Navigation Channels Considerations for Marine Terminals: Minimizing Risk

Jeffrey B. McWilliams, PE Director, Maritime – Gulf Coast Region AECOM, Inc. Houston, TX

AECOM at a Glance: Integrated Solutions **AECOM**

We provide the entire suite of services for virtually all types of terminals – Petroleum/petrochemical; LNG; liquid/dry bulk; container; break-bulk; military; offshore moorings – around the world

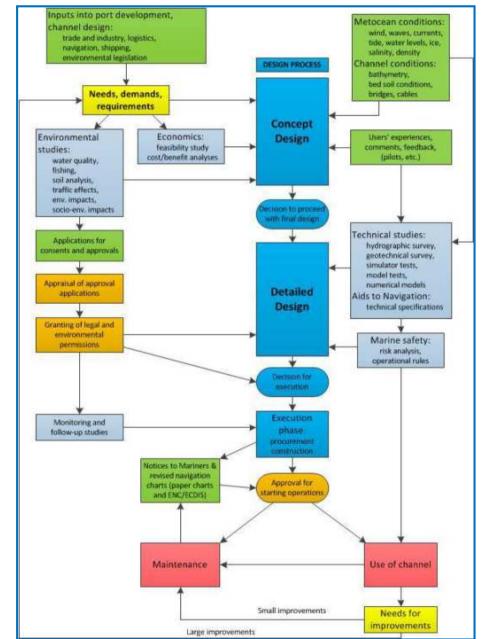
- Front End/Planning/Environmental/Feasibility/Economics/FEED
- Field Investigations
- Process engineering, pipeline, infrastructure
- Modeling and Simulation
- Conceptual, Preliminary, Final Engineering Design
- EPC/EPCM/Self Perform Construction Services/Fabrication
- 99,000 employees, 500+ offices in 150 countries around the world, \$19 Billion revenue 2014
- ENR #1 Ports & Marine, Transportation, Environmental, others
- Global marine design centers; Gulf Coast in Houston, New Orleans

Topics

- Why you should have some level of knowledge
- Fundamentals of Channel Design
- Environmental & Permit Issues
- Dredging and Dredged Material Placement
- Managing Risk: Operational and Contractual
- Project Example: Port of Columbo, Sri Lanka

This presentation is meant as an introduction to navigation channels; Details are site dependent

Why should you understand this topic?


- Gateway to your marine terminal
- Navigation Safety, security of terminal
- Critical path item in terminal development; long "lead time"
- High initial cost and ongoing O&M; specialized market

<u>Who</u> should know: Anyone involved in the development or operation of a marine terminal

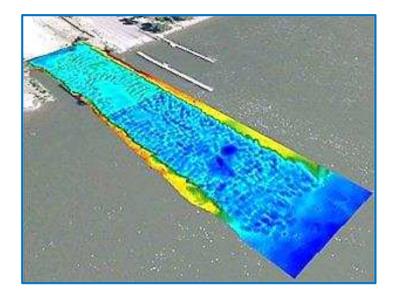
Development Process

- We will touch on these main topics
 - Design guidelines through PIANC and USACE
 - Environmental site specific
- Concept Design
 - Location & Needs
 - Feasibility & Economics
 - Environmental regs
 - Metocean and channel
 - Go/No-Go
- Detailed Design
 - Environmental permits
 - Technical studies
 - Marine Safety
 - Other site specific
- Approvals and construction

Channel Design: Determining Geometry

- ID System components: Entrance, main channel, turning basins, berths...
- Existing bathymetry
- Obstructions
- Design vessels, other users
- Sub bottom condition pipelines, etc.
- Calculated design is not absolute; practical/commercial issues considered
- From this you have a pretty good idea of your channel alignment

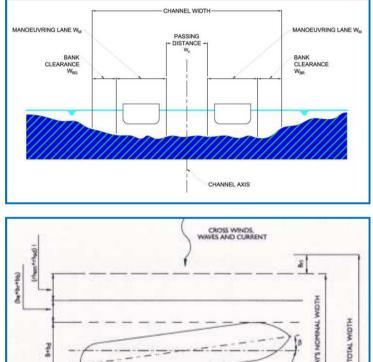
Photos: Bayport (PHA); channel connects to HSC w/wideners for arrival and departure

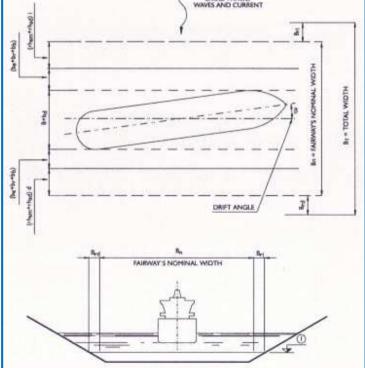


Field Investigations: These are critical tasks

- Bathymetry Accuracy CRITICAL
 - Single vs. Multi Beam (preferred)
 - Offshore disposal areas
 - Areas for mining sand/fill
- Side scan, sub-bottom, magnetometer for utilities, pipelines, wrecks
- Soil Investigations: CRITICAL
 - Sufficient number of borehole sites
 - Correct sample # and tests
 - Probes useful to find hard material
 - Stable platform (jack up for rock or offshore/unprotected)
- Met-ocean
- Others depending on site (locating pipelines, archaeology, seismic, tsunami, etc.)

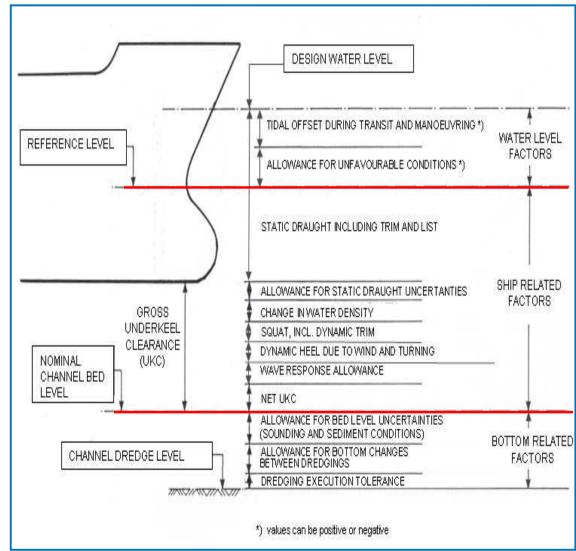
NOT THE PLACE TO CUT COST!




Field Investigations, Typical Dredge Project

Bathymetric or topographic survey	Detection of seabed obstructions (UXO, wrecks, boulders,)	Geological and geotechnical investigation	Hydraulic morphological and meteorological data
Single beam survey	Side scan sonar	Geophysical seismic Reflection seismic 	Hydraulic Data • Waterlevels
Multi beam survey	Multibeam sonar	Refraction seismic Geoelectric survey	• Tide • Current
Land survey	Magnetometer survey	Sampling methods • Borehole • Vibrocore	Sediment transport / Turbitidity
		• (Jet)probe • Grab sample • Test pit	Meteorologic Data • Waves • Ice
Schematic chart of data require Hydraulic Fill Manual.	d for a site investigation, adapted from	Testing • Laboratory tests • In-situ tests • Cone penetration tests	• Fog Seismic Data • Earthquake risk • Tsunami risk

Channel Design: Width


- One way or two way
- Range of vessel characteristics
- Alignment Straight, bends...
- Vessel "behavior" under design conditions, sailing/maneuvering
- Conceptual Width = Vessel beam + consideration for maneuvering + passing + bank clearance + other (turns, etc.)
- Often expressed as a factor of beam
- Practical/commercial factors considered – HSC Bayou Reach Example

Channel Design: Depth

- Direct calculation
- Three "levels" to consider above/below waterline
- Sea level factors waves, tides, etc.
- Vessel factors Draft, trim, list, squat, heel, etc.
- Bottom and seabed factors (hardness, uncertainties)
- Practical/commercial factors are considered
- Often expressed as factor of vessel draft

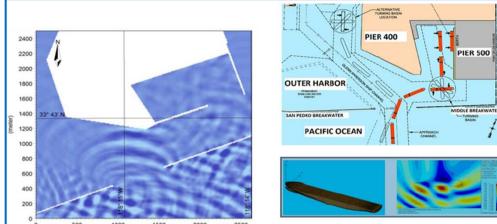


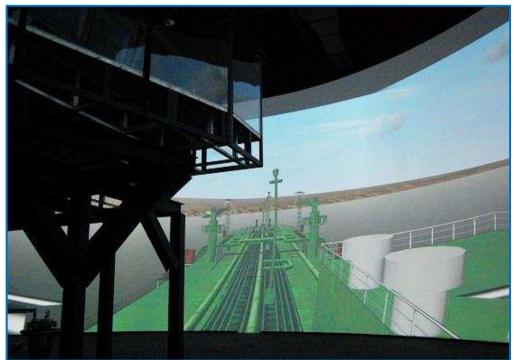
Channel Design: Other Aspects

HEORETICAL ANCHORING CENTRE

CIRCLE OF POSSIBLE NCHORAGE

- Turning radius
- Passing lanes
- Wideners
- Turning basins - Length X Factor
- Anchorage – Length X Factor
- Air draft: Can limit vessel size, alter channel design




Channel Design: Numerical Modeling

- Coastal engineering: Waves, currents, sedimentation, etc.
- Navigation models:
 - Fast time: SHIPMA, DynaSim
 - Real time simulators: PMI, MITAGS, Star Center, etc.
- Pilots, operators, other users involved
- Berthing and Mooring analysis, effect of passing vessels

 OPTIMOOR, others
- Verify channel design, safety

Use results to ID areas of concern, modify design; an iterative process

Channel Design: Safety

- Channel suitability studies (as with LNG Waterway Suitability Assessment)
- Navigational risk analysis
 - Sea conditions
 - Channel arrangement
 - Traffic analysis, vessel encounters
 - Proximity to SPM, dangerous cargo
 - Risk of accident
- Modeling Vessel traffic simulations
- Tug assists, #tugs and specifications
- Vessel Traffic Systems USCG
- ATON
- Other site-specific items

Environmental & Permitting

- Typically Issued through Federal, State, Local authorities
- Conditions <u>highly</u> dependent on locality, resources, regulators
- Some typical resources/issues:
 - Coral, "hard bottom"
 - Sea grass, wetlands
 - Endangered species
 - Marine mammals
 - Fish and wildlife
 - Turbidity/water quality
 - Contaminated sediment
- Mitigation or improvements may be needed

Top: Bolivar Marsh, HGNC Bottom: Sonoma Wetlands, CA

Environmental & Permitting: HGNC

Example: HGNC Deepening and Widening (~\$700MM) – Creation of habitat/confined disposal of dredge material

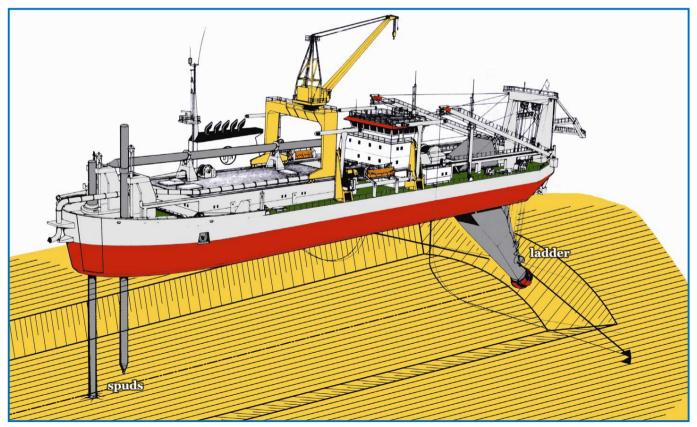
- Dredge material was once pumped overboard into Galveston Bay; habitat loss, WQ degradation
- Mandate beneficial use of dredge material, contain all dredge matl
- Inter-tidal marsh; habitat islands; reefs; DMPA improvements
- Agencies involved: USACE; PHA; EPA; NMFS; USFWS; TXPWD; GLO; NOAA, TCEQ
- How? Multi-year effort between PHA and consultants (AECOM-GBA JV); USACE, agencies (Beneficial Use Group)

Environmental & Permitting: HGNC

- New Work w/USACE cost share; follow USACE guidelines
- Reconnaissance (in National Interest); Feasibility (cost/ben); Congressional Authorization & Funding; LRR/EIS, Sect. 404 & Sect. 10 of CWA, Sect. 408/Title 33 of US Code, 203/204 assumption of maintenance under WRDA....strong local sponsor in PHA
- Broken up into multiple projects; marshes, islands, offshore reefs, habitats, monitoring, etc. – Model project

Dredging and Dredged Material Disposal

- Avoid it if you can! If not, minimize it to extent possible
- Three primary equipment types, used individually or in combination
 - Cutter Suction Dredger (CSD)
 - Trailing Suction Hopper Dredger (TSHD)
 - Mechanical Dredge (Bucket or Backhoe)



Cutter Suction Dredger

- Many different configurations: kW, pumps, discharge, pontoon...
- Can be designed to cut most material, incl. soft rock (~50 MPa)
- Rotating "cutterhead" agitates material; dredge swings across channel, pump slurry material via pipeline to final disposal (~70% H2O or more)
- High production rates, limitations include sea state, pump distance

Trailing Suction Hopper Dredger

- Cuts softer/looser mud and sand; water jets/teeth for firm matl.
- Self propelled vessel; suction pipe with "draghead" lowered to seabed, material sucked from bottom and deposited in hopper
- Sizes vary <5k to 40k M³, can work offshore, sail in "S" pattern
- High production rates, needs wide open areas and sufficient depth; production limited by transit distance to disposal site, material type

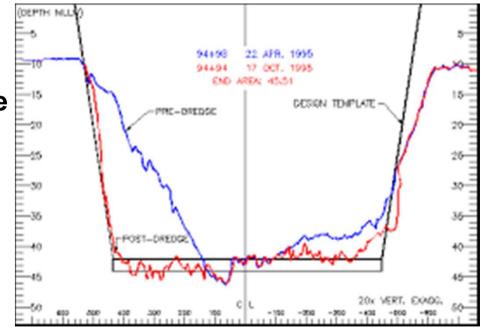
Mechanical Dredge

- Cuts many different types of materials, incl. soft/shot rock
- Fixed barge on spuds/anchors mechanically dig material from bottom, load into barges, tow to offshore disposal
- Sizes range by crane type: Up to 50 CM bucket
- Relatively low production rates, can dredge in restricted areas

Placement/Disposal of Dredged Material

- Offshore; upland (CDF); reclamation; beneficial use (marsh, beach restoration)
- CDF is a contained area nearby channel to contain material; weirs to control water and drain facility
- Offshore & CDF most common, also reclamation
- Mechanical dredge nearly always offshore disposal; TSHD primarily offshore but many have pump-off capability; CSD nearly always upland, reclamation, beach, marsh

Placement/Disposal of Dredged Material



Production and Cost

- Most dredges are unique/custom designed and built
- Costs are *relatively* stable: Relatively few variable costs
- The variable is production M³/Net Operating Hour
- Efficiency is constant focus: Small increase in production = large cost and schedule savings
- Production limited by: Cutting (strength of material), area coverage, or transporting/pumping material
- Production calculated with:
 - Volume of material, size of area, average depth
 - Type and consistency of material
 - Workability (the % time dredging)
 - Other project specific factors, environmental, etc.
 - And of course the dredge's capabilities

Basic Estimating Considerations – Production

- Production: Sometimes difficult due to "custom" nature of equipment
 - Dredges of similar dimensions will not have same productions; Software available
 - Look at similar projects, historical averages, input from contractors
 - Do a "sensitivity" analysis
 - Can develop an algorithm
- Volume calculated by subtracting survey surface from template
- Calculated as M3 per net operating hour; deduct down time
 - CSD workability ~60% 75%;
 TSHD workability ~75% 90%

Basic Estimating Considerations - Cost

- Assume details of project are known and bid items determined
- Determine dredge volumes: Survey surface vs. channel template
- Determine the equipment spread required
 - Suitable dredge + attendant plant tugs, anchor barges, etc.
 - Pipeline, valves, joints, anchors, pontoons, moorings, and so on
 - Land/Dry plant required for fill loaders, excavators, dozers, crew, other
- Equipment costs consist of:
 - Ownership costs: Value, depreciation, interest, repair, insurance
 - Operating costs: Consumables, repair, wear parts, labor
 - Allowance for ownership, operating, factors, and utilization
 - Utilization = working months per year to recover cost (9 to 10 months)
- Other ancillary costs

CIRIA Guide to Cost Standards for Dredging is a great resource

Cost Estimate Example

- TSHD 7,600 CY capacity
- Pump 4,200 CY/NOH
- Offshore disposal 8 NM
- Material is soft clay/mud
- Load factor 30%
- Production cycle includes loading, turning, sailing, discharge
- Volume removed includes pay + unpaid
- Volume/Production = Time
- Time X Unit Cost = Total
- Add Mobilization costs (get to/from site)

	JECT SUMMAR							
	GE CONCEPTUA	AL ESTIMATE						
MULTIPLE DRE	DGE AREAS						_	
Volumes	Grade	OD	Total					
13-OR	Grade	629,041	629,041					
13-0K 12. 11. 9	- 796,605	602,918	1,399,523					
Total	796,605	1,231,959	2,028,564					
Removed	796,605	1,231,959	 	() c		us unpaid = to	tal available)	
Kellioveu	790,005	1,251,959	 2,028,304	(AS	sume pay pro	is unpaid – to	tal available)	
Assumptions: Generic Hopper Dredge		er Dredge	7,600	CY Hopper Capa		city (Water)		
Load Ratio (ho	pper to soft cla	iy):	30%					
Mud Capacity/			2,280	СҮ				
Mud Productio			4,200		NOH	(33" suction	diameter)	
Production De	tails:							
Loading			33	Mir	nutes			
Turning	2 each	5 min	10	Mir	nutes			
Sail Loaded	8 mi	10 mph			nutes			
Sail Light	8 mi	12 mph	40	Mir	nutes			
Discharge/Wa	shout		10	Mir	nutes			
Fotal Cycle			141	Mir	nutes	1		
			2.3	Но	urs			
Production (N	et)				NOH			
Efficiency (NO		90%		Hours/Day		Net Operating Hours		
Total Producti			21,020	-				
Cost Details:								
Daily Cost (Dre	edge)		\$ 78,000	Per	Day	All in		
Supervision/Field OH			\$ 8,000			From Dredge	e Estimate	
Survey Vessel			\$ 1,200		•	From Dredge		
Subtotal			\$ 87,200					
Markup		24.4%	21,277			(16.0% OH ar	nd 8.4% PFT)	
Total Cost/Day	/		\$ 108,477				, ,	
Fotal Cost/CY			\$ 5.16					
Mob/Demob	4	Days	\$ 108,477	\$	433,907			
Dredge Cost	2,028,564	CY	\$ 5.16	\$				
	OPPER DREDG	E:		\$	10,902,367			

Managing Risk: Contractual and Operational

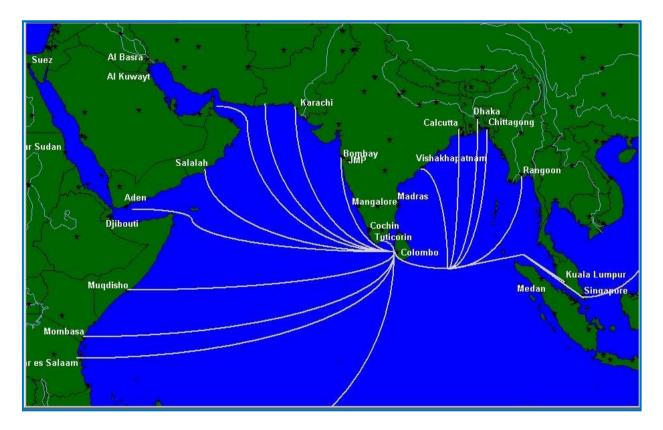
- Many projects are part of EPC; dredger is a subcontractor
- Contract form: FIDIC or equal, T&Cs generally understood; modifications for specific items
- Simple projects IFB (lowest price, responsive contractor)
- Contractual Risk Items Technical Specifications:
 - Scope of work not clearly defined/customized to project
 - Bid items and/or schedule of prices
 - Insufficient/inadequate field investigations (i.e. rock)
 - Contractor lacks proper experience, equipment, staff
 - Pricing LS vs. Unit Price (prefer UP for complex projects)
 - Environmental risks not adequately accounted for
 - Others depending on project

Consulting engineer must be experienced with all aspects of work

Managing Risk: Contractual and Operational

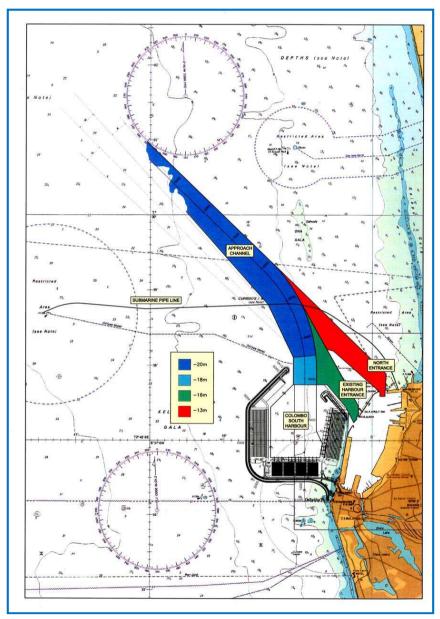
- Complex projects should be RFP (best value)
 - Prequalification: Contractors with proven equipment, experience, staff, resources, financial, etc.
 - Detailed scope of work Take a bit of risk to reduce costs
- Key items in the RFP:
 - Equipment spread and specifications
 - Dedicated PM and key staff qualifications
 - Detailed project experience, references, safety record, etc.
 - Detailed Project approach
 - Detailed work plan, environmental protection, contingency
 - Logistics plan (if applicable)
 - Detailed bid tab, delineated by risk items, break in work

Significant thought, preparation, and attention to detail pays off – only as good as the Specifications


Managing Risk: Contractual and Operational

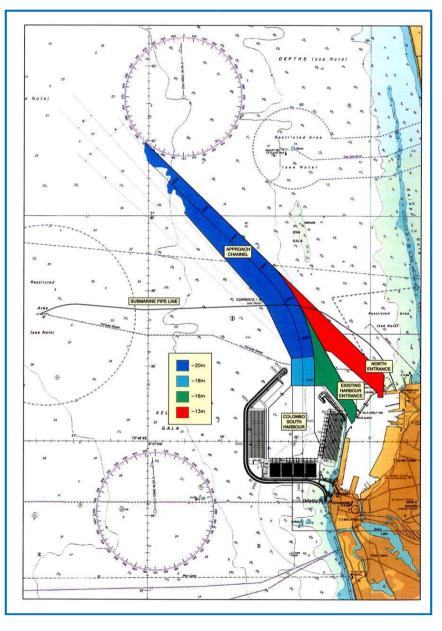
- Operational risks often due to environmental restrictions
 - Contaminated sediment
 - Turbidity Miami River example
 - Stress/destroy coral reefs, vegetation
 - Nesting seasons
 - Injure/kill protected species
 - Work "windows" that drastically reduce schedule (Pacific NW)
 - Public perception/opposition
 - Government/political issues
- Substantial production issues/differing site conditions (i.e. rock)
- Persistent equipment problems/inadequate equipment, underqualified management and/or staff
- Safety issues/injury/fatality
- Delays starting/mobilizing
- Schedule risk (weather, accidents/repairs to equipment)

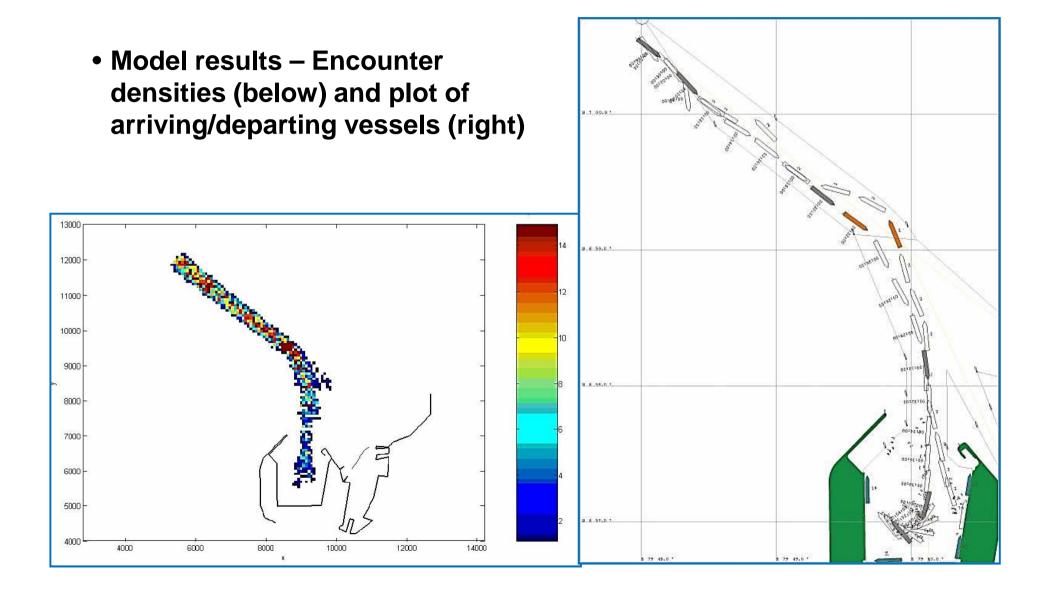
Managing Risk


- Exhaustive, detailed up-front work/Pre-FEED/FEED
- Detailed, well thought out scope of work, best-value RFP for complex projects
- Vet/prequalify contractors thoroughly
 - Many are clearly qualified GLDD, Jan de Nul, Boskalis, etc.
 - Is proper team in place? Experience working with contractor?
 - Early Contractor Involvement is often a great idea
- Early Contractor Involvement: Part of planning and design
 - Can offer ideas that fast-track project and reduce risk
 - Can verify design and construction means
 - Become stakeholder, responsible; develop risk analysis at all stages
 - Can be a competition through conceptual/early design, budgetary cost

Relevant Project Examples

- AECOM developed design for expansion of this major transshipment port
- Included 6 km of breakwater and a new two-way approach channel
- Design to accommodate deep draft (16m) container vessels + future demand

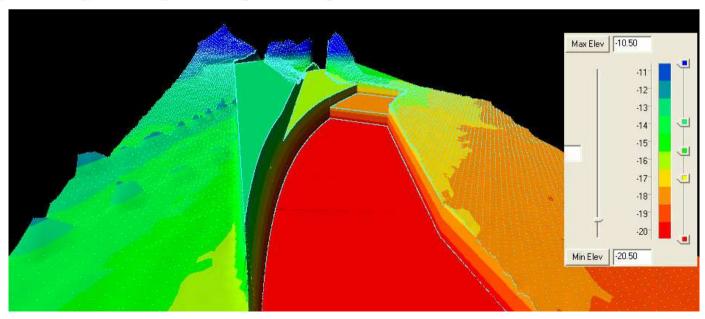

- New Approach Channel (blue); North Entrance (red); Existing Harbor Entrance (green)
- Existing entrance relatively narrow, sharp turn
- Poorly sheltered during SW monsoon
- Increasing ship traffic in existing port
- Design Vessel: 400 m length; 55 m beam; 16 m draft
- Petroleum pipeline crosses channel limit
- Dredge material needed for reclamation
- New ATON


- SE approach chosen to avoid sharp bend and clearance to petrol SPM
- Dredge material suitable for reclamation
- Offshore wave environment = 1.25 factor for depth: 1.25 X 16m = 20m
- Breakwater required due to seas; seasonal wave climate developed

He (Surell) (m)	% of Period (Swell/Sea)					
Hs (Swell) (m)	Oct-Nov	Dec-Feb	Mar-April	May-Sept		
Up to 0.6	46/38	83/69	82/63	8/3		
0.6 - 1.0	52/ <mark>3</mark> 0	14/23	18/19	39/ 32		
1.0-1.2	2/26	2/7	-/9	19/31		
1.2-1.4	-/7	1/2	-/4	14/18		
1.4-1.6	-/-	-/-	-/4	17/10		
1.6-1.8	-/-	-/-	-/ 2	2/3		
1.8-2.0	-/-	-/-	-/-	2/2		
Over 2.0	-/-	-/-	-/-	1/1		

Table 1: Seasonal Wave Climate near Breakwater

- PIANC Guidelines used for channel design
- Vessel speed of 10 knots = squat between 0.5 to 0.8m; wave induced motion ~1m; heave, pitch/roll, tide range, bottom type, maintenance dredging, water density considered.
- Final calculation resulted in -19.2 m channel offshore, rounded to 20m; reduced to -18m inside
- Two way channel; width calculated at 10.4 X vessel beam = 570 m width
- Bend radius calculated at 3,400m; increased channel width to 790m at bend
- Turning circle 1.5 times vessel length + clearances = 820m minimum; actual basin 1,300m X 1,500m for safety factor
- Channel modeled for navigation safety and marine traffic


- Dredging volume 15m M3 initially, small infill of 100,000 M3 per year
- CSD and TSHD evaluated, TSHD used for dredging and reclamation because of high workability

	Workability % of Period					
Dredger	Oct-Nov	Dec-Feb	Mar-April	May-Sept		
Large CSD	66	88	63	11		
8,000 m3 TSHD	100	100	100	86.5		
5,000 m3 TSHD	96	98	90	48		

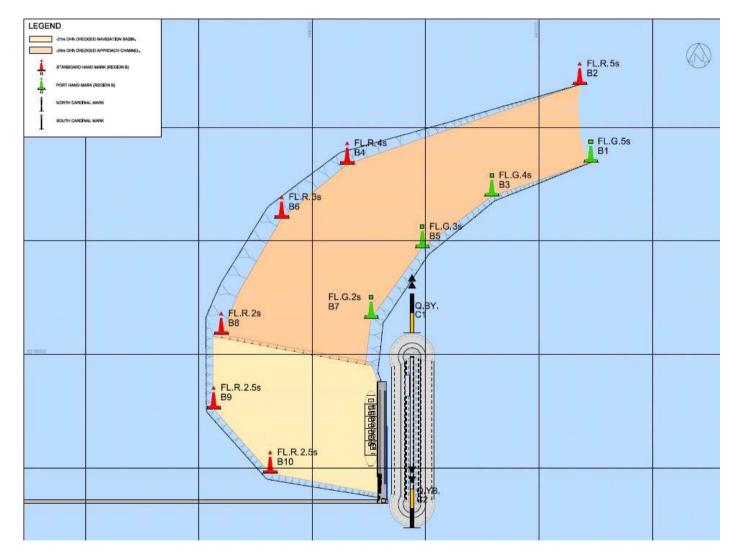

Table 3: Dredger Workability as a % of Period

Table 4: Estimated Weekly Production Rates

Dredger Size (m3)	Bottom D	ischarge (m3/wk)	Pump or Rainbow Ashore (m3/wk)		
	In situ	In Reclamation	In situ	In Reclamation	
6,500	340,000	290,000	228,000	195,000	
8,000	494,000	411,000	320,000	267,000	

Example: Pedra de Ferro Terminal, Brazil

Final Layout

Thank You

Jeffrey B. McWilliams, PE Director, Maritime – Gulf Coast Region AECOM, Inc. 19219 Katy Freeway Ste. 100 Houston, TX 77094 281.675.7648 Direct 713.202.0208 Cell

jeffrey.mcwilliams@aecom.com

