Fickian and thermal diffusion coefficients of binary mixtures of isobutylbenzene and \(n\)-alkanes at different concentrations from the optical beam deflection technique

Cite as: J. Chem. Phys. 151, 024202 (2019); https://doi.org/10.1063/1.5082963
Submitted: 26 November 2018 . Accepted: 13 June 2019 . Published Online: 11 July 2019

Filipe Arantes Furtado, and Abbas Firoozabadi

ARTICLES YOU MAY BE INTERESTED IN

Large plasmonic field enhancement on hydrogen-absorbing transition metals at lower frequencies: Implications for hydrogen storage, sensing, and nuclear fusion
Journal of Applied Physics 126, 023102 (2019); https://doi.org/10.1063/1.5091723

Combined plasmon-resonance and photonic-jet effect in the THz wave scattering by dielectric rod decorated with graphene strip
Journal of Applied Physics 126, 023104 (2019); https://doi.org/10.1063/1.5093674

Counting quantum jumps: A summary and comparison of fixed-time and fluctuating-time statistics in electron transport
The Journal of Chemical Physics 151, 034107 (2019); https://doi.org/10.1063/1.5108518
Fickian and thermal diffusion coefficients of binary mixtures of isobutylbenzene and n-alkanes at different concentrations from the optical beam deflection technique

Cite as: J. Chem. Phys. 151, 024202 (2019); doi: 10.1063/1.5082963
Submitted: 26 November 2018 • Accepted: 13 June 2019 • Published Online: 11 July 2019

Filipe Arantes Furtado$^{1,2,a)}$ and Abbas Firoozabadi$^{1,3,b)}$

AFFILIATIONS
1 Chemical Engineering Department, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, United States
2 Chemical Engineering Program - PEQ/COPPE, Federal University of Rio de Janeiro - UFRJ, Cidade Universitária, Rio de Janeiro - RJ, Brazil
3 Reservoir Engineering Research Institute, Palo Alto, California 94301, USA

$^{a)}$E-mail: ffurtado@ufrj.br
$^{b)}$E-mail: af@rerinst.org

ABSTRACT
We report the Fickian diffusion (D_{12}), thermal diffusion (D_T), and Soret (S_T) coefficients of 4 binary mixtures of isobutylbenzene (IBB) and n-alkanes (n-hexane, n-octane, n-decane, and n-dodecane) at 298.15 K and atmospheric pressure. The concentration is varied in the whole range. The Optical Beam Deflection technique is used in the measurements. We first verify our measurements with published data. The concepts of molecular similarity and mobility are invoked to investigate D_{12} and D_T dependency on molecular weight and concentration. Our analysis reveals a combined effect of molecular mobility and similarity dependency of D_T on concentration and molecular weight of the n-alkanes. The mobility of individual molecules describes the D_{12} dependency on concentration and molecular weight of alkanes. The dependency of D_{12} on concentration weakens as the n-alkane molecular weight increases. D_T increases with IBB concentration for nC_6 and nC_8 and decreases with IBB concentration for nC_{10} and nC_{12}. In this work, we demonstrate that the temperature contrast factors can be accurately estimated without the use of an interferometer.

I. INTRODUCTION
When a fluid mixture is subjected to a temperature gradient, mass fluxes from Fickian diffusion and thermal diffusion occur in addition to energy flux. The segregation of species in a mixture under a temperature gradient was first observed in 1856 by Ludwig and later in 1880 by Soret. The thermal diffusion or Ludwig-Soret effect has been introduced to describe the mass diffusion flux driven by a temperature gradient. Thermal diffusion creates a concentration gradient which is the driving force for the Fickian diffusion flux. When the system reaches the steady state, the Fickian and thermal diffusion fluxes balance each other, resulting in a zero net mass flux and a fully developed concentration gradient. The material diffusive flux (J_i) of component i in a mixture of a
given density (ρ) under a temperature gradient can be described by the nonequilibrium thermodynamics theory. In a two-component mixture, the multiplication of the thermal (D_T) and Fickian (D_{12}) diffusion coefficients by appropriate driving forces provides the flux of component 1 in a mixture of components 1 and 2,

$$J_1 = -\rho[D_{12}\nabla c_1 + c_1(1 - c_1)D_T\nabla T],$$

where c_1 is the concentration in mass fraction of component 1 and T is the absolute temperature.

The first recognition of thermal diffusion was around 160 years ago; the phenomenon is, however, not fully understood. The
challenges in the measurements of mixtures (with two or more components) and the variety of molecular characteristics and interactions have limited the understanding of the thermal diffusion phenomenon, especially for mixtures with more than two components. New measurements may provide a base for improved understanding of thermal diffusion and verification of theories.

Various reviews discuss the main experimental techniques and challenges in measuring Fickian and thermal diffusion coefficients. The techniques include the Optical Beam Deflection (OBD), Thermal Gravitational Column (TGC), and Thermal Diffusion Forced Rayleigh Scattering (TDFRS). To examine various techniques, different laboratories have measured 3 binary mixtures of n-dodecane (nC12), isobutylbenzene (IBB), and 1,2,3,4-tetradecynaphthalene (THN) at 298.15 K and 0.5 mass fraction. These sets of mixtures are known as the Fontainebleau benchmark. The data serve as a reliability test for experimental techniques in determination of the thermal diffusion coefficients. Compositional dependency of the Fontainebleau benchmark was published in 2013.

Examples of application of thermal diffusion include the fractionation of bacteria, characterization and separation of polymer solutions, and spatial variation of various chemical species in subsurface formations.

Hydrocarbon fluids in the subsurface are a complex mixture of organic components (e.g., alkanes, alkenes, and aromatic compounds of different molecule sizes and shapes). Aromatic compounds may contain multiple aromatic rings and heteroatoms such as nitrogen, sulfur, and oxygen. An example of the strong effect of thermal diffusion on the segregation of hydrocarbons is the Yufutsu gas field (Japan). Because of the geothermal gradient, the Yufutsu field had a fluid with the heavier components atop of the lighter phase. Ghoryab et al. modeled the species distribution in the Yufutsu field based on thermal diffusion. They predict the observed upsipedia-down behavior. The study by Ghoryab et al. reveals that thermal diffusion can vastly influence the distribution of components in hydrocarbon formations.

In the last few years, several authors have studied the relation between thermal diffusion coefficients and physical properties. Blanco et al. report on the correlation of D_T of n-alkane-n-alkane liquid mixtures and molecular weight (MW), viscosity, and thermal expansion coefficient. Madariaga et al. have studied the composition dependency of D_T in the n-alkane-n-alkane mixtures and observe that D_T is proportional to molecular weight difference between the mixture constituents and to the ratio of thermal expansion coefficient and viscosity of the mixture. A linear dependency of D_T with concentration has been observed. de Mezquia et al. have shown that S_T in equimolar n-alkane mixtures has a trend similar to isotopiclike mixtures, which depends on the molecular weight difference between the n-alkanes. They suggest a correlation between S_T and the pure component properties (viscosity and thermal expansion coefficient) and the density of the equimolar mixture, allowing a quantitative prediction at different concentrations. Molecular dynamics simulations have been used to calculate S_T of the n-alkane-n-alkane binary mixtures. Perronace et al. have simulated n-pentane-n-decane mixtures at different concentrations to obtain the Soret coefficients; they have compared the results to measured data. The difference is less than 35% for the boundary driven nonequilibrium molecular dynamics method (BD-NEMD), Furtado et al. have also performed molecular dynamics simulations using the BD-NEMD method and have computed S_T of the n-pentane-n-decane mixture at 0.5 mole fraction; they found deviations ranging from 17.5% to 37%.

Polyakov et al., Hashmi et al., and Larrañaga et al. have recently reported measured thermal and Fickian diffusion coefficients of binary mixtures consisting of an aromatic and a n-alkane species. Polyakov et al. have measured the Soret coefficients for mixtures of n-alkanes and benzene and branched alkanes and benzene. They have observed the effect of branching in S_T is more pronounced than the effect of the molecular weight. Hashmi et al. have studied thermal diffusion and Fickian diffusion coefficients of multiringed aromatics (naphthalene, phenanthrene, pyrene, and coronene) diluted in n-alkanes (n-hexane, n-decane, and n-hexadecane). They show the variation of thermal diffusion coefficients with the number of aromatic rings. The multiringed molecules were intended to represent asphaltene molecules. Larrañaga et al. investigate thermal diffusion in mixtures of toluene (tol) and n-alkane, and 1-methylnaphthalene (MN) and n-alkane as a function of concentration at 25°C. They observe that D_T varies linearly with concentration in the binary n-alkane-aromatic mixtures; the linear variation allows for calculations based on infinite dilution.

An extensive set of S_T measurements in 41 binary equimolar mixtures (among 10 different organic compounds) have been reported by Hartmann et al. The authors have found an additive rule for the heat of transports in equimolar mixtures. They assign a single value to the heat of transport of each substance. They show the heat of transport of a given component in an equimolar mixture is a property of the pure component. Since only differences between heats of transport can be experimentally determined, Hartmann et al. choose a reference component to calculate the single component heat of transport. They chose tetralin as the reference and assigned a value of zero for its heat of transport. The thermophobicity was then defined as the heat of transport of the single component with respect to the heat of transport of tetralin. Using the values of thermophobicities, they calculate S_T for the equimolar mixtures and organized the components with respect to the tendency to segregate to the cold side. The higher the thermophobicity, the higher is the tendency to segregate to the cold side. Hartmann et al. discuss their results using the thermodiffusion theory developed by Morozov. Later, Hartmann et al. extended the number of components in their analysis from 10 to 23. They studied 77 out of 253 possible combinations of the pure components in binary equimolar mixtures. The thermophobicity was evaluated for the larger set of mixtures, and no significant variation was found with the thermophobicities of the first ten components (1-methylnaphthalene was the only exception). Their results indicate that the thermophobicity is a property of the pure component in equimolar mixtures. Hartmann et al. examined the composition dependence of 22 binary mixtures using the theory of Morozov; the composition dependency was modeled by the excess volume of mixing.

In this work, we use the Optical Beam Deflection (OBD) technique to determine the Fickian Diffusion (D_f), thermal diffusion (D_T), and Soret (S_T) coefficients of binary mixtures of two molecules of different shapes (i.e., one aromatic and one n-alkane). The apparatus is modified from the one reported by Hashmi et al.
(2016). We investigate mixtures of an n-alkane (n-hexane, n-octane, n-decane, and n-dodecane) and isobutylbenzene at 25 °C and 1 atm at five different concentrations. The motivation of this work is to evaluate the composition effect and the influence of molecular chain length of the n-alkanes in Fickian diffusion and thermal diffusion coefficients. We invoke the concepts of mobility and similarity of molecules to analyze the influence of molecular size and shape. To the best of our knowledge, this is the first report of the binary systems of isobutylbenzene (IBB) and n-hexane (nC₆), n-octane (nC₈) and n-decane (nC₁₀) in the entire composition range. We validate the setup by verifying our results for mixtures of toluene and nC₆, and IBB (isobutylbenzene) and nC₁₂ with literature data.

The measurement of Fickian and thermal diffusion coefficients by the Optical Beam Deflection (OBD) requires the derivatives of refractive index with composition (∂n/∂c₁)_P,T and temperature (∂n/∂T)_P,∂c. These two optical properties, (∂n/∂c₁)_P,T and (∂n/∂T)_P,∂c, are commonly determined by independent experiments using, respectively, a refractometer (accuracy of 10⁻³) and an interferometer (accuracy in the order of 10⁻⁶ K⁻¹). In this work, we determine (∂n/∂c₁)_P,T using a refractometer, while (∂n/∂T)_P,∂c is estimated based on deflection of the laser beam. We consider (∂n/∂T)_P,∂c as a parameter to be estimated together with D₁₂ and D₂₇, similar to König et al.¹ and Kolodner et al.². Our calculation procedure is different. We compare our estimated (∂n/∂T)_P,∂c to the literature data to demonstrate agreement.

II. EXPERIMENTAL

A. Materials and sample preparation

The n-alkanes in this work include n-hexane (nC₆), n-octane (nC₈), n-decane (nC₁₀), and n-dodecane (nC₁₂). They are from Acros Organics (nC₆, nC₈, and nC₁₀—purity higher than 99%) and Alfa Aesar (nC₁₂—purity higher than 99%). The toluene (tol) is from Baker with purity higher than 99.5%, and isobutylbenzene (IBB) is from Aldrich with purity higher than 99%. All chemicals are used without further purification.

The mixtures (see Table I) are prepared from weighing the components by an analytical balance with a resolution of 10⁻⁴ g. The components are mixed in a cleaned vial starting by the less volatile component to eliminate evaporation. Subsequently, the vial containing the mixture is stirred to attain homogeneity.

B. Optical beam deflection setup

The Optical Beam Deflection apparatus is a modification of the setup by Hashmi et al. The changes include a new cell with a square glass piece (instead of a circular shape) and an electrically heating/cooling system using peltier modules. Another improvement is the optimization of the cell size to allow a more homogeneous temperature distribution over the entire copper plates. Additional improvements are made in the electronics and programming to allow the setup to work with the new configuration. A schematic of the Optical Beam Deflection (OBD) apparatus is shown in Figs. 1 and 2. The entire apparatus is assembled on an optical table with active compressed air actuators to ensure a vibration-free environment. The setup consists of a squared glass frame of optical quality with an optical path length of 25.0 mm, wall thickness of 2.5 mm, and height of 4.0 mm. The glass frame is sandwiched between two copper plates (60.0 × 75.0 × 12.5 mm³) with milled grooves that fit the optical glass piece. The glass-copper sealing is by squared cross section Viton o-rings. The parts in contact with the o-rings (glass ends and copper) are well polished (glass was optically polished) to prevent leakage and formation of gas bubbles. The gap size (h) between the plates is 1.771 ± 0.006 mm, measured by precision spacers. The parallel spacing of plates and gap size are confirmed by a telemicroscope (Gaertner) to a maximum error of ±0.006 mm at the cell ends. The copper plates can be independently heated or cooled by two separate peltier modules of 50 × 50 mm² (Custom Thermoelectric 12711-9L31-06CW—Pmax of 51 W and Imax of 6.0 A). Each peltier module has one side in thermal contact with the copper plates and the other side with a water heat exchanger fed by a temperature-controlled water bath. The use of H-bridge amplifiers (FTX300) together with an arduino microcontroller allows the inversion of electric current and voltage control applied to the peltiers. Precision negative temperature coefficient (NTC) thermistors (Measurement Specialties 46 037) are inserted in drilled holes in each plate to measure the temperature. High precision in the measured resistance of the thermistors is achieved using a custom-built Wheatstone bridge and one signal amplifier (Tacuna) for each thermistor, providing a temperature resolution of 0.1 mK. The NTC thermistors were calibrated by a third calibrated NTC thermistor.

![FIG. 1. Schematic of the optical beam deflection setup.](image-url)

<table>
<thead>
<tr>
<th>System</th>
<th>c₁ (mass fraction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tol-nC₆</td>
<td>0.262</td>
</tr>
<tr>
<td>IBB-nC₆</td>
<td>0.300</td>
</tr>
<tr>
<td>IBB-nC₈</td>
<td>0.500</td>
</tr>
<tr>
<td>IBB-nC₁₀</td>
<td>0.700</td>
</tr>
<tr>
<td>IBB-nC₁₂</td>
<td>0.900</td>
</tr>
</tbody>
</table>

TABLE I. Binary mixtures of toluene(tol)-n-alkane(nCᵢ) and isobutylbenzene(IBB)-n-alkane(nCᵢ) at different concentrations of toluene and isobutylbenzene (c₁).
with an accuracy of 0.1 °C, the same absolute accuracy as in temperature measurements by König.\(^\text{41}\) We have observed a maximum deviation around 2 mK in the calibration range (23–28 °C) when both thermistors are used to measure the temperature of a copper block. The temperature control is established by independent control of each peltier module using a closed loop proportional integral derivative (PID) controller programmed in LabView. The cell is assembled using 4 bolts in its body, while the peltier modules and water heat exchangers are clamped to the entire cell using custom built aluminum clamping. The cell is filled with the liquid mixture through stainless steel tubing using a gas tight syringe. Visual inspection guarantees absence of gas bubbles inside the cell. The setup is aligned using a calibrated height gage with a precision of 0.02 mm.

A 7-mW He–Ne laser (JDSU 1137P, wavelength of 632.8 nm) is used as the light source; its power is reduced by a neutral density filter (optical density of 2.0) to avoid local heating of the liquid sample. Two plano-convex lenses (focal distance of the first and second lens, respectively, 300 and 100 mm) are mounted on a telescope arrangement with a common focal plane to collimate the laser beam and reduce the laser spot. An iris pin hole (minimum aperture of 0.8 mm) is used to remove stray light from the collimation process. The collimated laser beam enters parallel to the cell’s plates in the middle of the vertical gap between the plates. After passing through the glass containing the liquid mixture, the laser beam position is detected by a calibrated linear position sensor (UDT Instruments—model 1239), 504 cm away from the exit glass window of the cell. The detector is connected to an optical position indicator (UDT Instruments—model 431). A blackout rubberized fabric is used to provide a complete dark environment for the setup, blocking light coming from other sources.

All signals generated by the setup (i.e., temperature and laser position signals) are sent to a data acquisition system (NI cDAQ with appropriate cards for reading and generating analogical signals—National Instruments) and interpreted in the LabView software, recorded at a frequency of around 2 Hz.

A typical OBD experiment is conducted in two main steps after alignment of the laser and the setup. First, the cell is loaded with the liquid mixture. The top and bottom plates are maintained at the same temperature for a period of time, long enough for the liquid mixture to become completely mixed (equilibrium is reached). In the next step, the temperatures of the top and bottom plates are brought to the desired values to subject the fluid system to a known temperature gradient. The choice of which plate should be heated and cooled is made to avoid convection in the fluid mixture. If the Soret coefficient is positive for the denser component, heating of the mixture from above will produce a convection-free pure diffusive state.\(^\text{42,43}\) We have heated all the mixtures from the top plate since the Soret coefficient \(S_T\) for the denser components (IBB and Toluene) is positive. To apply the temperature gradient, both top and bottom temperatures are, respectively, changed by \(\Delta T/2\) and \(-\Delta T/2\) (\(\Delta T\) is the desired temperature difference). The applied temperature differences (\(\Delta T\)) are 1.0–1.5 °C in different experiments. Initially when applying the temperature gradient, the laser beam experiences a fast and pronounced deflection due to the refractive index gradient \(dn/dz\) arising from the temperature gradient. The early deflection is a strong function of (\(dn/dT\))\(_{P, L}\) and the thermal diffusivity \(\alpha\) of the mixture. In our apparatus, the steady state temperature of each copper plate is reached in about 120 s after the start of heating and cooling processes. A temperature overshoot in both plates is observed before the steady state temperature is established. This leads to a fast deflection of the laser beam. The segregation of the components along the height of the cell is a slow process. The laser deflection \(\delta z\) is proportional to the refractive index gradient (from temperature and concentration gradients) and to the characteristic lengths of the setup,\(^\text{40,41,43}\)

\[
\delta z = l \frac{dn}{dz} \left(\frac{1}{2n_w} + \frac{l_w}{n_w} + \frac{l_d}{n_d} \right),
\]

where \(n, n_w,\) and \(n_d\) are, respectively, the refractive indices of the liquid mixture, optical glass frame, and air; \(l, l_w,\) and \(l_d\) are, respectively, the distance of the optical path in the liquid, glass wall, and the distance from the glass exit to the detector. The vertical refractive index gradient in a binary mixture is related to the vertical temperature and concentration gradients,

\[
\frac{dn}{dz} = \frac{d c_1}{dz} \left(\frac{\partial n}{\partial c_1} \right)_{P, T} + \frac{dT}{dz} \left(\frac{\partial n}{\partial T} \right)_{P, c_1},
\]

where (\(\partial n/\partial c_1\))\(_{P, T}\) and (\(\partial n/\partial T\))\(_{P, c_1}\) are the contrast factors of concentration and temperature and \(c_1\) is the concentration of component 1 in mass fraction. The vertical temperature and concentration gradients are computed from the numerical solution of the energy balance expression [Eq. (4) below] and diffusion mass transport expression [Eq. (5) below]. The time dependent temperatures at the liquid–copper interfaces and the assumption of zero mass flux at the walls are the boundary conditions. The energy and mass balance expressions are given by, respectively,

\[
\frac{\partial T}{\partial t} = a \nabla^2 T,
\]

and

\[
\frac{\partial c}{\partial t} = D_{l2} \nabla^2 c_1 + c_1 (1 - c_1) D_{r2} \nabla^2 T.
\]
In Eq. (4), α is the thermal diffusivity of the mixture, calculated using the thermal conductivity, density, and heat capacity of the mixtures in the Fillipov equation in the work of Poling et al.49 The density and heat capacity of the mixtures are assumed to be a linear function of the pure component properties and composition. The pure component properties (thermal conductivity, density, and heat capacity) of the mixture constituents are from the literature.45,46

The Soret coefficient (S_T) in a binary mixture is given by the ratio of the thermal diffusion coefficient (D_T) to the Fickian diffusion coefficient (D_{12}),

$$S_T = \frac{D_T}{D_{12}}. \quad (6)$$

The measured data are the laser deflection, temperatures of both plates, overall concentration of the mixture (in mass fraction), concentration contrast factor, and characteristic lengths of the setup. The solution of Eqs. (2)–(5) can provide D_{12}, D_T, and the temperature contrast factor to be discussed in Sec. II D. Each deflection experiment is repeated 7–10 times for each of the 24 mixtures, totaling around 200 deflection plots.

C. Optical property measurement

The refractive index of mixtures is measured using an Atago refractometer (RX-5000a) with a resolution of 10^{-5}, repeatability of 4×10^{-3}, and temperature control accuracy of $\pm 0.05 ^\circ$C. The refractometer operates at a wavelength of 589.3 nm, approximating the sodium D-line. The laser source in our experiments has a wavelength of 632.8 nm. de Mezquia et al.40 referring to the work of Secheny et al.41 and Camerini-Otero et al.42 discuss the error in $(\partial n/\partial c)_T$ due to the wavelength difference between the refractometer and the laser source in the OBD setup of ~44 nm may be around 0.5%–1%. This difference results in a small error in D_{12}, D_T, and S_T.

The concentration contrast factor $(\partial n/\partial c)_T$ is estimated from a polynomial (cubic in concentration) of measured refractive index at different concentrations at 25°C. We measured the refractive index at 13 different concentrations (mass fractions) varying from 0 to 1 for each mixture. At least 8 repetitions for each data point are conducted.

The temperature contrast factor $(\partial n/\partial T)_T$ is computed as a parameter from the numerical solution of Eqs. (2)–(5) using the beam deflection data from OBD experiments. König et al.42 and Kolodner et al.43 also demonstrate that $(\partial n/\partial T)_T$ can be estimated as a parameter based on beam deflection data and solution of Eqs. (2)–(5). An interferometer can be used to independently determine the contrast factors (error in the order of 10^{-4}). König et al.42 estimated one of the two contrast factors $(\partial n/\partial T)_P$, in a two-color OBD experiment as a fitting parameter, while the other is determined interferometrically. The determination of thermal diffusion coefficients in OBD experiments is based on $N = 1$ beams (N is the number of components). König et al.42 report that in ternary mixtures, a slight error in the ratio between the two contrast factors $(\partial n/\partial T)_P$, introduces a large error in the measured thermal diffusion coefficients. The authors report the difference between the interferometrically measured $(\partial n/\partial T)_P$ and one based on the laser beam deflection to be around 0.1%.

The difference between the methodology in this work and the method by Kolodner et al.43 is in the mathematical approach used to estimate the desired parameters, to be explained in Sec. II D. Our methodology is based on:

1. The pronounced initial beam deflection from the contribution of $(\partial n/\partial T)_P$ and thermal diffusivity (α) of the mixture;

2. The fluctuations in the beam position at steady state (fully developed concentration and temperature gradients) from temperature fluctuations as observed by Zhang et al.44

The initial beam deflection and beam position fluctuation at steady state are related to the heat diffusion time [τ_T – Eq. (7) below], which is about 25–80 times shorter than the mass diffusion time [τ_D – Eq. (8) below] for our system,

$$\tau_T = \frac{h^2}{\pi \alpha}, \quad (7)$$

$$\tau_D = \frac{h^2}{\pi D_{12}}, \quad (8)$$

Based on α and the measured temperature of the thermistors, we can calculate the transient temperature distribution along the height of the cell from the solution of the energy equation. At the beginning of an experiment, the heat and mass diffusion processes can be considered decoupled based on a small Lewis number (L_e defined by Kolodner et al. as $L = D_{12}/\alpha$ or $L = \tau_2/\tau_D$) of the order of 10^{-2}. The transient temperature distribution during the initial laser deflection is used to estimate $(\partial n/\partial T)_P$. The accuracy is improved by using the fluctuations in laser deflection at steady state (i.e., fully developed concentration and temperature gradients). At steady state, the laser position fluctuations are from temperature fluctuations42 as supported by a small Lewis number.

Kolodner et al.43 use a cell with a gap size of $h = 3.0$ mm. In our work, $h = 1.771$ mm. This difference in h results in shorter mass and heat diffusion times in our setup. A smaller gap reduces the time for an experiment.

During the heating/cooling stage of an OBD experiment from electric heating, the temperatures of the plates cannot be switched instantaneously to desired values. The time to fully establish a desired temperature gradient in the liquid is a function of the Peltier heating rate and the thermal diffusivity of the liquid. The heating rate affects the coupled temperature and concentration gradients. Based on the expression for the mass diffusion time [Eq. (8)], one can show that a smaller gap will generate a faster mass diffusion time. A small gap would fulfill the Rayleigh number conditions to avoid convection.42,44 If the plate heating rate is low and the gap is small, the time it takes to develop the desired temperature gradient in the liquid will depend more on the time to bring the plates to the experimental temperature than on the thermal diffusivity of the liquid. In this case, a significant concentration gradient may develop in the transient temperature period. Consequently, the laser beam will be also deflected due to a concentration gradient (function of time) before the desired temperature gradient in the liquid is established. At a constant heating rate, a decrease in h leads to shorter diffusion time and increase the coupling.

Based on the statements 1 and 2 of our methodology and the support from the Lewis number, one can employ the solution.
scheme we have used to determine D_{12}, D_{ij}, and $(\partial n_i/\partial T)_{p,c}$ and also decouple the concentration and temperature contributions to the total beam deflection.

The high accuracy of our methodology is demonstrated by a comparison of the computed $(\partial n_i/\partial T)_{p,c}$ for mixtures of IBB-nC$_{12}$ and tol-nC$_6$ with the literature measurements.

D. Parameter estimation

The solution of Eqs. (2)–(5) provides D_{12}, D_{ij}, and $(\partial n_i/\partial T)_{p,c}$. In the physical setup, the thermistors are positioned 7 mm above the copper-liquid interface, and consequently, the measured temperature is slightly different from that of the copper-liquid interface. To determine the temperature at the copper-liquid interface, the energy equation [Eq. (4)] is solved numerically in the domain consisting of top copper plate, liquid mixture, and bottom copper plate. The boundary conditions are the temperatures measured by thermistors in the copper plates (i.e., temperatures 7 mm above and below the liquid-copper interfaces) and the equality of heat flux between copper and liquid interface. The thermistors’ response time is also considered in the solution.

After the computation of the copper-liquid interface temperature, Eqs. (4) and (5) together with Eqs. (2) and (3) are solved numerically in the liquid domain. We first examined a deterministic method (Gauss-Newton) to determine D_{12}, D_{ij}, and $(\partial n_i/\partial T)_{p,c}$, which proved unsuccessful due to convergence issues. Usually, the deterministic methods require a good enough initial guess. In our problem, the initial guesses we used had convergence issues. We then adopted a stochastic method to obtain good enough initial guesses for the deterministic method. We employ the particle swarm optimization methodology36 based on implementation of Schwaab et al.32, Schwaab and Pinto,58 and Ourique et al.59 as the stochastic method for the nonlinear parameter estimation.

Integration of the discretized form of Eqs. (3)–(5) was accomplished using the DASSL (Differential Algebraic System Solver)50.

The estimations are carried out 2 times for each deflection data set. All computations are performed in a cluster of computers.

E. Mobility and similarity

In Refs. 61 and 62, two effects, (1) mobility of each individual component and (2) similarity of the two species, have been found to be related to thermal diffusion in binary liquid mixtures.

The mobility is related to free movement of a molecule in a medium. An increase in mobility is from the increase in the velocity of that molecule in the medium. Mobility is then associated with the self-molecular diffusion coefficient D_i (for pure a component) or to the tracer diffusion coefficient D_{ij}^* (self-diffusion of a molecule in a mixture). The mobility of an individual component is related to its Brownian motion.$^{30,61-64}$ In a mixture, mobility varies inversely with mixture viscosity and directly with the tracer diffusion coefficient. In a pure component, mobility varies inversely with the component viscosity and directly with self-molecular diffusion coefficient.60,82 When the viscosity of a mixture increases, it will impede the movement of the molecule, which will lead to a reduction in the molecule velocity and thus, in mobility and tracer diffusion coefficient. In pure n-alkanes, there is an inverse relation between mobility and n-alkane chain length. An increase in the n-alkane chain length (i.e., an increase in molecular weight) reduces the self-molecular diffusion coefficient60,61,62 and increases its dynamic viscosity and thus decreases mobility.

The tracer diffusion coefficient (D_{ij}^*) is a function of composition such as the molecular diffusion coefficient (D_{ij}).69 When the concentration of species i tends to zero, ($c_i \rightarrow 0$), D_{ij}^* tends to the infinite dilution diffusion coefficient in the solvent j (D_{ij}^I).70 On the other hand, when $c_i \rightarrow 1.0$, $D_{ij}^* \rightarrow D_{ij}$. Then, D_i or D_{ij}^* (or even D_{ij}^I) can be a good choice to quantify mobility. However, measurement of D_i or D_{ij}^* is more complex than the measurement of D_{ij}, and other properties may be preferred to quantify mobility. The models developed by Darken65 and Vignes66,67 relate the Maxwell-Stefan diffusion coefficient (D_{ij}) to, respectively, D_{ij}^* and D_{ij}^I. Based on the model by Vignes,68 the plot of $\log(D_{ij})$ vs mole fraction is linear for mixtures that do not strongly associate. The implication is that D_{ij} is a function of D_{ij}^I, indicating that the Maxwell-Stefan diffusion coefficient (D_{ij}) can be used as a measure of mobility. In fact, D_{ij} is proportional to mobility (D_{ij} increase as mobility increases), as pointed out by Leahy-Dios et al.69 An increase in mobility also increases D_{ij}.

Several authors$^{6,29,61-63}$ use other properties to quantify mobility. Blanco et al.$^{6,29,61-63}$ quantify mobility as the inverse of mixture dynamic viscosity. A higher mixture viscosity lowers molecules velocity and reduces D_i^* and D_{ij}. Tyrrle and Harris63 equate the Onsager coefficients to the mobility (or mobility coefficients). de Groot and Mazur63 relate mobility to diffusion coefficients through a generalized Fokker-Einstein equation. The mobilities defined in the Fokker-Einstein equation have a dimension of velocity per unit force on a mole (or molecule), de Groot and Mazur63 also found a relation between mobility and the Onsager coefficients. Onsager coefficients are functions of the transport properties of mixtures, including the diffusion coefficients. Leahy-Dios and Firoozabadi66 use the physical properties that influence mobility of pure components to interpret D_{ij} in equimass mixtures of nC$_{12}$-nC$_{14}$ and 1-methylnaphthalene-nC$_r$. They find indications that D_{ij} can be described solely by mobility. Leahy-Dios et al.62 use the fact that mobility and Maxwell-Stefan diffusion coefficient (D_{ij}) are proportional (D_{ij} increases as mobility increases) and interpret D_{ij} as a measure of mobility. The Stokes-Einstein equation [Eq. (9) below] is defined for the diffusion of spherical molecules in a dilute solution.68 The expression also provides a quantification of mobility,

$$D_{ij} = \frac{\omega_{ij} k_B T}{6\pi \eta r_i}$$

where ω_{ij} is the mobility of molecule i in solvent j, η is the dynamic viscosity of the solvent, r_i is the radius of the spherical particle i, and D_{ij} is the infinite dilution diffusion coefficient of the particle i in solvent j. Equation (9) is in line with the analysis of mobility of the individual components by Leahy-Dios and Firoozabadi.63 It shows that ω_{ij} decreases with the increase in viscosity and with the decrease in diffusion coefficient. Equation (9) is also a starting point for diffusion coefficient correlations. Mobility defined in Eq. (9) has the same dimension as mobility defined by de Groot and Mazur.63

According to Kramers and Broeder,64 the Chapman theory describes the thermal diffusion in suspended particles from the change of constituents’ mobility with temperature and to a less
The Journal of Chemical Physics

The thermal diffusion factor α_T (different from thermal diffusivity α) is defined by12,23-26,61:

$$\alpha_T = \frac{D_T}{D_{12}}$$ \hspace{1cm} (11)

The thermal diffusion factor can be described in terms of the net heats of transport $(Q_i^* - Q_2^*)$,62,76:

$$\alpha_T = \frac{(Q_i^* - Q_2^*)}{x_1 \left(\frac{\partial \ln \phi_i}{\partial x_1} \right)_{T,P}}$$ \hspace{1cm} (12)

where μ_1 and x_1 are, respectively, the chemical potential and molar fraction of component 1.

One may express the chemical potential of component 1 in terms of its fugacity coefficient in the mixture $(\ln \phi_i)$. Then, using the relation between Fickian and Maxwell-Stefan diffusion coefficients (D_{12}) in a binary mixture,7 Eqs. (11) and (12) are combined to obtain25:

$$D_T = \frac{(Q_i^* - Q_2^*) D_{12}}{RT^2[1 + x_1 \left(\frac{\partial \ln \phi_i}{\partial x_1} \right)_{T,P}]} = \frac{\Delta Q^* D_{12}}{RT^2}$$ \hspace{1cm} (13)

We can calculate D_{12} using the measured data of D_{12} divided by the thermodynamic factor $\Gamma = 1 + x_1 (\partial \ln \phi_i/\partial x_1)_{T,P}$. The term $1 + x_1 (\partial \ln \phi_i/\partial x_1)_{T,P}$ is a measure of nonideality in mixtures27,28 and can be calculated using an appropriate equation of state (EOS). In this work, we evaluate Γ from the Peng-Robinson equation of state (PR-EOS)74 assuming the binary interaction parameter δ_{ij} to be zero. After calculating D_{12}, ΔQ^* is calculated by direct use of Eq. (13) and the measured D_T.

Equation (13) shows that D_T increases with the increase in ΔQ^* as was first found out by Leahy-Dios et al.81 If the chemical species 1 and 2 are the same, there will be no separation, and then both D_T and ΔQ^* would be zero. The higher ΔQ^*, the less similar are the components. We define ΔQ^* as disparity and $I/\Delta Q^*$ as similarity, as is defined in the literature.82

From measured D_{12} and D_T, Eq. (13) can be used to evaluate the contributions of concentration and hydrocarbon chain length in terms of mobility and similarity in Fickian diffusion and thermal diffusion coefficients.

III. RESULTS AND DISCUSSION

A. Contrast factors

The concentration and temperature contrast factors for the tol-nC$_6$ and IBB-nC$_{12}$ mixtures at 25$^\circ$C are presented in Table II which includes also literature data. Our $(\partial n/\partial C)_P$ deviate from -0.17% to 1.66% when compared to literature data. The deviations are from (1) the uncertainties of the refractometer and balance in weighing the components (expected to be small) and (2) the difference in the wavelength of the refractometer and laser source (expected to be larger than the first), which may contribute to deviations of around 1.0%4,7

Gebhardt et al.21 report $(\partial n/\partial C)_P$ at 25$^\circ$C for the IBB-nC$_{12}$ mixture at different concentrations for two different wavelengths...
The contrast factors for the binary mixtures of toluene (tol-\(n\)-alkane (\(nC_i\)) and isobutylbenzene (IBB)-\(n\)-alkane (\(nC_i\)) at different concentrations of toluene and isobutylbenzene (\(c_1\)) at 25 °C and 1 atm.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>(c_1) (mass fraction)</th>
<th>((\partial n/\partial c_1))(_{\text{P,T}}) (mass fraction basis)</th>
<th>((\partial n/\partial T))(_{\text{P,E}}) (10^-4 K^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tol-(nC_6)</td>
<td>0.00</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.262</td>
<td>0.1041</td>
<td>0.1024 (^{40})</td>
</tr>
<tr>
<td></td>
<td>0.517</td>
<td>0.1200</td>
<td>0.1202 (^{40})</td>
</tr>
<tr>
<td></td>
<td>0.762</td>
<td>0.1382</td>
<td>0.1372 (^{40})</td>
</tr>
<tr>
<td></td>
<td>0.953</td>
<td>0.1510</td>
<td>0.1505 (^{40})</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>IBB-(nC_{12})</td>
<td>0.00</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>0.0540</td>
<td>0.0536 (^{21})</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>0.0585</td>
<td>0.0577 (^{21})</td>
</tr>
<tr>
<td></td>
<td>0.700</td>
<td>0.0687</td>
<td>0.0680 (^{21})</td>
</tr>
<tr>
<td></td>
<td>0.900</td>
<td>0.0744</td>
<td>0.0741 (^{21})</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The pure component (\(\partial n/\partial T\))\(_{\text{P,E}}\) can be used as a measure of the apparatus precision. Since for a pure component, there is no concentration gradient, we directly determine (\(\partial n/\partial T\))\(_{\text{P,E}}\) from solution of Eqs. (2)–(4) based on the steady state deflection of the laser beam. The absolute deviation of (\(\partial n/\partial T\))\(_{\text{P,E}}\) in comparison to the literature \(^{40}\) ranges from 0.16% to 0.39% for the pure components (toluene, IBB, \(nC_6\), and \(nC_{12}\)), which is an indication of a small \(\Delta T\) measurement error.

Our values of (\(\partial n/\partial T\))\(_{\text{P,E}}\) for the system IBB-\(nC_{12}\) have a maximum absolute deviation of 0.63% with literature data. König et al.\(^{41}\) report a value of (\(\sim 4.54 \pm 0.02\) \times 10^{-4} K^{-1}) for the mixture of IBB-\(nC_{12}\) at a mass fraction of 0.50. The dispersion in data of König et al.\(^{1}\) (\(\pm 0.02 \times 10^{-4}\)) is around \(\pm 0.44\%) which is close to the deviations with ours. Our (\(\partial n/\partial T\))\(_{\text{P,E}}\) for the tol-\(nC_6\) mixture has a maximum deviation of \(\sim 0.65\%) from data of Li et al.\(^{10}\) at \(c_1 = 0.762\).

The contrast factors for the binary mixtures of IBB and \(n\)-alkanes (\(nC_6\), \(nC_8\) and \(nC_{10}\)) are provided in Table III. The dispersion of our estimated (\(\partial n/\partial T\))\(_{\text{P,E}}\) ranges from \(\pm 10^{-4}\) to \(\pm 4 \times 10^{-4}\). The temperature contrast factors should have very high accuracy. An error of 5% (\(\sim 2.5 \times 10^{-4}\)) in (\(\partial n/\partial T\))\(_{\text{P,E}}\) may lead to a large error (as large as 100% or more in some composition range) in \(D_T\) and \(S_T\) as we demonstrate in the Appendix.

B. Validation and diffusion coefficients

First, we validate our measurements at the entire concentration range for the mixtures of toluene—\(n\)-hexane (tol-\(nC_6\)) and isobutylbenzene—\(n\)-dodecane (IBB-\(nC_{12}\)). Our measured data for \(D_{12}, D_T\), and \(S_T\) for the tol-\(nC_6\) mixtures are compared to the literature data in Table IV and in Fig. 3.

The absolute deviations of \(D_{12}, S_T\), and \(D_T\) for the tol-\(nC_6\) mixtures from our measurements and literature data range from close to 0%–3.85% for \(D_{12}\), 0.37%–8.23% for \(S_T\), and 1.16%–7.35% for \(D_T\). The dispersion of the data from the literature is comparable to the deviations from our work. A higher absolute deviation of 8.2% in \(S_T\)

TABLE III. Contrast factors (\(\partial n/\partial c_1\))\(_{\text{P,T}}\) and (\(\partial n/\partial T\))\(_{\text{P,E}}\) of binary mixtures of isobutylbenzene (IBB) and \(n\)-alkanes (\(nC_i\)) at different concentrations (\(c_1\)) of isobutylbenzene at 25 °C and 1 atm.

<table>
<thead>
<tr>
<th>System</th>
<th>(c_1) (mass fraction)</th>
<th>((\partial n/\partial c_1))(_{\text{P,T}}) (mass fraction basis)</th>
<th>((\partial n/\partial T))(_{\text{P,E}}) (10^-4 K^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBB-(nC_6)</td>
<td>0.100</td>
<td>0.0916</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>0.1012</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>0.1112</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.700</td>
<td>0.1213</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.900</td>
<td>0.1317</td>
<td>...</td>
</tr>
<tr>
<td>IBB-(nC_8)</td>
<td>0.100</td>
<td>0.0744</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>0.0805</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>0.0876</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.700</td>
<td>0.0957</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.900</td>
<td>0.1048</td>
<td>...</td>
</tr>
<tr>
<td>IBB-(nC_{10})</td>
<td>0.100</td>
<td>0.0617</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>0.0672</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>0.0733</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.700</td>
<td>0.0800</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.900</td>
<td>0.0873</td>
<td>...</td>
</tr>
</tbody>
</table>
TABLE IV. Fickian diffusion (D_{12}), thermal diffusion (D_T), and Soret (S_T) coefficients of binary mixtures of toluene and n-hexane at different concentrations of toluene (c_1) at 25°C and 1 atm from the literature and this work.

<table>
<thead>
<tr>
<th>c_1 (mass fraction)</th>
<th>D_{12} (10^{-9} m2 s$^{-1}$)</th>
<th>S_T (10^{-3} K$^{-1}$)</th>
<th>D_T (10^{-12} m2 s$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This work</td>
<td>Literature</td>
<td>This work</td>
</tr>
<tr>
<td>0.262</td>
<td>3.51 ± 0.12</td>
<td>3.68 ± 0.04</td>
<td>12.91 ± 0.45</td>
</tr>
<tr>
<td></td>
<td>3.44 ± 0.40</td>
<td>3.98 ± 0.40</td>
<td>13.25 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>3.37 ± 0.41</td>
<td>4.01 ± 0.82</td>
<td>14.29 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>3.46 ± 0.81</td>
<td>3.82 ± 0.33</td>
<td>14.52 ± 1.15</td>
</tr>
<tr>
<td>0.517</td>
<td>2.83 ± 0.01</td>
<td>4.68 ± 0.04</td>
<td>13.25 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>2.78 ± 0.40</td>
<td>4.92 ± 0.40</td>
<td>14.29 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>2.76 ± 0.41</td>
<td>4.98 ± 0.82</td>
<td>14.52 ± 1.15</td>
</tr>
<tr>
<td></td>
<td>2.79 ± 0.81</td>
<td>4.76 ± 0.33</td>
<td>14.52 ± 1.15</td>
</tr>
<tr>
<td>0.762</td>
<td>2.46 ± 0.04</td>
<td>5.41 ± 0.02</td>
<td>13.25 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>2.46 ± 0.40</td>
<td>5.56 ± 0.40</td>
<td>14.29 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>2.49 ± 0.41</td>
<td>5.64 ± 0.82</td>
<td>14.52 ± 1.15</td>
</tr>
<tr>
<td></td>
<td>2.49 ± 0.81</td>
<td>5.43 ± 0.33</td>
<td>14.52 ± 1.15</td>
</tr>
<tr>
<td>0.953</td>
<td>2.52 ± 0.09</td>
<td>5.77 ± 0.34</td>
<td>13.25 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>2.52 ± 0.40</td>
<td>5.96 ± 0.40</td>
<td>14.29 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>2.45 ± 0.41</td>
<td>5.87 ± 0.83</td>
<td>14.52 ± 1.15</td>
</tr>
<tr>
<td></td>
<td>2.45 ± 0.81</td>
<td>5.67 ± 0.33</td>
<td>14.52 ± 1.15</td>
</tr>
</tbody>
</table>

*OBD—optical beam deflection.
*TGC—thermal gravitational column.
*DC—Diaphragm cell. The data reported in Ref. 82 are measured at 23°C.
*TDFRS—thermal diffusion forced Rayleigh scattering.
*Calculated from Eq. (6) using reported data in the reference.

in the toluene mass fraction of 0.262 is observed from our measurement and data of Köhler and Müller. Our measured S_T is in better agreement with Bou-Ali et al., with deviations ranging from 0.37% to 3.66%.

Our measurements for the IBB-nC12 mixture are compared to literature data in Table V. The overall absolute deviations of D_{12}, S_T, and D_T are, respectively, 4.1%, 5.5%, and 3.8%. The higher deviation is for the 0.10 IBB mass fraction. At 0.50 mass fraction, the deviation for D_T is 4.1%, within the dispersion reported for the benchmark mixture. The comparison shown in Fig. 4 has more spread in D_{12} from various measurements.

In the numerical solution, we fully reproduce the measured beam deflection, including the observed overshoot and the laser position fluctuations from the temperature variation, as shown in Fig. 5. There is a deviation in the peak of the overshoot of ~25 μm, corresponding to 0.55% deviation of the total deflection, which is very small.

Our measurements (D_{12}, D_T, and S_T) for the 3 new binary mixtures (IBB-nC6, IBB-nC8, IBB-nC10) in the entire concentration range are shown in Table VI. Our S_T and D_T data (IBB as the reference component) have a positive sign. A positive D_T for a given component in a binary mixture indicates it segregates in the cold side and thus it is thermophobic.

Hartmann et al. report $S_T = 6.81 \times 10^{-3}$ K$^{-1}$ for the equimolar binary mixture of IBB-nC6 (mass fraction $c_1 = 0.609$). The deviation between Hartmann et al. and our interpolated $S_T = 6.30 \times 10^{-3}$ K$^{-1}$ for a mass fraction of 0.609 (equimolar mixture) is 7.5%.

Blanco et al. report D_T for the IBB-nC10 mixture at 0.50 mass fraction to be 6.01×10^{-12} m2 s$^{-1}$ K$^{-1}$. Rahman reports D_{12}
TABLE V. Fickian diffusion (D_{12}), thermal diffusion (D_T), and Soret (S_T) coefficients of binary mixtures of isobutylbenzene (IBB) and n-dodecane (nC$_{12}$) at different concentrations of isobutylbenzene at 25 °C and 1 atm from the literature15,21 and this work.

<table>
<thead>
<tr>
<th>c_1 (mass fraction)</th>
<th>D_{12} (10$^{-9}$ m2 s$^{-1}$)</th>
<th>S_T (10$^{-3}$ K$^{-1}$)</th>
<th>D_T (10$^{-12}$ m2 s$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This work</td>
<td>Literature15,21</td>
<td>This work</td>
</tr>
<tr>
<td>0.100</td>
<td>0.980</td>
<td>0.994</td>
<td>2.72 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>1.042</td>
<td>1.024</td>
<td>1.10 ± 0.07</td>
</tr>
<tr>
<td>0.300</td>
<td>0.971</td>
<td>1.000</td>
<td>3.28 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>0.973</td>
<td>0.932</td>
<td>3.90 ± 0.05</td>
</tr>
<tr>
<td>0.500</td>
<td>0.932</td>
<td>0.983</td>
<td>3.90 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>0.932</td>
<td>0.983</td>
<td>3.90 ± 0.05</td>
</tr>
</tbody>
</table>

C. Effect of molecular size of n-alkane on the Fickian and thermal diffusion coefficients

Figure 6 shows that D_{12} decreases with the increase in the normalized molecular weight MW_n (molecular weight of n-alkane divided by molecular weight of isobutylbenzene) in the IBB-n-alkane mixtures. A power law fit describes all the data points, like other aromatic-n-alkane mixtures such as 1-methylnaphthalene-n-alkane systems.8 Our measurements of D_{12} may be analyzed in terms of the n-alkane mobility, which is a function of self-molecular diffusion coefficient (D_i) and dynamic viscosity (η_i). D_i and η_i for the n-alkanes in this work follow ($D_{6C_{10}} > D_{6C_{12}} > D_{6C_{14}} > D_{6C_{16}}$) and ($\eta_{6C_{10}} < \eta_{6C_{12}} < \eta_{6C_{14}} < \eta_{6C_{16}}$),8,4 indicating that the solvent mobility decreases as the n-alkane chain length increases. This observation leads to the conclusion that a decrease in solvent mobility should lead to a decrease in D_{12} for a fixed concentration. This is what we observe in our data.

We examine the similarity effect in D_{12} using the same reasoning as Leahy-Dios and Firoozabadi, comparing Fickian diffusion coefficients of different aromatic-n-alkane and n-alkane-n-alkane mixtures at the same concentration. Figure 7 depicts literature data and our measured Fickian diffusion coefficient as a function of molecular weight of n-alkanes in equimass mixtures of toluene (tol), 1-methylnaphthalene (MN), isobutylbenzene (IBB), and n-decane
The dynamic viscosity of IBB at 25°C and 1 atm is estimated by extrapolating the literature data.

Based on mobility alone, the Fickian diffusion coefficients of the mixtures shown in Fig. 7 should follow $D_{nC6-IBB} > D_{nC10-IBB} > D_{nC8-IBB} > D_{nC6-MN}$. Indeed, this is the case. The results suggest that Fickian diffusion coefficient of a given mixture is dominated by the solvent mobility, in line with the literature.

Figure 8 shows D_T (isobutylbenzene as reference compound) as a function of the normalized molecular weight (MW_n) for the entire range of concentration.

The D_T vs MW_n for the IBB-nC_i mixtures can be described by a power law fit. The same behavior has been observed in equimass binary mixtures of MN-nC_i,4 tol-nC_i,2 and benzene-nC_i,2 suggesting a general trend for the aromatic-n-alkane mixtures. Thermal diffusion D_T data for the n-alkane-n-alkane mixtures are described by a second order polynomial fit as reported by Larrañaga et al.9 (based on the data of Blanco et al.1 and Leathy-Dios and Firoozabadi1).

According to Fig. 9, the mobility (D_{12}) and disparity (ΔQ^*) decrease as MW_n increases. The result is a decrease in D_T with increase in MW_n. Decrease in D_T with increase in MW_n for aromatic-n-alkane mixtures at fixed concentration has been observed by various authors.3 The results suggest that the general contribution of similarity ($1/\Delta Q^*$) observed by other authors3 for the mixtures of 1-methylnaphthalene—n-alkane (i.e., similarity increases with the normalized molecular weight leading D_T to decrease) is also valid for the IBB-nC_i mixtures.

The decrease in mobility with the increase in MW_n (Fig. 9) may be related to the increase in the mixture dynamic viscosity, and the decrease in self-diffusion coefficient of the n-alkane solvents as the number of n-alkane carbon atoms increases.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>c_i (mass fraction)</th>
<th>D_{12} (10^{-9} m2 s$^{-1}$)</th>
<th>S_T (10^{-3} K$^{-1}$)</th>
<th>D_T (10^{-12} m2 s$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBB-nC_6</td>
<td>0.100</td>
<td>3.09 ± 0.08</td>
<td>5.12 ± 0.09</td>
<td>15.82 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>2.57 ± 0.02</td>
<td>5.77 ± 0.03</td>
<td>14.83 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>2.21 ± 0.02</td>
<td>6.17 ± 0.04</td>
<td>13.64 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>0.700</td>
<td>1.93 ± 0.01</td>
<td>6.34 ± 0.03</td>
<td>12.24 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>0.900</td>
<td>1.74 ± 0.01</td>
<td>6.23 ± 0.05</td>
<td>10.84 ± 0.11</td>
</tr>
<tr>
<td>IBB-nC_8</td>
<td>0.100</td>
<td>2.16 ± 0.05</td>
<td>3.98 ± 0.22</td>
<td>8.60 ± 0.58</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>1.77 ± 0.02</td>
<td>4.69 ± 0.04</td>
<td>8.30 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>1.59 ± 0.01</td>
<td>5.18 ± 0.03</td>
<td>8.24 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>0.700</td>
<td>1.47 ± 0.01</td>
<td>5.54 ± 0.02</td>
<td>8.14 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>0.900</td>
<td>1.38 ± 0.04</td>
<td>5.53 ± 0.06</td>
<td>7.63 ± 0.17</td>
</tr>
<tr>
<td>IBB-nC_{10}</td>
<td>0.100</td>
<td>1.42 ± 0.04</td>
<td>3.39 ± 0.05</td>
<td>4.81 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>1.30 ± 0.04</td>
<td>3.99 ± 0.05</td>
<td>5.19 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>1.21 ± 0.01a</td>
<td>4.52 ± 0.03a</td>
<td>5.47 ± 0.07a,b</td>
</tr>
<tr>
<td></td>
<td>0.700</td>
<td>1.15 ± 0.01</td>
<td>4.98 ± 0.02</td>
<td>5.73 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>0.900</td>
<td>1.15 ± 0.01</td>
<td>5.22 ± 0.02</td>
<td>6.00 ± 0.05</td>
</tr>
</tbody>
</table>

aReference 85 reports $D_{12} = 0.52 \times 10^{-7}$ m2 s$^{-1}$ and $S_T = 4.13 \times 10^{-3}$ K$^{-1}$, use of Eq. (6) results in $D_T = 2.15 \times 10^{-12}$ m2 s$^{-1}$ K$^{-1}$.

bReference 84 reports $D_T = 6.01 \times 10^{-12}$ m2 s$^{-1}$ K$^{-1}$.

Published under license by AIP Publishing
A crossover point is observed at MW_n around 0.9 in Fig. 8. This trend will be discussed next as part of the concentration dependency of D_T.

D. Concentration dependence of Fickian diffusion and thermal diffusion coefficients

Figure 10 shows dependency of D_{12} and D_T on concentration in the binary mixtures. The Fickian diffusion coefficient dependence on concentration is better correlated by a second order polynomial. This observed behavior is different for the n-alkane-n-alkane mixtures, which show linear variation. An increase in IBB concentration generally decreases D_{12}. This behavior in the IBB-nC₆ and

FIG. 6. Fickian diffusion coefficients (D_{12}) vs normalized molecular weight MW_n (molecular weight of n-alkane divided by molecular weight of isobutylbenzene) for the isobutylbenzene(IBB)-n-alkane(nCi) ($i = 6, 8, 10, 12$) binary mixtures. Symbols are used to define the concentration in mass fraction of IBB (c_1); black squares are 0.10, blue circles are 0.30, red triangles are 0.50, brown crosses are 0.70, and empty green circles are 0.90 (dashed and solid lines are power law adjustments).

FIG. 7. Fickian diffusion coefficients (D_{12}) vs molecular weight of the n-alkane solvent (MW_{nci}) for different equimass binary mixtures. Dashed lines are power law adjustments.

FIG. 8. Thermal diffusion coefficients (D_T) vs normalized molecular weight MW_n (molecular weight of n-alkane divided by molecular weight of isobutylbenzene) for the isobutylbenzene(IBB)-n-alkane(nCi) ($i = 6, 8, 10, 12$) binary mixtures. Symbols define the mass fraction of IBB (c_1); black squares, 0.10; blue circles, 0.30; red triangles, 0.50; brown crosses, 0.70; and empty green circles, 0.90. Dashed and solid lines are power law fits.

FIG. 9. Mobility (D_{12}) and disparity (ΔQ^*) vs normalized molecular weight MW_n (molecular weight of n-alkane divided by molecular weight of isobutylbenzene) for the isobutylbenzene(IBB)-n-alkane(nCi) ($i = 6, 8, 10, 12$) binary mixtures. Symbols define the mass fraction of IBB; black squares, 0.10; blue circles, 0.30; red triangles, 0.50; brown crosses, 0.70; and empty green circles, 0.90. Solid lines are splines fits to the data.
The number of carbon atoms in n-D that have higher dynamic viscosity than IBB-alkanes (squares: IBB-n-C_6, red triangles: IBB-n-C_8, and green crosses: IBB-n-C_{10}) are the thermal diffusion coefficients at infinite dilution in binary mixtures of aromatic-n-alkane and tol-n-alkane and n-alkane-n-alkane. The data from Polyakov et al. for benzene-n-C_7 and benzene-n-C_{13} follow the same trend.

The coefficient of determination r^2 for the linear relationship in Eq. (14) (see Fig. 10) is higher than 0.99 for the IBB-n-C_6, IBB-n-C_{10} and IBB-n-C_{12} mixtures, while it is about 0.89 for the IBB-n-C_8 mixture. The IBB-n-C_6 mixture at $MW_n = 0.85$ is close to the crossover point (Fig. 8; $MW_n = 0.9$), where D_T does not show concentration dependency. The variation of D_T for the IBB-n-C_8 mixture is about 12% over the whole range of concentration in Fig. 10.

Figure 8 shows the D_T dependency on concentration as a function of MW_n. When MW_n is greater than the crossover point

\begin{equation}
D_T = (D_{T1}^\circ - D_{T2}^\circ)c_1 + D_{T2}^\circ.
\end{equation}

Table VII lists the Fickian diffusion coefficients of component i infinitely diluted in component j (D_i°) and thermal diffusion (D_{T2}°) coefficients at infinite dilution in binary mixtures of isobutylbenzene (IBB—component 1) and n-alkanes (nC—component 2) at 25°C and 1 atm.

TABLE VII. Fickian diffusion (D_i°) and thermal diffusion (D_{T2}°) coefficients at infinite dilution in binary mixtures of isobutylbenzene (IBB—component 1) and n-alkanes (nC—component 2) at 25°C and 1 atm.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>D_{T2}°</th>
<th>D_{T1}°</th>
<th>D_{T10}°</th>
<th>D_{T12}°</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBB-nC_6</td>
<td>3.371</td>
<td>1.025</td>
<td>16.61</td>
<td>10.34</td>
</tr>
<tr>
<td>IBB-nC_8</td>
<td>2.332</td>
<td>1.401</td>
<td>8.71</td>
<td>7.66</td>
</tr>
<tr>
<td>IBB-nC_{10}</td>
<td>1.500</td>
<td>1.149</td>
<td>4.71</td>
<td>6.17</td>
</tr>
<tr>
<td>IBB-nC_{12}</td>
<td>1.148</td>
<td>1.025</td>
<td>2.73</td>
<td>5.04</td>
</tr>
</tbody>
</table>
of 0.9, D_T increases with increase in IBB concentration, having a positive slope in the linear dependence on concentration. When MW_a is less than 0.9 (the crossover point), D_T decreases with IBB concentration increase, having a negative slope. The slope of D_T in Fig. 10 is intimately related to the crossover point in Fig. 8, approaching zero at $MW_a = 0.9$ ($D_{T72}^2 - D_{T71}^2 = 0$), indicating there is no concentration dependence at the crossover point. Accordingly, the thermal diffusion coefficient D_T of the IBB-nC$_6$ mixture ($MW_a = 0.96$) at 25°C is expected to vary from 6.09×10^{-11} to 6.72×10^{-12} m2 s$^{-1}$ K$^{-1}$ in the concentration range of 0.10–0.90 in IBB mass fraction.

Larrañaga et al. have noted the slope change of D_T vs c_1 plots for the MN-nC$_i$ mixtures. Their data shows the slope is nearly zero when MW_a corresponds to n-tetradecane (a crossover point). The data of Leahy-Dios et al. for the same mixtures (MN-nC$_6$) shows the crossover point at a different MW_a. The sign of the slope in the linear dependence of D_T with MN concentration changes from negative for MN-nC$_{14}$ to positive for MN-nC$_{16}$. The thermodiffusion coefficients measured by Leahy-Dios et al. for MN-nC$_{16}$ at mass fractions of 0.25 and 0.75 were, respectively, $(4.10 \pm 0.08) \times 10^{-12}$ m2 s$^{-1}$ K$^{-1}$ and $(4.18 \pm 0.06) \times 10^{-12}$ m2 s$^{-1}$ K$^{-1}$. If the error in their data is considered, both values are the same, which means the crossover point is at a MW_a equivalent to MN-nC$_{16}$. The sign of the slope does not change in the tol-nC$_i$ mixtures from Larrañaga et al. In the tol-nC$_i$ mixtures, D_T increases with toluene concentration increase. The concentration dependency of D_T in the tol-nC$_i$ mixture weakens as the n-alkane molecular weight (i.e., MW_a) decreases. It seems that the increase in molecular weight of the aromatic in the mixtures of tol-nC$_i$, IBB-nC$_i$, and MN-nC$_i$ shifts the crossover point to higher MW_a. The existence and location of a crossover point in an aromatic-n-alkane mixture may be a function of the functional groups and structure of the aromatic molecule and not only of the molecular weight of the mixture constituents. To shed light on the interpretation of the crossover point, we use the concepts of mobility and similarity.

The crossover can be analyzed by examining the dependency of mobility D_{12} and disparity ΔQ^* on concentration, as shown in Fig. 11. According to Eq. (13), thermal diffusion coefficients are given by the product of disparity (ΔQ^*) and mobility (D_{12}) divided by $(RT)^2$. Figure 11 shows that while disparity increases with IBB concentration increase in the IBB-nC$_i$ mixtures, mobility dependency on concentration weakens as MW_a increases (see Figs. 9 and 11). In this way, the change of the slope of the linear dependency of D_T with mass fraction (Fig. 10) is due to different types of variations of ΔQ^* and D_{12} with the IBB mass fraction (Fig. 11). The product ($\Delta Q^* \times D_{12}$) gives distinct variations in thermal diffusion coefficients with c_1 in the IBB-nC$_i$-alkane mixtures. Consequently, the crossover in Fig. 8 and the slope change in Fig. 10 are the result of the combined effect of the competition between the increase in disparity with IBB concentration increase as MW_a decreases and the reduction in mobility with IBB concentration as MW_a increases. Blanco et al. have observed a competing effect from mobility (from $1/\eta$ of the mixture) and similarity (from the molecular weight difference ΔM of the n-alkanes in a binary n-alkane mixture) which may be related to the minimum for the D_T dependency on ΔM in equimolar nC$_{6}$-nC$_{12}$ mixtures. Fickian diffusion coefficients are dominated by mobility, but thermal diffusion coefficients are related to both mobility and similarity.

IV. CONCLUSIONS

We have measured the Fickian diffusion, thermal diffusion, and Soret coefficients of 4 binary mixtures of isobutylenzene and an n-alkane (nC$_6$, nC$_{10}$, nC$_{16}$ or nC$_{20}$) at 5 concentrations (0.10–0.90 mass fractions), at 25°C and 1 atm. Our measurements from the OBD setup are validated extensively. The Fickian diffusion and thermal diffusion coefficients of the IBB-nC$_6$, IBB-nC$_{10}$, and IBB-nC$_{16}$ mixtures are measured for the first time in the whole concentration range.

In this work, we show that the temperature contrast factor ($\partial n/\partial T$)$_R$ for binary mixtures can be estimated using the laser deflection data in the OBD experiments. The accuracy of our method is the same as direct measurement by an interferometer with an error of the order of 10^{-6}. The use of a robust stochastic optimization method is an integral part of our proposal.

We present an analysis of our measured D_{12} and D_T dependency on concentration (mass fraction of IBB) and normalized molecular weight ($MW_a = MW_{nC_i}/MW_{IBB}$). Our analysis is based on mobility and similarity (or disparity, i.e., the inverse of similarity) of molecules. It is shown that solvent mobility can describe Fickian diffusion coefficients (D_{12}), whereas both mobility and similarity should be invoked to describe thermal diffusion coefficients (D_T). The mobility and similarity concepts are also used to examine the crossover point in the D_T vs MW_a plots. The crossover point is defined as the normalized molecular weight for which there is no concentration dependence of D_T. It is shown that the n-alkane chain
length drastically affects the D_{12} and D_T dependency on concentration. There is a decrease in D_T as concentration of IBB increases in the IBB-nC$_i$ mixtures for $i = 6$ and 8. There is an increase in D_T with IBB concentration increase for the IBB-nC$_i$ mixtures for $i = 10$ and 12. D_{12} dependency on concentration diminishes as n-alkane molecular size increases.

The effect of molecular size, shape, and concentration observed in Fickian and thermal diffusion coefficients discussed above may set the stage for future studies of mixtures containing aromatic components with large alkane branches and heteroatoms.

ACKNOWLEDGMENTS

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil) for the fellowship granted through the Science Without Borders program (Programa Ciência Sem Fronteiras) during the period of November 2014 to October 2015. The authors also thank Reservoir Engineering Research Institute (RERI) that supported this work. We would like to thank ATOMS Laboratory (Laboratory of Applied Thermodynamics and Molecular Simulation) in Federal University of Rio de Janeiro (Brazil) for the use of their cluster of computers in the calculations. We thank Professor Frederico Wanderley Tavares of the Federal University of Rio de Janeiro and Professor Juan Fernández de la Mora of Yale University for the help and facilitation of the work at Yale University.

APPENDIX: CONTRAST FACTOR SENSITIVITY ANALYSIS

The sensitivity of Fickian diffusion, thermal diffusion, and Soret coefficients in the Optical Beam Deflection Technique on the contrast factors is discussed below.

Consider the IBB-nC$_6$ mixture. A ±5% variation in $(\partial n/\partial c_1)_{P,T}$ and $(\partial n/\partial T)_{P,c}$ is considered separately (one single parameter per time). The coefficients D_{12}, D_T, and S_T are determined using the procedure described in Sec. II. Figure 12 shows the effect.

FIG. 12. Sensitivity of Fickian Diffusion (D_{12}), thermal diffusion (D_T), and Soret coefficients (S_T) vs concentration of IBB in mass fraction to the concentration ($\partial n/\partial c_1$)$_{P,T}$ and temperature ($\partial n/\partial T$)$_{P,c}$ contrast factors. IBB-n-hexane(nC$_6$) mixture at 25°C and 1 atm.
According to Fig. 12, the composition contrast factor \((\partial n/\partial T)_{P,T} \) has an almost linear relation with \(D_T \) and \(S_T \), a 5% variation in \((\partial n/\partial T)_{P,T} \) results in almost 5% variation in \(D_T \) and \(S_T \) for the entire range of concentrations. In \(D_T \), a ±5% variation in \((\partial n/\partial T)_{P,T} \) has negligible influence.

There is a high dependency of the diffusion coefficients on accuracy of \((\partial n/\partial T)_{P,T} \), especially in the limits of concentration; a ±5% variation in temperature contrast factor may result in −75% to 150% variation in \(D_T \) and \(S_T \).

REFERENCES

30. C. L. Yaws, Transport Properties of Chemicals and Hydrocarbons: Viscosity, Thermal Conductivity, and Diffusivity of Cl to Cl00 Organics and Ac to Zr Inorganics (Willan Andrew, New York, 2009).