Quantification of photocatalytically-generated hydrogen peroxide in the presence of organic electron donors: Interference and reliability considerations

Yan Wei a, Jingzhen Zhang a, Qian Zheng a, Jie Miao a, Pedro J. Alvarez b, Mingce Long a, *

a School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
b Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, United States

HIGHLIGHTS
- Organic electron donors interfere with photo-generated H₂O₂ quantification.
- KMnO₄ titration and NH₄VO₃ or DPD-POD colorimetry were compared for H₂O₂ detection.
- The accuracy of the KMnO₄ titration method is compromised by aromatic compounds.
- P-benzoquinone reacts with NH₄VO₃ and DPD and interferes with H₂O₂ quantification.
- A flowchart that helps to select a suitable H₂O₂ detection method is provided.

ARTICLE INFO
Article history:
Received 1 March 2021
Received in revised form 6 April 2021
Accepted 9 April 2021
Available online 12 April 2021
Handling Editor: E. Brillas

Keywords:
Hydrogen peroxide detection
Organic interference
Photocatalysis
In-situ H₂O₂ production
Fenton-like reactions

ABSTRACT
Photocatalytic H₂O₂ production is an innovative on-site H₂O₂ synthesis method to treat organic pollutants through Fenton-like reactions, avoiding the need and potential liability of H₂O₂ storage and transportation. Accurate quantification of H₂O₂ is crucial to explore the mechanism of photocatalytic H₂O₂ production and optimize reaction parameters. In this work, three common H₂O₂ quantification methods (i.e., titration with potassium permanganate (KMnO₄), and colorimetry with ammonium metavanadate (NH₄VO₃) or N,N-diethylp-phenylenediamine-horseradish peroxidase (DPD-POD)) were compared and their susceptibility to interference by seven types of representative organics were considered. Interference mechanisms were explored based on the electron-donating (Egap) and electron-accepting (ELUMO) ability of the present organics. The accuracy of the KMnO₄ titration method is greatly compromised by aromatic compounds even at 0.1 mM due to the increased KMnO₄ consumption by direct oxidation. The presence of p-benzoquinone that directly reacts with NH₄VO₃ and DPD compromises these colorimetric methods, especially DPD-POD colorimetry at concentrations as low as 0.1 mM. The DPD-POD method should also be scrutinized in the presence of phenols due to significant disturbance by oxidation byproducts (e.g. hydroquinone inducing immediate color disappearance). A flowchart was generated to provide guidelines for selecting an appropriate H₂O₂ quantification method for different water matrices treated by Fenton-like reactions.

© 2021 Elsevier Ltd. All rights reserved.

*Corresponding author.
E-mail address: long_mc@sjtu.edu.cn (M. Long).
1. Introduction

Hydrogen peroxide (H₂O₂) is a green oxidant that is commonly used in environmental remediation, especially advanced oxidation processes (AOPs) for water treatment since it can generate highly oxidizing hydroxyl radicals (•OH) and produce only water as a by-product (Miklos et al., 2018; Huang et al., 2020). Currently, commercial H₂O₂ is mainly produced by anthraquinone method, which is limited by high energy consumption and organic by-products generation (Campos-Martín et al., 2006; Gao et al., 2020). Moreover, the instability of the synthesized high-concentration H₂O₂ results in safety problems during storage and transportation. Therefore, the on-site production of H₂O₂ in practical concentrations has drawn significant interest (Perry et al., 2019; Pi et al., 2020).

Photocatalytic H₂O₂ production is a novel on-site H₂O₂ synthesis method that only needs water and oxygen as raw materials, and light as energy input (Fukuzumi et al., 2018; Hou et al., 2019; Sun et al., 2020). In the present studies, H₂O₂ production processes are achieved mainly by oxygen reduction reactions (ORR). Semiconductor photocatalysts, such as TiO₂ (Zheng et al., 2018; Wang et al., 2019), G-C3N4 (Shiraishi et al., 2014) and their modifications (Chu et al., 2020; Feng et al., 2020a; Lu et al., 2020) are excited by light to produce photo-generated electron-hole pairs, and the photo-generated electrons can react with oxygen through one-electron or two-electron pathways to generate H₂O₂. Organic electron donors, especially alcohols, are often added to accelerate separation of electron-hole pairs and promote H₂O₂ production (Zhang et al., 2020b). The concentration of photo-generated H₂O₂ is usually in the micromole to millimolar level, which can be utilized for in-situ degradation of refractory organic pollutants, such as aromatic compounds (Luo et al., 2010; Asghar et al., 2015; Xiong et al., 2019). Due to the significance of H₂O₂ to wastewater treatment, accurate quantification of H₂O₂ is of vital importance for optimizing in situ generation and reaction conditions.

H₂O₂ quantification methods can be classified into methods based on the involvement of H₂O₂ into redox reaction or not. The usually employed methods are based on the H₂O₂ reactivity in redox reactions, such as colorimetric, fluorescence, and chemiluminescence approaches (Nosaka and Nosaka, 2017). However, there are very few methods can directly detect H₂O₂ without the occurrence of redox reactions but demanding advanced equipment (Song et al., 2017). In photocatalytic H₂O₂ production and Fenton-like reactions, the most widely used H₂O₂ quantification methods are titration with potassium permanganate (KMnO₄) (Hirakawa et al., 2016; Kofuji et al., 2018; Zhu et al., 2020), and colorimetry with ammonium metavanadate (NH₄VO₃) (Trovo et al., 2009; Mendez-Arriaga et al., 2010; Pan et al., 2018) or with N,N-diethylp-phenylene diamine-horseradish peroxidase (DPD-POD) (Zhao et al., 2014; Shi et al., 2018; Zhang et al., 2020c). These three methods are based on the oxidability, reducibility, and enzyme-catalyzed oxidation of the detection reagent, respectively (Huckaba and Keyes, 1948; Bader et al., 1988; Nogueira et al., 2005). They are easy to apply, and their quantification range matches the concentration of H₂O₂ involved in the reactions of generation and utilization (Table S1).

Although the accuracy of these methods has been established in simple systems, their reliability in the context of photocatalytic H₂O₂ production and Fenton-like reactions during treatment of common pollutants has barely been systematically compared. A recent research by Gill and Zheng (2020) suggests that some anions and aliphatic organics in the electrolytes may interfere with the quantification of electrochemically generated H₂O₂. Considering that organic compounds are susceptible to redox reactions during H₂O₂ detection, it is necessary to re-evaluate the accuracy of different H₂O₂ detection methods and clarify the underlying interference mechanisms by different compounds in photocatalytic H₂O₂ production systems and Fenton-like reactions.

In this work, the KMnO₄ titration, NH₄VO₃ colorimetric and DPD-POD colorimetric H₂O₂ quantification methods are compared in photocatalytic systems, and interference effects and mechanisms by seven organic compounds are considered. To assess variability in photocatalytic H₂O₂ production yields, three H₂O₂ concentrations ranging from micromolar to millimolar levels are selected (i.e., low- (50 μM), medium- (200 μM) and high-concentrations (1000 μM)). This work therefore informs the selection of suitable H₂O₂ quantification methods for studies and optimization efforts involving photocatalytic and Fenton-like advanced oxidation processes.

2. Experimental section

2.1. Reagents

Hydrogen peroxide (30 wt%), potassium permanganate, ammonium metavanadate, sulfuric acid (H₂SO₄), absolute ethanol, acetaldehyde, acetic acid, acetone, phenol, p-benzoquinone and bisphenol A were analytical grade and purchased from Sinopharm Chemical Reagent Co. Ltd. N,N-diethylp-phenylene diamine (DPD) and horseradish peroxidase (POD) were procured by Sigma Aldrich Co. Ltd. All reagents were used without further purification.

2.2. Analytic procedure

To evaluate the influence of coexisting organics on photo-generated H₂O₂ detection, some commonly used organic sacrificial agents and/or target pollutants and their oxidation intermediates were selected. They were four aliphatic organics: ethanol, acetaldehyde, acetic acid, acetone, and three aromatic organics: phenol, p-benzoquinone and bisphenol A. Different concentrations of organics (0.1, 1 mM, and 10 mM) were added to the H₂O₂ solutions at low (50 μM), medium (200 μM), and high (1000 μM) concentrations. H₂O₂ concentration was tested by KMnO₄ titration method, NH₄VO₃ colorimetric method, and DPD-POD colorimetric method. The influence of coexisting organics on H₂O₂ quantification was expressed by relative errors (Eq. (1)). All the experiments were conducted in triplicate, and results are presented as mean values and standard deviations.

Relative error \(= \frac{c_{\text{measured}} - c_{\text{true}}}{c_{\text{true}}} \times 100\% \)

The specific detection procedures for the three methods are as follows.

KMnO₄ titration method: The concentration of KMnO₄ solution (about 0.02 M) was standardized by sodium oxalate (Na₂C₂O₄) at 70 °C. Then 35 mL of H₂O₂ samples including 2.5 mL of 6 M H₂SO₄ were titrated dropwise by the calibrated KMnO₄ solution until a faint pink color persisted for 30 s (Huckaba and Keyes, 1948). The concentration of H₂O₂ was calculated based on the consumed volume of KMnO₄ solution.

NH₄VO₃ colorimetric method: 31 mmol NH₄VO₃ powder was dissolved in 10 mL of H₂SO₄ solution (9 M). After cooling to room temperature, the solution was adjusted to 500 mL with deionized water to obtain NH₄VO₃ solution. To detect H₂O₂ concentration, 1 mL of NH₄VO₃ solution and 1 mL of sample were added to a colorimetric tube and diluted to 10 mL with deionized water. After developing color for 10 min, the absorption of solution was detected by a UV–Vis spectrophotometer (TU-1810, Persee) at λ = 450 nm (Nogueira et al., 2005; Molamahood et al., 2020).

DPD-POD colorimetric method: 3 mL of phosphate buffer
(0.5 M, pH = 6), 1 mL of sample, 50 μL of DPD solution (10 mg mL⁻¹) and 50 μL of POD solution (1 mg mL⁻¹) were successively added to a colorimetric tube and diluted to 10 mL using deionized water. After developing color for 30 s, the absorbance was analyzed at 551 nm on a UV-Vis spectrophotometer (Bader et al., 1988; Wei et al., 2019).

2.3. Computational assessments

To clarify the redox properties, energy of the highest occupied molecular orbital (E_{HOMO}, eV) and the lowest unoccupied molecular orbital (E_{LUMO}, eV) of organic compounds were calculated by the Gaussian 09 W software. M06-2X coupled with 6–311+G(d, p) basis set using the universal solvation model based on solute electron density was used to calculate the optimized geometry and vibrational frequencies (Su et al., 2020). The gap of E_{LUMO} and E_{HOMO} (E_{gap}, eV) was calculated as E_{gap} = E_{LUMO} - E_{HOMO}.

3. Results and discussion

3.1. Reliability of KMnO₄ titration method

KMnO₄ titration method is based on the reaction described by Eq. (2), where the highly oxidizing MnO₄⁻ (purple-red in color) can be reduced by H₂O₂ to generate colorless Mn²⁺ under acidic conditions (Klassen et al., 1994). According to the KMnO₄ concentration (c_{KMnO₄}) and its consumed volume (V_{KMnO₄}) during the titration, the H₂O₂ concentration (c_{H₂O₂}) can be calculated by Eq. (3). The detection limit of this method was 0.3 μM (Klassen et al., 1994; Song et al., 2017).

\[5\text{H}_2\text{O}_2 + 2\text{MnO}_4^- + 6\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 5\text{O}_2 + 8\text{H}_2\text{O} \quad (2) \]

\[c_{\text{H}_2\text{O}_2} = \frac{5}{2} \times \frac{c_{\text{KMnO}_4} \times V_{\text{KMnO}_4}}{V_{\text{H}_2\text{O}_2}} \quad (3) \]

The effect of aliphatic and aromatic organics on H₂O₂ quantification by the KMnO₄ titration method is shown in Fig. 1. Alcohols are frequently used as the electron donors for photocatalytic H₂O₂ production, and aldehydes, ketones and carboxylic acids are common byproducts that may accumulate in the solution (Tsukamoto et al., 2012; Zhang et al., 2020a). For aliphatic organics (Fig. 1a–1c), the presence of ethanol or acetaldehyde leads to a significant overestimation of H₂O₂ concentration. The relative error increases with the increase of ethanol or acetaldehyde concentration from 36% to 64% for ethanol and from 33% to 49% for acetaldehyde when H₂O₂ concentration is 50 μM. In contrast, the presence of acetic acid or acetate exhibits much less influence on H₂O₂ quantification. These differences in extent of interference can be explained by differences in the electron donating ability of chemicals, which was assessed by the HOMO-LUMO gap (E_{gap}). Since the low E_{gap} facilitates electron transfer and donation, compared with ethanol (9.73 eV) and acetaldehyde (9.57 eV), acetic acid (10.22 eV) exhibits the lowest reactivity with KMnO₄ (Table 1) (Karelson et al., 1996; Shao et al., 2020). Although acetic acid shows a low theoretical E_{gap} value (9.24 eV), it performs negligible disturbance on the measured results of KMnO₄ titration method. This may be ascribed to its higher half-wave potential, leading to less potential to be oxidized by KMnO₄ than aldehydes with similar structure (E(acetone)_{1/2} = −1.52 V vs. saturated calomel electrode (SCE) and E(acetaldehyde)_{1/2} = −1.89 V vs. SCE) (Speight, 2005; Zhou et al., 2020).

The presence of the three tested aromatic organics can induce enormous errors in H₂O₂ quantification by this titration method (Fig. 1d–f). Among them, phenol is a common pollutant in Fenton-like reactions, p-benzoquinone is a possible oxidation intermediate, and bisphenol A is a refractory emerging contaminant. For a H₂O₂ sample with a known concentration of 50 μM, p-benzoquinone induces the largest relative error (873% for 0.1 mM or 10.8 mg L⁻¹), followed by phenol (496% for 0.1 mM or 9.4 mg L⁻¹) and bisphenol A (241% for 0.1 mM or 22.8 mg L⁻¹). These differences in the extent of interference can be ascribed to their E_{gap} values as well. The E_{gap} for phenol, p-benzoquinone, and bisphenol A are 7.93 eV, 6.87 eV and 7.33 eV, respectively (Table 1). Among them, p-benzoquinone is highly susceptible to be oxidized by KMnO₄, which increases the consumption of KMnO₄, thus increasing the measured H₂O₂ concentration. Since 1.0 mM of aromatic organics can bring a thousand-fold relative error to the measurement of 50 μM H₂O₂, the effect of 10 mM of organics was not further explored in this method.

The accuracy of this method is more susceptible to interference by organics when the H₂O₂ concentration is low. For example, with the presence of ethanol or acetaldehyde, the measured results for low- (50 μM) and medium-concentration (200 μM) H₂O₂ samples exhibit significant relative errors. But the relative errors decrease to a low level when the actual H₂O₂ concentration is 1000 μM. Accordingly, when aliphatics are present in photocatalytic reactions, the KMnO₄ titration method is only suitable for quantifying high-concentration H₂O₂ (above 1000 μM). Aromatic organics can result in tremendous relative errors even for 1000 μM H₂O₂ (>50% when organic concentration is 0.1 mM and >500% when organic concentration is 1.0 mM). Thus, the KMnO₄ titration method is not advisable for H₂O₂ quantification with the presence of aromatic organics.

3.2. Reliability of NH₄VO₃ colorimetric method

In the NH₄VO₃ colorimetric method, ammonium metavanadate serves as a reductant to react with H₂O₂ in acidic medium. The generated peroxovanadium cations display red-orange color and absorb strongly at 450 nm (Eq. (4)) (Nogueira et al., 2005). Accordingly, the concentration of H₂O₂ can be calculated from the measured absorbance by the standard curve, which is shown in Fig. S1. The absorbance is linearly related to H₂O₂ concentration in the range of 0–40,000 μM (R² = 0.9999). The limit of detection is 65.8 μM according to 3σ/k, where σ represents the standard deviation of the y-intercept and k is the slope of the curve. Therefore, NH₄VO₃ colorimetric method is suitable for the quantification of H₂O₂ at medium and high concentrations.

\[\text{VO}_3^- + 4\text{H}^+ + \text{H}_2\text{O}_2 \rightarrow \text{VO}_2^{2+} + 3\text{H}_2\text{O} \quad (4) \]

Fig. 2 displays the effect of various organic compounds on the quantification of H₂O₂ by NH₄VO₃ colorimetric method. The relative errors caused by the presence of organics in this method are much smaller than those in KMnO₄ titration method. The measured H₂O₂ concentration is relatively more accurate in the presence of only aliphatic organics, and the maximum relative error is 11%, which occurs for the case of the coexisting of 10 mM acetic acid (i.e. 600 mg L⁻¹) and 1000 μM H₂O₂ (Fig. 2a and b). This can be attributed to the strongest electron accepting ability of acetic acid in the four aliphatic organics, since it has the minimum E_{LUMO} (0.14 eV, Table 1) (Karelson et al., 1996; Avigdori et al., 2020). Therefore, acetic acid is likely to be reduced by NH₄VO₃ or react with NH₄VO₃ intermediates, and accordingly disturb the measured H₂O₂ concentrations.

As for aromatic organic compounds, both phenol and bisphenol A caused minor interference on the measured results, with relative errors less than 5% and 3%, respectively (Fig. 2c and d). After subtracting the background absorbance of p-benzoquinone solution,
The intermediates (Gao et al., 2021). More electron-withdrawing and easier to be reduced by ammonia (0.15 eV) and bisphenol A (0.01 eV), so the ELUMO of the phenolic substances can also be explained by its unique reactivity. The presence of p-benzoquinone leads to a 75% exaggerated estimation of the medium-concentration of H2O2, while the relative error decreases to 12% when the H2O2 concentration increases to 1000 μM. The interference of p-benzoquinone on H2O2 determination in NH4VO3 colorimetric method can also be explained by its unique reactivity. The E_{LUMO} of p-benzoquinone (−2.64 eV) is much lower than that of phenol (0.15 eV) and bisphenol A (0.01 eV), so p-benzoquinone is more electron-withdrawing and easier to be reduced by ammonium metavanadate or the intermediates (Gao et al., 2021).

These results infer that when the H2O2 concentration in the reaction systems is relatively high (above 1000 μM), the detection results of NH4VO3 colorimetric method are relatively reliable, and the disturbance by the presence of organics is negligible. For reaction systems with the medium-concentration (200 μM) of H2O2, the tested results are also relatively accurate in the presence of aliphatic organics or low-concentration aromatic organics (below 1.0 mM). However, the presence of high concentration of p-benzoquinone (above 10 mM) can induce a sizable relative error for the medium-concentration of H2O2. Considering that benzoquinones are the intermediates of phenol oxidation in the photocatalytic processes (Liu et al., 2008), even though phenol shows little effect on the accuracy of tested results, the NH4VO3 colorimetric method should be scrutinized when high-concentrations (above 1.0 mM) of phenols and/or benzoquinones are present.

Table 1

<table>
<thead>
<tr>
<th>Organics</th>
<th>E_{HOMO} (eV)</th>
<th>E_{LUMO} (eV)</th>
<th>E_{gap} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>−9.56</td>
<td>0.17</td>
<td>9.73</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>−9.28</td>
<td>0.29</td>
<td>9.57</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>−10.08</td>
<td>0.14</td>
<td>10.22</td>
</tr>
<tr>
<td>Acetone</td>
<td>−9.10</td>
<td>0.15</td>
<td>9.24</td>
</tr>
<tr>
<td>Phenol</td>
<td>−7.78</td>
<td>0.15</td>
<td>7.93</td>
</tr>
<tr>
<td>P-benzoquinone</td>
<td>−9.51</td>
<td>−2.64</td>
<td>6.87</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>−7.32</td>
<td>0.01</td>
<td>7.33</td>
</tr>
</tbody>
</table>

0.1 mM p-benzoquinone exhibits negligible effect (relative errors < 1%) on the detected results. The effect of 1.0 mM p-benzoquinone is also small, and the relative errors are 13% and 1% for the medium- and high-concentration H2O2. However, 10 mM p-benzoquinone leads to a 75% exaggerated estimation of the medium-concentration of H2O2, while the relative error decreases to 12% when the H2O2 concentration increases to 1000 μM. The interference of p-benzoquinone on H2O2 determination in NH4VO3 colorimetric method can also be explained by its unique reactivity. The E_{LUMO} of p-benzoquinone (−2.64 eV) is much lower than that of phenol (0.15 eV) and bisphenol A (0.01 eV), so p-benzoquinone is more electron-withdrawing and easier to be reduced by ammonium metavanadate or the intermediates (Gao et al., 2021).

These results infer that when the H2O2 concentration in the reaction systems is relatively high (above 1000 μM), the detection results of NH4VO3 colorimetric method are relatively reliable, and the disturbance by the presence of organics is negligible. For reaction systems with the medium-concentration (200 μM) of H2O2, the tested results are also relatively accurate in the presence of aliphatic organics or low-concentration aromatic organics (below 1.0 mM). However, the presence of high concentration of p-benzoquinone (above 10 mM) can induce a sizable relative error for the medium-concentration of H2O2. Considering that benzoquinones are the intermediates of phenol oxidation in the photocatalytic processes (Liu et al., 2008), even though phenol shows little effect on the accuracy of tested results, the NH4VO3 colorimetric method should be scrutinized when high-concentrations (above 1.0 mM) of phenols and/or benzoquinones are present.

3.3. Reliability of DPD-POD colorimetric method

DPD-POD colorimetric method was developed in 1988 by H. Bader et al. and has been broadly used in photocatalytic systems for H2O2 quantification (Table S1) (Bader et al., 1988). This method relies on the POD-catalyzed DPD oxidation (Fig. 3a). H2O2 can oxidize POD into a higher valent state intermediate, which subsequently oxidizes DPD molecules to radical cations with imine group (DPD$^+$). H2O2 concentration can be determined by measuring the absorbance of the pink colored DPD$^+$ at 551 nm. Fig. S2 displays the standard curve of the DPD-POD colorimetric method. In the concentration range of 0–400 μM, the absorbance presents a highly linear response with H2O2 concentration ($R^2 = 0.9992$). The detection limit of this method is calculated to be 7.1 μM according to 3σ/k. Consequently, the DPD-POD colorimetric method can be directly used to quantify the low- (50 μM) and medium-concentration (200 μM) H2O2 samples, while the high-concentration (1000 μM) H2O2 samples are diluted for 10 times before detection.

The DPD-POD colorimetric method failed to reliably quantify H2O2 concentration in the presence of p-benzoquinone even at a low concentration (0.1 mM). As shown in Fig. S3, in the absence of H2O2, a pink color appears after adding DPD to a p-benzoquinone solution. The generated product also exhibits absorption at 551 nm, and the absorbance induced by 0.1, 1.0 mM and 10 mM p-benzoquinone equals to 55, 116 μM and 213 μM H2O2, respectively. The formation of the pink product is due to the direct reaction between p-benzoquinone and DPD, which generates quinone imine (pink in color), a similar oxidation product of DPD in DPD-POD colorimetric method (Fig. 3b) (Bontschev, 1962; Maleki and Nematollahi, 2011).

The effect of the other organics except p-benzoquinone on the quantification of H2O2 is shown in Fig. 4. Regardless of the H2O2 concentration, relative errors caused by the co-occurring organics are negligible (<8%). This result demonstrates the robust anti-interference ability of the DPD-POD colorimetric method, which can be attributed to the high selectivity of peroxidase. However, although the relative error caused by phenol is negligible, the DPD-POD colorimetric method is also not satisfactory for H2O2 quantification in the presence of phenolic substances due to the...
interference of their oxidation intermediates. The direct reactions between the benzoquinone intermediates of phenols and DPD lead to the formation of interfering imines, which eventually result in erroneous measured H$_2$O$_2$ concentration. The production of hydroquinone, another intermediate with high reduction potential ($E_{\text{gap}} = 5.30$ eV) in phenol oxidation, induces significant errors in H$_2$O$_2$ detection due to immediate decolorization of DPD$^+$ (Fig. S4). The appearance of hydroquinone results in a drastically underestimated H$_2$O$_2$ concentration since the reduction of DPD$^+$ by hydroquinone is fast (Fukushima and Tatsumi, 1998). Overall, the DPD-POD colorimetric method can accurately measure the H$_2$O$_2$ concentration regardless the interference of aliphatic organics due to the selectivity of peroxidase, but this colorimetric method also should be scrutinized in the presence of phenols and benzoquinones.

3.4. Recommendations for method selection

No clear rule was discerned between the concentration of different co-occurring organic compounds and the resulting relative errors (Fig. S5). Furthermore, the concentrations of sacrificial agents and/or contaminants change during H$_2$O$_2$ quantification, which makes it difficult to assign a specific relative error for each of the three methods under consideration. Therefore, we produced a flowchart to guide selection of the most suitable H$_2$O$_2$ quantification method for different case-specific conditions (Fig. 5).

The first consideration should be which organic sacrificial agents and/or contaminants are present in the photocatalytic reaction. If no organic is present in the reaction system, the choice of H$_2$O$_2$ detection method depends on their detection ranges. The KMnO$_4$ titration method is applicable for a wide range of H$_2$O$_2$ concentrations. The NH$_4$VO$_3$ colorimetric method is not appropriate for low concentrations of H$_2$O$_2$ below its detection limit.
The DPD-POD colorimetric method can be directly used for samples with H$_2$O$_2$ concentrations below 400 μM based on the measured calibrate curve, and samples with higher H$_2$O$_2$ concentrations than this value should be diluted before quantification.

When organics are present, interference by aliphatic compounds is generally less than that of aromatic organic compounds. The presence of aliphatic organic compounds (above 0.1 mM) will induce significant relative errors for the KMnO$_4$ titration method when H$_2$O$_2$ concentration is less than 200 μM, while the NH$_4$VO$_3$ and DPD-POD colorimetric methods are less susceptible to this interference. Accordingly, quantification of 50 μM H$_2$O$_2$ concentration with the DPD-POD colorimetric method in the presence of aliphatic compounds should be reliable. Both NH$_4$VO$_3$ and DPD-POD colorimetric methods are suitable for the determination of medium-concentration (200–1000 μM) H$_2$O$_2$ samples. As for samples with high H$_2$O$_2$ concentration (>1000 μM), all the three methods can be employed.

Aromatic organic compounds may cause large relative errors to all the three ranges of H$_2$O$_2$ concentrations measured by the KMnO$_4$ titration method even if the organic concentrations are only 0.1 mM. The accuracy of NH$_4$VO$_3$ colorimetric method can be seriously interfered by p-benzoquinone when its concentration is above 1.0 mM and H$_2$O$_2$ concentrations is below 1000 μM. The DPD-POD colorimetric method fails to quantify H$_2$O$_2$ in the presence of p-benzoquinone due to its controversial imine-generation reaction with DPD. Therefore, among the three methods, NH$_4$VO$_3$ colorimetric method is relatively reliable in the presence of benzoquinones with concentrations below 1.0 mM. When benzoquinones are present with high concentrations (above 1.0 mM), none of the three methods are recommended. Considering that p-benzoquinone and hydroquinone are possible oxidation intermediates of phenolic compounds (Yang et al., 2010; Liu et al., 2018), H$_2$O$_2$ quantification when such organics are present should be scrutinized. Other H$_2$O$_2$ detection methods, such as ion chromatography with UV detector, whose mechanism is not based on redox reactions should be considered (Song et al., 2017). Note that the degradation pathways of most aromatic compounds are to be oxidized to phenols, then open the ring and be mineralized (Wu et al., 2019; Feng et al., 2020b). Thus, in the presence of other aromatic compounds, it is important to carry out not only control experiments to assess interference by organics, but also consider interference by the oxidation intermediates. Other blank and
control tests, to correct for the influence of background color on absorbance measurement, should be conducted in advanced to enhance reliable H₂O₂ quantification. It is also recommended to use more than one method for H₂O₂ quantification when appropriate.

4. Conclusions

Aliphatic and aromatic compounds are often present as sacrificial agents and/or target contaminants in photocatalytic in-situ H₂O₂ production and Fenton reactions. To determine the impact of these organics on H₂O₂ quantification, three common H₂O₂ methods were compared (titration with KMnO₄ and colorimetry with NH₄VO₃ or DPD-POD). Interferences by different organics were systematically compared through relative errors, and the interfering mechanisms were analyzed.

The accuracy of KMnO₄ titration method is greatly compromised by the presence of aromatic compounds at concentrations as low as 0.1 mM. The DPD-POD colorimetric method is unreliable when benzoquinones are present due to the direct reaction with DPD, while the NH₄VO₃ colorimetric method is relatively accurate in the presence of benzoquinones with concentrations below 1.0 mM (i.e. 108 mg L⁻¹). Based on the presented data, a flowchart was developed to guide the selection of a H₂O₂ detection method in different scenarios. We hope that this contribution will foster reliable reactions to enhance system-specific optimization efforts.

Credit author contribution statement

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Financial supports from the National Natural Science Foundation of China (nos. 52070128 and 21876108), the NSF ERC on Nanotechnology-Enabled Water Treatment (no. EEC-1449500), and Shanghai Post-doctoral Excellence Program (no. 2019160) are gratefully acknowledged.

Appendix A. Supplementary data

This supplementary data can be found online at https://doi.org/10.1016/j.chemosphere.2021.130556.

References

Bontchev, P.R., 1962. Results of some analytical catalytic reactions. Microacta. 50, 584–591.

