-cocycle
α.

Define: cα2,2 = (1⊗2 ⊗ ([α⊗ α]⊗ T ⊗ T ))�c (∆⊗2∆⊗2
4 ).

Define: θα2 = ([α⊗ α]⊗ T ⊗ T )�θ (∆⊗2
6 ).

Then take all even powers of X , and all combinations of
previous two types of morphisms.
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In modules

cα2,2(x ⊗ y ⊗⊗z ⊗ w)

= z(1) ⊗ w (1) ⊗
[α(x (1) ⊗ z(2) ⊗ w (2)) · α(y (1) ⊗ z(3) ⊗ w (3))] ·
T (x (2) ⊗ z(4) ⊗ w (4))⊗ T (y (2) ⊗ z(5) ⊗ w (5)),

θα2 (x ⊗ y) = [α(x (1) ⊗ x (2) ⊗ y (2)) · α(y (1) ⊗ x (3) ⊗ y (3))] ·
T (x (4) ⊗ x (5) ⊗ y (5))⊗ T (y (4) ⊗ x (6) ⊗ y (6)).
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String diagrams

xzz x

T(x   )

xy

z (1)y (1) y (2) z (2)T(x   )

y z

z (1)y (1)z (2) y (2)

y zx y
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String diagrams
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Theorem

R∗α(X ) is a ribbon category. Moreover, if α and β are equivalent,
then R∗α(X ) ∼= R∗β(X ) as ribbon categories.

Under finiteness conditions one naturally gets framed link
invariants which give the linearized and set-theoretic versions given
above, as subcases.
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Lastly...

The whole construction can be generalized to multiple classes
of TSD objects with some coherence conditions.

The 2-cocycle condition becomes a compatibility condition
between 2-cocycles of different TSD objects.

An example of this is a G -family of quandles with Nosaka’s
2-cocycles. (This was used by Ishii, Iwakiri, Jand and Oshiro
to get handlebody cocycle invariants)

Unfortunately, I have no examples that do not come from
linearized structures.
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This is the end

Thank you!
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