Full control of plasmonic nanocavities using gold decahedra-on-mirror constructs with monodisperse facets

Shu Hu1*, Eoin Elliott1, Ana Sánchez-Iglesias2, Junyang Huang1, Chenyang Guo1, Angela Demetriadou3, Luis M. Liz-Marzán2,4, Jeremy J. Baumberg1*

1Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England, UK
2CIC biomaGUNE, Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
3School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
4Ikerbasque, Basque Foundation for Science, Bilbao 43009, Spain
* email: sh2065@cam.ac.uk, jjb12@cam.ac.uk

Extreme light confinement in plasmonic nanocavities has opened up a wide range of nanophotonics science and technology. The nanoparticle-on-mirror (NPoM) nanocavity has become an outstanding platform, able to control the inter-metal gap with subnanometer precision. However, geometrical variations in spherical Au nanoparticles1 prevent full control. Here we use instead gold nanodecahedra2 with identical monodisperse facets to create nanodecahedra-on-mirror (NDoM) nanocavities with ultra-precise optical modes and ultra-high consistency.3

Figure 1. a,b, Schematic and dark field images of (a) spherical NPoM and (b) decahedral NDoM nanocavities. c,d, Statistics of scattering spectra from >1000 (c) NPoMs and (d) NDoM nanocavities, with dominant spectra for each.

We suppress the variability in optical modes when using NDoMs as a result of this facet control (Fig. 1)3. A set of robust higher-order plasmonic whispering gallery modes are obtained, which are uniquely localized at the edges of the bottom triangular facet (Fig. 1b). To understand the variability of light in/output coupling, we characterize 20,000 individual nanocavities and evaluate the effect of laser polarization, chirality, and diameter. Implementing a further systematic elaboration based on quasi-normal mode simulations, produces a further hundred-fold enhancement in radiative efficiencies. This develops a novel metallic nanocavity system that will have broad applications across nanophotonic devices, optomechanics, catalysis, molecular electronics, and surface science.

References