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A large body of research has been devoted to variable selection in recent years. Bayesian
methods have been successful in applications, particularly in settings where the amount
of measured variables can be much greater than the number of observations. This chapter
reviews mixture priors that employ a point mass distribution at zero for variable selection
in regression settings. The popular stochastic search Markov chain Monte Carlo (MCMC)
algorithm with add-delete-swap moves is described. Posterior inference and prediction via
Bayesian model averaging are briefly discussed. Regression models for non-Gaussian data,
including binary, multinomial, survival and compositional count data, are also addressed.
Prior constructions that take into account specific structures in the covariates are reviewed.
These have been particularly successful in applications as they allow the integration of
different sources of external information into the analysis. A discussion of variational algo-
rithms for scalable inference concludes the chapter. Throughout, some emphasis is given to
the author’s contributions.
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2 Discrete Spike-and-Slab Priors: Models and Computational Aspects

1.1 Introduction

Variable selection, also known as feature selection, has been an important topic in the
statistical literature for the past several decades, with numerous papers published in both
theory and practice. Finding a subset of features that best explain an outcome of interest is
often an important aspect of the data analysis, as it allows for simpler interpretation, avoids
overfitting and multicollinearity, and provides insights into the mechanisms generating the
data. Variable selection is especially important when the number of potential predictors is
substantially larger than the sample size.

In linear regression settings, modern approaches to variable selection include criteria-
based methods, such as AIC/BIC [36], penalized likelihood methods which shrink to zero
coefficients of unimportant covariates [65], and Bayesian approaches that use shrinkage
priors to induce sparsity, such as mixtures of two distributions (spike-and-slab priors) [6,
17, 18, 23, 37] and unimodal continuous shrinkage priors [10, 43, 46]. With spike-and-slab
priors, a latent binary vector is introduced to index the possible subsets of predictors and
used to induce mixture priors of two components on the regression coefficients, one peaked
at zero (spike) and the other one a diffuse distribution (slab). Posterior inference is carried
out via stochastic search MCMC techniques to identify the high- probability models, and
variable selection is performed based on the posterior model probabilities. This chapter is
devoted in particular to discrete spike-and-slab constructions, which employ a point mass
distribution at zero as the spike component.

Bayesian methods for variable selection have several appealing features. They allow rich
modeling via MCMC stochastic search strategies and incorporate optimal model averaging
prediction; they extend naturally to multivariate responses and many linear and nonlinear
settings; they can handle the “small n - large p” setting, i.e., situations where the number
of covariates is larger than the sample size; they allow the use of priors that incorporate
past and collateral information into the model.

This chapter is organized as follows. Section 1.2 briefly reviews discrete spike-and-slab
priors for variable selection in linear regression, including the popular stochastic search
MCMC algorithm with add-delete-swap moves, for posterior inference, and a brief discus-
sion of Bayesian model averaging, for prediction purposes. Section 1.3 addresses regression
models for non-Gaussian data, including binary, multinomial and survival outcomes. It also
covers model settings for compositional count data. Section 1.4 reviews prior constructions
that take into account specific structures in the covariates, together with examples of modern
biomedical studies in genomics and neuroimaging that have motivated those constructions.
Section 1.5 discusses variational inference strategies for scalable inference. Final remarks
are given in Section 1.6.

1.2 Spike-and-slab priors for linear regression models

In the classical multiple linear regression model, a continuous response, yi, is modeled via
a linear combination of p covariates, xi = (x1, . . . , xp) ∈ Rp, as

yi = α+ xTi β + εi, i = 1, . . . , n, (1.1)

with εi ∼ N (0, σ2), β = (β1, . . . , βp)
T the vector of regression coefficients and α the baseline

or intercept. The variable selection problem arises when it is believed that not all p covariates
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Spike-and-slab priors for linear regression models 3

are important in explaining changes of the response and identification of the important
predictors is one of the goals of the analysis. Clearly, setting to zero some of the regression
coefficients in (1.1) is equivalent to excluding the corresponding subset of predictors from
the model. In the Bayesian paradigm this can be achieved by imposing sparsity-inducing
mixture priors, known as spike-and-slab priors, on the βj coefficients [17, 18, 23, 37]. This
formulation introduces a latent vector γ = (γ1, . . . , γp) of binary indicators

γj =

{
1 if variable j is included in model,
0 otherwise.

Two prior constructions have been developed in parallel in the statistical literature. This
chapter focuses on the discrete construction, which employs a mixture prior distribution on
βj with a point mass at zero, see Figure 1.1, as

βj |σ2, γj ∼ (1− γj)δ0(βj) + γjN (0, hjσ
2), (1.2)

for j = 1, . . . , p, with δ0(·) the Dirac function at βj = 0 and the hj ’s a set of hyperparameters.
Here, γj = 0 excludes the j-th variable from the model since the prior on the corresponding
coefficient βj is a point mass distribution at 0, while γj = 1 includes the predictor into the
model, leading to a normal prior on βj . Mixture priors of type (1.2) for the linear regression
setting were originally proposed by [37] and made popular by [18]. The prior formulation
is completed with an independent conjugate inverse-gamma priors on σ2 and a Gaussian
prior on the intercept α,

α|σ2 ∼ N (α0, h0σ
2), σ2 ∼ IG(ν/2, λ/2), (1.3)

with α0, h0, ν and λ hyperparameters to be chosen. Setting α0 = 0 and taking h0 → ∞
results in a vague prior on the intercept, so that mean centering the predictors sets the
posterior mean for α at ȳ.

Common choices for the hyperparameters hj ’s in (1.2) assume that the βj ’s are a priori
independent given γ, for example, by choosing hj = c for every j. Generally speaking, small
values of c induce shrinkage towards smaller models, while larger values favor the selection
of larger models. Dependent priors that use the Zellner’s g-prior of [74] have also been
considered [33, 60],

β(γ)|σ2 ∼ N (0, c(X′(γ)X(γ))
−1σ2), (1.4)

with β(γ) the subset of coefficients corresponding to the elements of γ equal to 1 and
X(γ) the selected covariates. The range of values c ∈ [10, 100] is suggested in [60]. The
Zellner’s prior is appealing because of its intuitive interpretation. It can, however, induce
mixing problems in the MCMC, particularly with subsets of highly correlated predictors.
[6] investigated prior (1.2) with hj proportional to the j-th diagonal element of (X′X)−1,
to alleviate this problem. Prior constructions described so far are conjugate to the Gaussian
likelihood. Non-conjugate constructions, that assume independent priors on β and σ2, are
also possible, see for example [18]. We will revisit these constructions in Section 1.2.1.

The discrete construction (1.2) differs from the continuous spike-and-slab prior, which
instead employs a mixture of two continuous components, typically two Gaussian distribu-
tions, one concentrated around zero and the second one more spread out over plausible large
values [17, 23], see Figure 1.1. Unlike with the continuous construction, discrete priors of
type (1.2) effectively exclude non-selected variables from the calculation of the likelihood.
While optimality properties of continuous spike-and-slab priors have been studied fairly
extensively [24, 38, 53], theoretical guarantees for the discrete construction in the linear
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FIGURE 1.1
Spike-and-slab mixture priors for Bayesian variable selection. Left: The discrete construction
(solid line) is a mixture of a point mass at zero (spike; dashed line) and a diffuse prior (slab;
dotted line). Right: The continuous construction (solid line) is a mixture of two normal
distributions, one peaked around zero (dashed line) and the other with a large variance
(dotted line).

regression setting (1.1) have become available only recently, due to the seminal work of [13],
and include optimality results for the Zellner g-prior construction (1.4), see [73].

Prior construction (1.2) requires the choice of a prior distribution on γ. The simplest
and most common choice adopted in the literature is a product of independent Bernoulli’s
with common parameter ω as

p(γ|ω) =

p∏
j=1

ωγj (1− ω)1−γj , (1.5)

that leads to pω being the number of variables expected a priori to be included in the
model. Uncertainty on ω can be modeled by imposing a Beta hyperprior, ω ∼ Beta(a, b),
with a, b to be chosen. If inference on ω is not of interest, it can be integrated out to sim-
plify the MCMC implementation. A weakly-informative prior can be obtained by setting
a = b = 1, resulting in the prior expected mean value to be m = a/(a + b) = .5. An
attractive feature of the Beta-Binomial prior construction is that it imposes an a priori
multiplicity penalty, as argued in [57]. The intuition behind this is that the marginal prior
on γ contains a non-linear penalty which is a function of p and therefore, as p grows, with
the number of true variables remaining fixed, the posterior distribution of ω concentrates
near 0. A limitation of the Beta-Binomial construction is that it assumes that the inclusion
indicators are stochastically independent. Alternative priors, that exploit complex depen-
dence structures between covariates, as induced by underlying biological processes and/or
networks, have been motivated by specific applications to data from biomedical studies.
Some of these prior constructions will be described in Section 1.4.

Conjugate discrete spike-and-slab prior constructions have been extended by [6, 7] to
multivariate linear regression models with q response outcomes. Their construction selects
variables as relevant to either all or none of the q responses. [31] proposed multivariate
constructions based on partition models that allow each covariate to be relevant for subsets
and/or individual response variables. Other flexible multivariate prior formulations, that
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Spike-and-slab priors for linear regression models 5

allow to select covariates for individual responses, were proposed by [52, 63]. See Section
1.3 for an example of such construction in a multivariate count data model setting.

1.2.1 Stochastic search MCMC

Let us consider the linear setting (1.1) with the discrete spike-and-slab prior construction
described in the previous section. The choice of conjugate priors makes it possible to inte-
grate out the model parameters and obtain the relative posterior distribution of γ as

p(γ|y,X) ∝ p(y|γ,X)p(γ). (1.6)

This distribution allows to identify the “best” models as those with highest posterior prob-
abilities. When a large number of predictors makes the full exploration of the model space
unfeasible, MCMC methods can be used as stochastic searches to explore the posterior dis-
tribution and identify models with high posterior probability. Marginalization (1.6), jointly
with a QR deletion-addition algorithm for fast updating in the calculation of the marginal
likelihood, leads to efficient MCMC schemes for posterior inference, see [18] for the uni-
variate regression setting and [7] for multivariate regression. A commonly used algorithm
is a Metropolis-Hastings scheme readapted from the MC3 algorithm proposed by [34] in
the context of model selection for discrete graphical models. It consists of add-delete-swap
moves that allow the exploration of the posterior space by visiting a sequence of models
where, at each step, the new model differs from the previously visited one by the inclusion
and/or exclusion of one or two variables. More specifically, given a randomly chosen start-
ing value, γ0, at a generic iteration the new model is generated from the previous one by
randomly choosing one of the following transition moves:

1. (Adding or deleting) Randomly pick one of the p indices in γold and change its
value. This results in either including a new variable in the model or in deleting
a variable currently included.

2. (Swapping) Draw independently and at random a 0 and a 1 in γold and switch
their values. This results in both the inclusion of a new variable in the model and
the deletion of a currently included one.

By indicating with γnew the candidate model, the acceptance probability is calculated as

min

[
p(γnew|y,X)

p(γold|y,X)
, 1

]
. (1.7)

Therefore, if the new candidate model has a higher probability than the current one, the
chain moves to the new configuration. If not, then the move is still possible, but now only
with a certain probability. Note that the acceptance probability (1.7) depends on an “exact”
ratio, since the constants of proportionality from (1.6) cancel out. This allows the search to
quickly move towards better models. The stochastic search results in a list of visited models,
γ(0), . . . ,γ(T ), and their corresponding relative posterior probabilities. Variable selection can
then be achieved either by looking at the γ vectors with largest joint posterior probabilities
among the visited models or, marginally, by calculating frequencies of inclusion for each γj
and then choosing those γj ’s with frequencies exceeding a given cut-off value. A common
choice is a cut-off value of 0.5, which results in the median probability model [1]. Methods
based on expected false discovery rates can also be employed, as suggested in [39].

Gibbs sampling schemes are also possible, see for example [18]. However, these schemes
typically sample all variable indicators γj ’s at each iteration, unlike Metropolis schemes
that allow a more efficient exploration of the space of only the relevant variables. This
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is particularly important in situations of sparsity of the true model. Improved stochastic
MCMC schemes have been proposed, to achieve a faster exploration of the posterior space.
See, for example, the shotgun algorithm of [22] and the evolutionary Monte Carlo schemes,
combined with a parallel tempering step that prevents the chain from getting stuck in local
modes, proposed by [5]. A correlation-based stochastic search method, the hybrid-CBS
algorithm, which comprises add-delete-swap moves specifically designed to accommodate
correlations among the covariates, was proposed by [29]. Adaptive schemes that specifically
aim at improving the mixing of the MCMC chain have been investigated by [21, 30].

When non-conjugate priors are used, the marginalization of the model parameters is no
longer possible and those parameters need to be sampled as part of the MCMC algorithm.
Initial attempts employed the reversible jump algorithm of [20], to handle the varying di-
mensionality of the parameter vector, see for example [18]. Later, [19] showed that the
reversible jump can be formulated in terms of a mixture of singular distributions, implying
that the algorithm is the same as an MCMC algorithm that jointly samples parameters
and binary indicators. This is key in designing efficient MCMC algorithms for variable se-
lection in non conjugate settings, particularly for the case of non-Gaussian data and, more
generally, complex models for which conjugate prior formulations may not be available. For
example, this idea was used by [56] to design add-delete-swap algorithms that jointly up-
date parameters and selection indicators in a variable selection approach that incorporates
Gaussian processes within a generalized linear model framework. We will see an example of
a joint sampler for (β,γ) in Section 1.3, within a model setting for multivariate count data.

1.2.2 Prediction via Bayesian model averaging

Prediction is an important aspect of the inference in linear regression settings. Given the list
of models visited by the stochastic search, γ(0), . . . ,γ(T ), prediction of a future observation
yf can be done based on the selected models, either via least squares on single models, or by
Bayesian model averaging (BMA) [50], which accounts for the uncertainty in the selection
process by averaging over a set of a posteriori likely models. For example, for model (1.1)
with prior (1.2) and posterior (1.6), BMA calculates the expected value of the predictive
distribution p(yf |y,Xf ), averaging over a set of configurations of γ, with weights given by
the posterior probabilities of these configurations, as

ŷf =
∑
γ

(
α̂+ Xf

(γ)β̂(γ)

)
p(γ|y,X), (1.8)

with Xf
(γ) the covariates corresponding to the elements of γ equal to 1, α̂ = ȳ and

β̂γ = (X′(γ)X(γ) + H−1(γ))
−1X′(γ)y, with H a diagonal matrix with diagonal elements the

hyperparameters hj ’s of the slab component in (1.2). Typically, only the best k configu-
rations among those visited by the MCMC, according to their posterior probabilities, are
used in the summation.

1.3 Spike-and-slab priors for non-Gaussian data

Spike-and-slab mixture priors for variable selection have been extended beyond Gaussian
data to other model settings that express a response variable as a linear combination of
the predictors. A unified treatment of the class of generalized linear models (GLM) of [35]
presents some challenges. Conditional densities in the general GLM framework cannot be



Spike-and-slab priors for non-Gaussian data 7

obtained directly and the resulting mixture posterior may be difficult to sample from using
standard MCMC methods due to multimodality. Some attempts were done by [49], who
proposed approximate Bayes factors, and by [40], who developed a method to jointly select
variables and the link function.

Several contributions exist on extending spike-and-slab priors to specific models in the
GLM class, in particular models for binary and multinomial outcomes and parametric ac-
celerated failure time (AFT) models for survival outcomes. For example, probit models with
multinomial outcomes were considered by [59] and AFT models by [58]. In these settings,
data augmentation approaches allow to express the model in a linear framework, with latent
responses z, and conjugate priors are used to integrate the regression coefficients out, ob-
taining the marginal likelihood p(y|γ,X, z), and facilitating the implementation of MCMC
schemes that update γ conditional upon z. For other settings, where marginalization of the
regression coefficients is not possible, joint updates of coefficients and selection indicators
can be performed and, whenever possible, coupled with data augmentation schemes for
more efficient samplers. Examples include logistic and negative binomial regression models,
for which the Pólya-Gamma (PG) data augmentation schemes developed by [45, 47] can
be used to implement Gibbs samplers with PG updates on the latent variables followed by
Gaussian updates on the regression coefficients. See [69] for recent work that combines these
augmentation schemes with the add-delete-swap scheme of [56], as part of a variable selec-
tion approach to non-homogeneous hidden Markov models. Also, adaptive MCMC schemes
for variable selection in logistic and AFT regression models were investigated in [68].

1.3.1 Compositional count data

[67] considered a Dirichlet-multinomial (DM) regression framework for compositional count
data and demonstrated how to embed spike-and-slab priors for variable selection. Compo-
sitional count data yi = (yi1, . . . , yiq) sum up to a fixed amount. A suitable distribution for
this data is the multinomial

yi ∼ Multinomial(ẏi|pi), (1.9)

with ẏi =
∑q
k=1 yik, and pi defined on the q-dimensional simplex

Sq−1 = {(pi1, . . . , piq) : pik ≥ 0,∀k,
q∑

k=1

pik = 1}.

A Dirichlet conjugate prior can be imposed on the probability parameter vector, pi ∼
Dirichlet(φi), with q-dimensional vector φi = (φik > 0,∀k), and then pi can be integrated
out to obtain the DM model yi ∼ DM(φi). The DM model allows more flexibility than the
multinomial when encountering overdispersion, as it induces an increase in the variance by
a factor of (ẏi + φ̇i)/(1 + φ̇i).

Covariate effects can be incorporated into the DM model via a log-linear link on the
concentration parameters φi’s, by setting λik = log(φik) and assuming

λik = αk +

p∑
j=1

βjk xij , (1.10)

where βk = (β1k, . . . , βpk)T represents the covariates’ potential relations with the k-th
compositional outcome, and αk is a outcome-specific intercept term. Exponentiating (1.10)
ensures positive hyperparmeters for the Dirichlet distribution. For variable selection pur-
poses, the number of potential models to choose from is 2pq, and grows quickly even
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for a small number of covariates. [67] introduced a set of q latent p-dimensional vectors
γk = (γ1k, . . . , γpk) of inclusion indicators. Thus, γjk = 1 indicates that the j-th covariate
is associated with the k-th compositional outcome, and 0 otherwise. A discrete spike-and-
slab prior on βjk is then written as

βjk|γjk ∼ (1− γjk)δ0(βjk) + γjkN (0, r2k), (1.11)

where the hyperparameters r2k can be set large to impose a diffuse prior for the regression
coefficients included in the model. This multivariate spike-and-slab prior, that allows to
identify covariates associated with individual responses, is similar to constructions used by
[52, 63] in linear regression settings for Gaussian data with multiple responses.

Posterior inference is carried out via stochastic search MCMC algorithms. Here, the
regression coefficients βjk’s cannot be integrated out and, therefore, need to be jointly
updated with the inclusion indicators, following [56]. [67] employed this strategy within
a Gibbs scheme that scans through the γjk’s and uses adaptive sampling on the βjk’s.
[28] incorporated the joint update within an add-delete Metropolis-Hastings within Gibbs
sampling scheme that updates each αk and a randomly selected (γjk, βjk) at every iteration.
The joint update works as follows:

• Between-Model Step - Randomly select a γjk.

– Add: If the covariate is currently excluded (γjk = 0), change it to γ′jk = 1. Then
sample a new β′jk ∼ N (βjk, c) with c fixed to a chosen value. Accept proposal with
probability

min

{
f(y|α,β′,γ′,X)p(β′jk|γ′jk)p(γ′jk)

f(y|α,β,γ,X)p(γjk)
, 1

}
.

– Delete: If the covariate is currently included (γjk = 1), change it to γ′jk = 0 and set
β′jk = 0. Accept proposal with probability

min

{
f(y|α,β′,γ′,X)p(γ′jk)

f(y|α,β,γ,X)p(βjk|γjk)p(γjk)
, 1

}
.

• Within-Model Step - Propose a β′jk ∼ N (βjk, c) for each covariate currently selected in
the model (γjk = 1). Accept each proposal with probability

min

{
p(y|α,β′,γ,X)p(β′jk|γjk)

p(y|α,β,γ,X)p(βjk|γjk)
, 1

}
.

This within-model step is not required for ergodicity but allows to perform a refinement
of the parameter space within the existing model, for faster convergence.

As customary with spike-and-slab priors, variable selection is performed based on the
marginal posterior probabilities of inclusion (PPIs).

Recently, there has been a renewed interest in the biomedical community on statistical
models for compositional count data, in particular due to the availability of high-throughput
sequencing technologies that have enabled researchers to characterize the composition of the
microbiome by quantifying its richness, diversity and abundances. Human microbiome re-
search aims to understand how microbiome communities interact with their host, respond
to their environment, and influence disease. DM regression models allow to appropriately
handle the compositional structure of the data and accommodate the overdispersion induced
by sample heterogeneity and varying proportions among samples. While model formulation
(1.9) assumes that counts are negatively correlated, extensions exist that allow more gen-
eral correlation structures between counts, such as the Dirichlet-tree multinomial model,
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FIGURE 1.2
Analysis of data on dietary intake and microbiome via a regression model for compositional
count data with variable selection [28]. Plot of PPIs of associations between microbial taxa
and dietary factors, with each of the p = 97 dietary factors having a unique inclusion
indicator for each of the q = 28 taxa.

that deconstructs the model into the product of multinomial distributions for each of the
subtrees in a tree [71]. The R package MicroBVS, accompanying [28], comprises of a suite
of regression models for compositional data, including DM and Dirichlet-tree multinomial
regression models. It also implements the joint model of [27] that includes a phenotypical
outcome to investigate how the microbiome may affect the relation between covariates and
phenotypic responses. MCMC algorithms are written in C++, to increase performance time,
and accessed through R wrapper functions. The package includes a vignette with worked
out examples using simulated data and access to open-source data used in the papers. As an
example, let us consider the analysis of a benchmark data set collected to study the relation
between dietary intake and the human gut microbiome [72]. Briefly, the data used consist of
counts on q = 28 microbial taxa obtained from 16S rRNA sequencing and a corresponding
set of p = 97 dietary intake covariates derived from diet information collected using a food
frequency questionnaire on n = 98 subjects. In this analysis, the DM regression model was
fit to the data assuming a Beta-Binomial prior with a = 1 and b = 999 on the inclusion
indicators γjk of prior (1.11). At convergence of the MCMC, about 398 of the roughly 2700
terms would be selected with a threshold of .5 on the PPIs, see Figure 1.2. Heatmaps of
the selected positive and negative associations are shown in Figure 1.2. For this application,
knowledge of the identified relations between microbial composition and nutrients may help
researchers design tailored interventions to help maintain a healthy microbiome community
[72].

1.4 Structured spike-and-slab priors for biomedical studies

Spike-and-slab variable selection priors have found important applications in biomedical
studies. In high-throughput genomic, for example, linear models are routinely used to re-
late large sets of biomarkers to disease-related outcomes, and variable selection methods
are employed to identify the significant predictors. In neuroimaging, as another example,
functional magnetic resonance imaging (fMRI) is used to measure blood flow changes across
the whole brain and linear models are employed to detect (i.e, select) brain regions that
activate in response to external stimuli. For these applications, extensions of spike-and-slab
prior constructions have been motivated by specific characteristics of the data. For example,
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FIGURE 1.3
Analysis of data on dietary intake and microbiome via a regression model for compositional
count data with variable selection [28]. Heatmaps of selected positive (upper plot) and
negative (lower plot) associations.
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[63] put forward a graphical model formulation of a multivariate regression model where
target genes (the outcomes) are regulated by microRNAs (the covariates), which are small
RNA sequences located upstream of the genes. In the proposed model formulation, spike-
and-slab priors allow to identify gene-microRNA interactions, therefore inferring a biological
network. In place of the independent Bernoulli priors of type (1.5), the authors assumed a
logistic prior construction on γ of the form

P (γjk = 1|τ, η) =
exp (η + τsjk)

1 + exp (η + τsjk)
, (1.12)

that incorporates a set of available scores sjk of possible association between gene-microRNA
pairs, as obtained from external sequence/structure information. The prior assumes that the
γjk’s are stochastically independent given τ and reduces to p(γjk = 1) = exp(η)/(1+exp(η))
when all sjk = 0. Probit constructions that incorporate external information can also be
used and have been investigated in other integrative settings [11, 48]. These constructions,
while accounting for external information, still assume independence between inclusion in-
dicators. However, in many practical applications, researchers may be interested in incor-
porating prior information on the dependence structure between covariates, as captured by
an underlying biological process and/or a correlation network. Below, prior constructions
on γ that account for such information are briefly described.

1.4.1 Network priors

Network priors account for known relations among covariates in the form of a graph. For
example, in genomics, when covariates are chosen as gene expression levels, a network of
gene-gene interactions may be known based on biological information on known pathways
(i.e., groups of genes). Here, individual genes are represented by nodes in the network and
relations between them by edges. This network structure can be captured via a Markov
random field (MRF) prior [3], also known as Ising prior, on the binary indicator vector γ
as

P (γ|d, e) ∝ exp (d1′γ + eγ′Gγ) , (1.13)

with G a p × p adjacency matrix that represents the relations between covariates, that is,
with elements gjj′ = 1 if variables j and j′ have a direct link in the network, and gjj′ = 0
otherwise. Hyperparameters d ∈ R and e > 0 control the global probability of inclusion
and the influence of neighbors’ inclusion on a covariate’s inclusion, respectively. According
to parametrization (1.13), a covariate’s inclusion probability will increase if neighboring
covariates in the known network are also included in the model. The prior simplifies to
the independent Bernoulli(exp(d)/(1 + exp(d))) for e = 0. MRF priors of type (1.13) have
been employed in linear models for genomic applications to aid the identification of predic-
tive genes by [32]. Also, [62] considered a linear model that predicts a phenotype based on
predictors synthesizing the activity of genes belonging to same pathways. The prior model
encodes information on gene-gene networks via a MRF prior, as retrieved from available
databases, and inference results in the identification of both relevant pathways and subsets
of genes. Among more recent applications, [31] considered a linear model with multivari-
ate responses to identify the joint effect of pollutants on DNA methylation outcomes via
structured spike-and-slab priors that leverage the dependence across markers. In all these
papers, authors show how small increments of the parameter e in (1.13) can drastically
increase the number of selected covariates and provide guidelines on how to select suitable
values and/or prior distributions for this parameter.

In situations where the network structure G in prior (1.13) is unknown, it can be inferred
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from the data using priors and learning algorithms for undirected graphical models. [44] used
this strategy to obtain a Bayesian modeling approach for linear regression settings that
simultaneously performs variable selection while learning the dependence relations between
covariates. In this setting, the matrix of covariates X is treated as random and the joint
distribution of (y,X) is factorized as

f(y,X) = f(y|X)f(X), (1.14)

with f(y|X) defining the linear regression model. Assuming Gaussianity of the xi’s, we
have xi ∼ Np(0,Ω), where Ω = Σ−1 is a p × p precision matrix. Thus, the presence
of edge gjj′ = 1 in graph G corresponds to ωjj′ 6= 0 in Ω. [70] proposed a prior for
Ω that assumes continuous spike-and-slab distributions on the off-diagonal elements and
exponential distributions for the diagonal components as

p(Ω|G, v0, v1, θ) ∝
∏
j<j′

N (ωjj′ |0, v2jj′)
∏
j

Exp (ωjj |θ/2) I{Ω∈M+}, (1.15)

with v2jj′ = v1 if gjj′ = 1, and v2jj′ = v0 if gjj′ = 0, with v0 << v1, and where Exp(·|θ/2)
represents an exponential distribution with mean 2/θ. The term I{Ω∈M+} restricts the prior
to the space of symmetric-positive definite matrices. The model is completed with a prior
for G, for example as a simple product of independent Bernoulli’s on the gjj′ ’s elements,
with a common parameter π to represent the prior probability of inclusion for an individual
edge. A specification of π that reflects prior beliefs of sparsity is recommended by [70]. Also,
setting θ = 1 implies a relatively vague prior for ωjj when the data are standardized prior to
analysis. For posterior inference, [44] incorporated two additional steps, two update Ω and
G, following [70], within a stochastic search MCMC scheme for linear settings, to obtain
simultaneous variable selection and estimation of a graph between covariates. Also, [28]
extended these methods to the regression models for compositional count data discussed
in Section 1.3.1. Both prior options, (1.13) with G known and (1.13) with prior (1.15) on
Ω|G, are available in the R package MicroBVS.

1.4.2 Spiked nonparametric priors

Other extensions of spike-and-slab priors include constructions that employ nonparametric
priors [14, 25, 55]. One construction uses a mixture of a point mass at zero and a nonpara-
metric slab, typically a Dirichlet process (DP) prior [15] with a continuous distribution as
its centering distribution. Such construction clusters parameters together when information
in the data provides evidence of a common effect. This, in turn, allows to borrow infor-
mation across covariates, resulting in improved selection and estimation [14]. In [8], this
construction is referred to as an “outer” spike-and-slab nonparametric prior, as opposed to
the “inner” prior of [25], which is a DP prior where the base measure is modeled as a mixture
of a point mass at zero and a diffuse measure. The inner prior formulation does not share
information across covariates, but rather clusters vectors of regression coefficients across
observations. Recent applications of outer discrete nonparametric constructions include co-
variate dependent random partition models [2] and dynamic extensions for spatio-temporal
dynamic models with random effects [12].

Let us illustrate the outer construction via an application to functional magnetic reso-
nance imaging (fMRI) data, another area of successful applications of models that employ
spike-and-slab priors. In a typical task-based fMRI experiment, the whole brain is scanned
at multiple time points while the subject is presented with a series of stimuli. Each scan is
arranged as a 3D array of volume elements (or “voxels”), and the experiment returns time
series data acquired at each voxel. Let yiν = (yiν1, . . . , yiνT )T be the vector of the time
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series data at voxel ν, with ν = 1, . . . , V , for subject i. Common modeling approaches for
the analysis of task-based fMRI data rely on the general linear model formulation originally
proposed by [16]

yiν = Xiνβiν + εiν , εiν ∼ NT (0,Σiν), (1.16)

where Xiν is a known T ×K design matrix (for K stimuli) modeled as the convolution of
the stimulus patterns with a hemodynamic response function that accounts for the delay of
the response with respect to the stimulus onset. The task of the inference is to detect those
voxels that activate in response to the stimuli, which is equivalent to inferring the non-zero
regression coefficients in (1.16). Spatial correlation among brain voxels can be accounted
for in the prior construction. Examples include spike-and-slab priors that incorporate MRF
priors on the selection indicators, to account for neighboring correlation among voxels, and
nonparametric slabs that capture spatial correlation among possibly distant voxels [61, 76].
Let us consider the simpler case K = 1, i.e. one stimulus. A spiked nonparametric prior on
βiν can be written as

βiν |γiν , G0 ∼ (1− γiν)δ0(βiν) + γiνG0, (1.17)

where G0 denotes a Dirichlet process prior with N (0, τ) as the centering distribution. With
multiple subjects, a hierarchical Dirichlet Process (HDP) prior can be specified as the
nonparametric slab, inducing clustering among voxels within a subject on one level of the
hierarchy and between subjects on the second level, as

βiν |γiν , Gi ∼ (1− γiν)δ0(βiν) + γiνGi

Gi|η1, G0 ∼ DP (η1, G0)

G0|η2, P0 ∼ DP (η2, P0) (1.18)

P0 = N (0, τ),

with τ fixed, η1, η2 the mass parameters and P0 the base measure. With this prior formula-
tion, the subject-specific distribution Gi varies around a population-based distribution G0,
which is centered around a known parametric model P0. The mass parameters η1 and η2
control the variability of the distribution of the coefficients at the subject and population
level, respectively. This construction enables the model to borrow information from subjects
exhibiting similar activation patterns while also capturing spatial correlation among distant
voxels.

For model (1.16) with prior (1.18), [76] implemented an MCMC algorithm that com-
bines add-delete-swap moves with sampling algorithms for HDP models that use auxiliary
parameters for cluster allocation [64]. To ensure scalability, the authors also investigated an
alternative approach that uses variational inference combined with an importance sampling
procedure [9]. For inference, spatial maps of the activated brain regions for each subject
can be produced by thresholding the PPIs of the γiν ’s and corresponding posterior β-maps
can be obtained based on the estimated regression coefficients. As an additional feature, the
use of the nonparametric HDP prior construction can be exploited to obtain a clustering
of the subjects for possible discovery of differential activations. The methods have been
implemented in the user-friendly Matlab GUI NPBayes-fMRI [26], see Figures 1.4 and 1.5
for some of the available features.
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FIGURE 1.4
Matlab GUI NPBayes-fMRI: User friendly software that implements a nonparametric
Bayesian spatio-temporal general linear model for task-based multi-subject fMRI data.
Subject-level visualization interface and corresponding activation β-maps, for subject 13,
stimulus 2 and PPI threshold of .9 (adapted from Kook et al. [26]).

FIGURE 1.5
Matlab GUI NPBayes-fMRI: User friendly software that implements a nonparametric
Bayesian spatio-temporal general linear model for task-based multi-subject fMRI data. Den-
drogram and cluster-level β-maps obtained with three clusters (adapted from Kook et al.
[26]).
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1.5 Scalable Bayesian variable selection

Despite the flexibility offered by spike-and-slab priors, and the availability of clever data
augmentation schemes, computational algorithms for posterior inference in regression mod-
els remain a challenge, particularly for model settings with a large number of predictors.
Below we review alternative strategies to sampling algorithms given by variational inference
methods.

1.5.1 Variational inference

Variational Bayes approaches turn inference into an optimization problem, making posterior
inference scalable and computationally faster than sampling-based MCMC methods [4].
Typically, variational approaches provide good estimates of mean parameters; however, they
tend to underestimate posterior variances and the correlation structure of the data. This
shortcoming can be an acceptable trade-off in variable selection problems. For example, [76]
performed a comparative study of an MCMC and a variational algorithm for a same linear
model and show on simulated data that the variational scheme reduces the computational
cost without compromising accuracy in both the detection and the estimation of the non-
zero coefficients.

Variational inference (VI) works by specifying a family of approximate distributions
Q, which are densities over model parameters and latent variables that depend on free
parameters ξ, and then using gradient descent to find the values of ξ that minimize the
Kullback-Leibler (KL) divergence between the approximate distribution and the true poste-
rior. Let us indicate with W the set of model parameters and latent variables. As discussed
in [4], minimizing the KL divergence is equivalent to maximizing the Evidence Lower BOund
(ELBO), which is defined as

ELBO = Eξ[log p(y,W )]− Eξ[log q(W )], (1.19)

with p(y,W ) the joint distribution of the observed data and the latent variables and param-
eters, and q(W ) the variational distribution of the variables in W . Clearly, the complexity
of the approximating class q(W ) determines the complexity of the optimization procedure.

The most common approach to obtain an approximating distribution within a VI scheme
is mean field approximation, which assumes that the approximating distribution factorizes
over some partition of the parameters. This approach is widely used with spike-and-slab
priors [9, 66, 76]. In particular, the variational distribution for (β,γ) is assumed to factorize
as

q (β,γ | ξ) =

p∏
j=1

q (βj , γj ; ξj) , (1.20)

with

q (βj , γj ; ξj) =

{
ψjN (βj | µj , s2j ) if γj = 1

(1− ψj) δ0 (βj) otherwise,
(1.21)

and free parameters ξj =
(
ψj , µj , s

2
j

)
. A coordinate ascent algorithm can then be imple-

mented to maximize the ELBO by setting the partial derivatives equal to zero. After ini-
tializing the free parameters, the algorithm updates each component of ξj given all the
others, iteratively, until convergence of the ELBO is met. The ELBO is further maximized
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by finding optimal values for the remainder of the model parameters. VI schemes can be
combined with importance sampling procedures, to integrate over some of the model pa-
rameters, and/or data augmentation schemes, to implement efficient closed-form VI updates
that exploit the conditional conjugacy of latent parameters [9, 41, 75]. At convergence, PPIs
are approximated via variational distribution values and thresholded to select covariates.
Corresponding regression coefficients are estimated as the variational distribution values
at convergence. Variational approaches are only suitable for point estimation and do not
allow to assess uncertainty about the estimates. Additionally, in situations with correlated
covariates, performances can be sensitive to initialization and can result in poor estimation
[51].

Recently, hybrid schemes that combine VI steps on (β,γ) with expectation-
maximization (EM) estimation steps on latent variables and other model parameters have
also been investigated [42]. As noted by [4], the first term of the ELBO is the object to
optimize in EM. One could therefore consider EM approaches as a special case of variational
inference, where the variational distributions are point masses.

1.6 Conclusion

Bayesian approaches offer a coherent and flexible framework for variable selection. This
chapter has reviewed discrete spike-and-slab priors for linear settings, with a focus on prior
constructions and computational aspects. Theoretical properties of these priors will be dis-
cussed in the next chapter. This will be followed by treatments of the continuous spike-
and-slab priors, which employ mixtures of two unimodal distributions and require careful
choices of the variance parameters that separate important variables from noisy ones.

Spike-and-slab priors are sometimes referred to as two-group priors, in contrast to the
one-group unimodal continuous shrinkage priors, which will be covered in the second part
of the handbook. An advantage of spike-and-slab priors over continuous shrinkage priors is
that, in addition to the sparse estimation of the regression coefficients, they produce PPIs
for each covariate. Another advantage is that the flexibility of the constructions allows to
incorporate structural information among the covariates via the prior choice on the latent
indicators, for example as the network priors described in this chapter. The disadvantages
are obviously in the computations, particularly in high dimensions, as stochastic search
MCMC algorithms need to explore a large posterior space of possible models. Some solutions
are offered by optimization procedures, such as the EMVS of [54], for continuous spike-and-
slab priors, and by the variational algorithms reviewed in this chapter. These methods,
however, can only produce point estimates.

Spike-and-slab priors have been extended to a wide variety of modeling frameworks,
such as multivariate regression models, state-space and time-varying coefficient models, as
well as to edge selection in graphical models. These topics will be discussed in the third
part of the handbook.
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Software

The R package MicroBVS, written by Matthew Koslovsky, is available at https://github.
com/mkoslovsky/MicroBVS. The user-friendly Matlab GUI NPBayes-fMRI, written by Eric
Kook, is available at https://github.com/marinavannucci/NPBayes_fMRI.
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