
1

Configure, Tune, and Benchmark
a Lustre Filesystem

John Fragalla
Principal Architect

High Performance Computing

2

©Xyratex 2014

• Server Side Benchmarking
• Lustre Tuning Parameters and Striping
• Client Side Benchmarking using IOR and MDTEST

Agenda

3

Lustre Server Side Tuning
and Benchmarking

4

©Xyratex 2014

• Using obdfilter-survey is a Lustre benchmark tool that
measures OSS and backend OST performance and does
not measure LNET or Client performance

• This is a good benchmark to isolate network and client
from the server

• Must run as root to execute obdfilter-survey on the OSS
nodes.

Server Side Benchmark

5

©Xyratex 2014

•  Example of obdfilter-survey parameters
[root@oss1 ~]# nobjlo=1 nobjhi=1 thrlo=256 thrhi=256 size=65536 obdfilter-survey

•  Parameters Defined
–  size=65536 // file size per OST (2x Controller Memory is good practice)
–  nobjhi=1 nobjlo=1 // number of files per OST
–  thrhi=256 thrlo=256 // number of worker threads per OST

•  If you see results significantly lower than what is expected, rerun the test multiple
times to ensure those results are not consistent.

•  This benchmark can also target individual OSTs if we see an OSS node performing
lower than expected, it can be because of a single OST performing lower due to drive
issue, RAID array rebuilds, etc.

[root@oss1 ~]# targets=“fsname-OST0000 fsname-OST0002” nobjlo=1 nobjhi=1 thrlo=256
thrhi=256 size=65536 obdfilter-survey

obdfilter-survey Parameters

6

Lustre Tuning Guidelines

7

©Xyratex 2014

•  Disable Network Checksums (15% Performance Improvement)
–  Default is turned on and impacts performance. Disabling this improves

performance

•  Max RPCs in Flight (15% Performance Improvement)
–  RPC is remote procedure call and indicates how much traffic is introduced on

LNET per OST from the client
–  Default is 8, Increase to 32 for IB, and up to 256 for Ethernet, in some cases
–  Depends on number of clients
–  This tunable is the maximum number of concurrent RPCs in flight from clients.

•  Max Dirty MB (Can Improve Read Performance)
–  Default is 32, good rule of thumb is 4x the value of max_rpcs_in_flight.
–  Defines the amount of MBs of dirty data can be written and queued up on the

client

Client Lustre Parameters

8

©Xyratex 2014

• Jumbo Frames has a >= 30% improvement on Lustre
Performance compared to standard MTU of 1500

• Change MTU on Client and Servers to 9000
• Change MTU on the Switches to 9214 (or max MTU size)

to accommodate for payload overhead

Ethernet Tuning

9

©Xyratex 2014

• Default Lustre Stripe size is 1M and stripe count is 1
– Each file is written to 1 OST with a stripe size of 1M
– When multiple files are created and written, MDS will do

best effort to distribute the load across all available OSTs
• The default stripe size and count can be changed.

Smallest Stripe size is 64K and can be increased by 64K
and stripe count can be increased to include all OSTs

– Changing stripe count to all OSTs indicates each file will
be created using all OSTs. This is best when creating a
single shared file from multiple Lustre Clients

• One can create multiple directories with various stripe
sizes and counts to optimize for performance

Lustre Striping

10

Client Side Benchmark
Using IOR and MDTEST

11 ©Xyratex 2014

•  IOR and MDTEST use MPI to execute the tests across
multiple Lustre/Compute Clients

• SSH keys are required to setup per client to allow remote
execution

•  IOZONE Benchmark not covered but can discuss later
over Coffee

IOR and MDTEST

12

©Xyratex 2014

•  Within IOR, one can configure the benchmark for File-Per-Process, and
Single-Shared-File

– File-Per-Process: Creates a unique file per task and most common
way to measure peak throughput of a Lustre Parallel Filesystem

– Single-Shared-File: Creates a Single File across all tasks running on
all clients

•  Two primary modes for IOR
– Buffered: This is default and takes advantage of Linux page caches

on the Client
– DirectIO: Bypasses Linux page caching and writes directly to the

filesystem

Measuring Performance using IOR

13

©Xyratex 2014

• Always want to transfer 2x the memory size of the total
number of clients used to avoid any client side caching
effect

•  In our example:
– (200_Clients*32GB)*2 = 12800GB

•  Total file size for the IOR benchmark will be 12800GB
– NOTE: Typically all nodes are uniform.

IOR Rule of Thumb

14

©Xyratex 2014

• Typical IOR Parameter for 200 nodes with 32GB of memory is
/usr/lib64/openmpi/bin/mpirun -machinefile machinefile.txt –np 800 --byslot./IOR -v -F -t 1m
–b 8g -o /mnt/lustre/test.`date+"%Y%m%d.%H%M%S“‘

•  -np 800 = all 200 nodes used with 4 slots (tasks) per node
•  -b 16g = (2x32GB*200_Clients)/800_tasks
•  -o /mnt/lustre/test.`date +"%Y%m%d.%H%M%S“‘

– Found using different output test files provides better
performance than reusing the same filename for each run

•  -F : File per Process (removing this flag will result in single
shared file)

•  -t 1m: File transfer size of 1m
•  -v : verbose output
•  -D <time_seconds> - Deadline for Stonewalling
•  -B : Direct IO option, bypass any client page caching

Defining IOR Parameters

15

©Xyratex 2014

• Using both segment count and block size options to
define total transfer size per task, In some cases this
method using a block size of 4mb or 8mb, and a larger
segmentation count, will reduce the lock contention that
is present when just using a large block size in the range
of “gb”. Using the smaller block size, matching the
directory stripe size to equal that of the block size within
the IOR command; demonstrated a matched
performance for all tasks running across all 32 physical
clients.

–  32 Clients against 128 OSTs: configure a stripe count of 128 and only use 32 client in the
IOR Run, but use the segment -s flag

–  lfs setstripe –c 128 –s 4M /mnt/lustre/share
–  /usr/lib64/openmpi/bin/mpirun -machinefile machinesfile.txt -np 384 --bynode ./IOR –v -b

4m -t 4m -s 8192 -C -o /mnt/lustre/share/test.out

Segments in IOR

16

©Xyratex 2014

• Good benchmark to measure Metadata Operations per
Second

• Recommend using a Lustre output directory if stripe
count of 1 and stripe size of 1m

• Typical MDTEST Options
–  -v : Verbose output
–  –F : Perform tests on files only and used to test File Operations Per

Second
– –u Unique working directory for each task (Typically Used when only

wanting to measure File Operations per Second)
–  -z, –b, -D : Specify depth of the Directory and number of branches,

and test only Directories and used to measure Directory Operations
per Second

• Recommend to create at least 1 Million Files to remove
client caching effect

MDTEST

17

Conclusion

18

©Xyratex 2014

• There are many configuration parameters and options to
change or tune to optimize performance for Lustre

• Stripe size and stripe count play an important role in
benchmarking Lustre

•  In addition to Lustre options, IOR and MDTEST also have
many options and flags that can be used to optimize the
benchmark to measure throughput or operations

• Benchmarking requires patience, creativity, and time

Conclusion

19

References

20

©Xyratex 2014

•  IEEE “Optimizing Performance of HPC Storage Systems”
– Torben Kling-Petersen and John Fragalla, Xyratex
– http://goo.gl/0M0HCd

• Lustre Manuals
– http://goo.gl/EeNzW
– http://goo.gl/Y2bjx
– http://goo.gl/pO6r0

•  IOR
– http://goo.gl/ctfmD
– http://goo.gl/aD6fA

• obdfilter-survey
– http://goo.gl/2TfTO

References

21

Configure, Tune, and Benchmark
a Lustre Filesystem

John_Fragalla@xyratex.com

Thank You

