Configure, Tune, and Benchmark
a Lustre Filesystem

John Fragalla

Principal Architect
High Performance Computing

Agenda

» Server Side Benchmarking
 Lustre Tuning Parameters and Striping
* Client Side Benchmarking using IOR and MDTEST

Lustre Server Side Tuning
and Benchmarking

Server Side Benchmark

» Using obdfilter-survey is a Lustre benchmark tool that
measures OSS and backend OST performance and does
not measure LNET or Client performance

 This is a good benchmark to isolate network and client
from the server

* Must run as root to execute obdfilter-survey on the OSS
nodes.

obdfilter-survey Parameters

» Example of obdfilter-survey parameters
[root@ossl ~]# nobjlo=1 nobjhi=1 thrlo=256 thrhi=256 size=65536 obdfilter-survey

« Parameters Defined
— size=65536 /I file size per OST (2x Controller Memory is good practice)
— nobjhi=1 nobjlo=1 // number of files per OST
— thrhi=256 thrlo=256 // number of worker threads per OST

* If you see results significantly lower than what is expected, rerun the test multiple
times to ensure those results are not consistent.

« This benchmark can also target individual OSTs if we see an OSS node performing
lower than expected, it can be because of a single OST performing lower due to drive
issue, RAID array rebuilds, etc.

[root@ossl ~]# targets=“"fsname-0ST0000 fsname-0ST0002” nobjlo=1 nobjhi=1 thrlo=256
thrhi=256 size=65536 obdfilter-survey

Lustre Tuning Guidelines

Client Lustre Parameters

 Disable Network Checksums (15% Performance Improvement)
— Default is turned on and impacts performance. Disabling this improves
performance
 Max RPCs in Flight (15% Performance Improvement)

— RPC is remote procedure call and indicates how much traffic is introduced on
LNET per OST from the client

— Default is 8, Increase to 32 for IB, and up to 256 for Ethernet, in some cases
— Depends on number of clients
— This tunable is the maximum number of concurrent RPCs in flight from clients.

« Max Dirty MB (Can Improve Read Performance)

— Default is 32, good rule of thumb is 4x the value of max_rpcs_in_flight.

— Defines the amount of MBs of dirty data can be written and queued up on the
client

Ethernet Tuning

« Jumbo Frames has a >= 30% improvement on Lustre
Performance compared to standard MTU of 1500

« Change MTU on Client and Servers to 9000

* Change MTU on the Switches to 9214 (or max MTU size)
to accommodate for payload overhead

Lustre Striping

 Default Lustre Stripe size is 1M and stripe count is 1
—Each file is written to 1 OST with a stripe size of 1M

—When multiple files are created and written, MDS will do
best effort to distribute the load across all available OSTs

» The default stripe size and count can be changed.
Smallest Stripe size is 64K and can be increased by 64K
and stripe count can be increased to include all OSTs

—Changing stripe count to all OSTs indicates each file will

be created using all OSTs. This is best when creating a
single shared file from multiple Lustre Clients

* One can create multiple directories with various stripe
sizes and counts to optimize for performance

Client Side Benchmark

Using IOR and MDTEST

IOR and MDTEST

 |IOR and MDTEST use MPI to execute the tests across
multiple Lustre/Compute Clients

 SSH keys are required to setup per client to allow remote
execution

 |IOZONE Benchmark not covered but can discuss later
over Coffee

Measuring Performance using IOR

* Within IOR, one can configure the benchmark for File-Per-Process, and
Single-Shared-File

— File-Per-Process: Creates a unique file per task and most common
way to measure peak throughput of a Lustre Parallel Filesystem

— Single-Shared-File: Creates a Single File across all tasks running on
all clients

* Two primary modes for IOR

—Buffered: This is default and takes advantage of Linux page caches
on the Client

—DirectlO: Bypasses Linux page caching and writes directly to the
filesystem

|OR Rule of Thumb

» Always want to transfer 2x the memory size of the total
number of clients used to avoid any client side caching
effect

* In our example:

—(200_Clients*32GB)*2 = 12800GB
e Total file size for the IOR benchmark will be 12800GB

—NOTE: Typically all nodes are uniform.

Defining IOR Parameters
* Typical IOR Parameter for 200 nodes with 32GB of memory is

/usr/1ib64/openmpi/bin/mpirun -machinefile machinefile.txt -np 800 --byslot./IOR -v -F -t 1m
-b 8g -o /mnt/lustre/test. date+"%$Y%m%d.$HIMES™?

* -np 800 = all 200 nodes used with 4 slots (tasks) per node
* -b 16g = (2x32GB*200 Clients)/800 tasks

* -0 /mnt/lustre/test. date +"%Y %m%d.%H%M%S™

—Found using different output test files provides better
performance than reusing the same filename for each run

 -F : File per Process (removing this flag will result in single
shared file)

-t 1m: File transfer size of 1m

e -v . verbose output

 -D <time_seconds> - Deadline for Stonewalling

 -B : Direct IO option, bypass any client page caching

Segments in IOR

» Using both segment count and block size options to
define total transfer size per task, In some cases this
method using a block size of 4mb or 8mb, and a larger
segmentation count, will reduce the lock contention that
IS present when just using a large block size in the range
of “gb”. Using the smaller block size, matching the
directory stripe size to equal that of the block size within
the IOR command; demonstrated a matched
performance for all tasks running across all 32 physical
clients.

— 32 Clients against 128 OSTs: configure a stripe count of 128 and only use 32 client in the
IOR Run, but use the segment -s flag

— Ifs setstripe —c 128 —s 4M /mnt/lustre/share

— lusr/lib64/openmpi/bin/mpirun -machinefile machinesfile.txt -np 384 --bynode ./IOR —v -b
4m -t 4m -s 8192 -C -o /mnt/lustre/share/test.out

MDTEST

* Good benchmark to measure Metadata Operations per
Second

« Recommend using a Lustre output directory if stripe
count of 1 and stripe size of 1m

* Typical MDTEST Options

— -v : Verbose output

— —F : Perform tests on files only and used to test File Operations Per
Second

— —u Unique working directory for each task (Typically Used when only
wanting to measure File Operations per Second)

— -z, —b, -D : Specify depth of the Directory and number of branches,
and test only Directories and used to measure Directory Operations
per Second

* Recommend to create at least 1 Million Files to remove
client caching effect

Conclusion

Conclusion

* There are many configuration parameters and options to
change or tune to optimize performance for Lustre

 Stripe size and stripe count play an important role in
benchmarking Lustre

* In addition to Lustre options, IOR and MDTEST also have
many options and flags that can be used to optimize the
benchmark to measure throughput or operations

 Benchmarking requires patience, creativity, and time

References

References

 |IEEE "Optimizing Performance of HPC Storage Systems”
— Torben Kling-Petersen and John Fragalla, Xyratex
—http://goo.gl/OMOHCd
* Lustre Manuals
—http://goo.gl/EeNzW
—http://goo.gl/Y2bjx
—http://goo.gl/pO6r0
* |IOR
—http://goo.gl/ctftmD
—http://goo.gl/aD6fA
* obdfilter-survey
—http://goo.gl/2TfTO

Configure, Tune, and Benchmark
a Lustre Filesystem

John_Fragalla@xyratex.com

Thank You

