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Abstract— In this paper, we propose FloatSense, a novel
balloon-based UAV network system for efficient and robust
air pollution monitoring. Unlike prior related work commonly
leveraging rotary-wing drones, FloatSense UAVs mainly exploit
helium balloons to maintain elevation and use small lightweight
normally-off fans as a propulsion mechanism. The proposed
design enables as a result extended environmental sensing mis-
sions by staying afloat for weeks. However, the wind-dependent
mobility nature of balloon systems involves multiple challenges
in terms of system design and pollution mapping. We address in
this paper the aforementioned challenges as we design and exper-
imentally evaluate FloatSense in order to identify the benefits
of the helium-powered flight mechanism on the accuracy of air
pollution mapping compared to traditional rotatory-wing drones.
We reveal that although balloon-based UAVs are prone to drifting
off due to external forces like wind, FloatSense outperforms
traditional drones even in the presence of considerable wind
speeds. Moreover, we show that the wind-dependent balloon
mobility nature also contributes to the performance improvement
of FloatSense in air pollution monitoring missions.

Index Terms— Unmanned aerial vehicles (UAV); balloon-
based UAVs; rotatory-wing UAVs; environmental monitoring; air
pollution mapping.

I. INTRODUCTION

Environmental monitoring applications and mainly air
pollution mapping (where the objective is to collect gas
measurements that are used to interpolate air pollution maps)
have been the focus of an increasing number of wireless
sensing platforms in the last decade [1] [2]. Unmanned Aerial
Vehicles (UAVs), also known as drones, are a vital part of air
pollution mapping platforms due to their potential to increase
both the spatial coverage and the spatial resolution of the
monitored environment [3] [4]. Existing drone-based gas
sensing platforms use traditional rotatory-wing UAVs that are
equipped with large propellers, which allow them to hover
at space points during the data collection process. Hovering
is indeed required in order to cope with the relatively high
response time of air pollution sensors. Nevertheless, the large
propellers of traditional drones generate an undesired strong
airflow that has a negative impact on the quality of gas
sensing as demonstrated in multiple prior works [5] [6].

Using balloon systems to enhance aerial sensing: In order
to eliminate the negative effects of large propellers on the
sensing mechanism of gas sensors while still achieving the
benefits of aerial sensing in terms of high spatial cover-
age and high spatial sensing frequency, we design a novel

aerial pollution monitoring system, namely FloatSense, using
balloon-based UAVs. In contrast to traditional rotatory-wing
drones that require high propulsion power to maintain a stable
elevation, balloons are usually filled with helium and are
capable of flying due to the fact that helium is lighter than
air [7] (hydrogen and methane can replace helium but are
inflammable gases). As a result, balloon-based UAVs require
minimal propulsion power to control their position. This is
provided by a set of small fans that are normally off. Indeed,
during the data collection process of gas concentrations, and as
the drone is hovering, the fans are either completely turned off,
or turned on in an intermittent way in the case of considerable
wind speeds. As a result, this improves the balloon-based gas
sensing accuracy compared to the performance of traditional
rotatory-wing UAVs. The fans are also turned on to move the
drone to a monitoring location not accessible by wind drift,
or to return the drone to a desired landing location at the
mission’s conclusion. Moreover, the fans can rotate to change
both azimuth and elevation positions.

Although the design key elements of FloatSense enable
longer flight missions and are expected to reduce the negative
effects of traditional drone propellers, the wind-dependent
mobility nature of balloon systems involves multiple
challenges in terms of (i) system design, and (ii) pollution
mapping quality. Indeed, balloon-based UAVs are prone to
easily drifting off in the presence of external forces such
as wind gusts. We address in this paper the aforementioned
challenges while proposing and experimentally validating our
end-to-end gas-sensing balloon-based UAV network system.

A. Design of balloon-based gas sensing UAVs: Even though
we have already addressed in our prior work [6] the effec-
tive design of traditional rotary-wing gas-sensing drones, the
flight nature of balloon-based UAVs that rely on helium and
small fans requires a design that incorporates unique balloon
flight characteristics. Moreover, balloons’ payload is minimal
compared to traditional drones (over 1kg for medium-size
hexacopters as shown in our prior work [6] vs. less than 50g
for FloatSense UAVs). This, indeed, additionally limits the
battery capacity and constrains the system power consumption.

Contribution: We, therefore, build the proposed FloatSense
system while ensuring that gas sensors and fans are positioned
on the helium-based balloons to provide both efficient sensing
and propulsion. As a proof of concept, we use in our drone
design a small-size foil-based balloon that inflates to 800mm



x 400mm (32in x 16in). The balloon is coupled with 3 fans
that control both horizontal and vertical mobility and can also
be used to return to the balloon launch site for a safe landing.
For gas sensing, we embed Volatile Organic Compounds
(VOC) sensors, which are widely used for tracking both
industrial and traffic air pollution.

B. Balloon-based air pollution mapping quality: The higher
accuracy of balloon-based point-wise gas sensing that is due
to the mitigation of propellers’ negative effects does not neces-
sarily translate into an accurate overall air pollution mapping.
Indeed, the quality of air pollution mapping (interpolation
of collected gas measurements into a full map of pollution
concentrations) depends on the spatial distribution of the most
informative sensing locations where measurements need to be
collected in order to interpolate pollution concentrations in
the region of interest [8]. Moreover, the spatial distribution
of optimal sensing locations (defined as the drone mission
plan) is highly constrained by the power consumption model
of the aerial sensing system, which is different in the case of
FloatSense UAVs compared to traditional drones as the former
is highly impacted by wind dynamics compared to the latter
where they are much less pronounced.

Unfortunately, prior work on drone mission planning does
not take into account the impact of the wind-dependent drone
power consumption on the overall quality of environmental
mapping, as the main focus in the literature is traditional
rotatory-wing UAVs (i.e. wind-dependent mobility is assumed
negligible in the literature) [6], [9]–[13].

Contribution: We first tackle the mission planning
optimization problem while taking into account the wind-
dependent mobility model of balloon systems. We then
experimentally evaluate the performance of balloon-based
UAVs for air pollution mapping while analyzing the mission
planning results compared to traditional drones (using as a
reference our prior work on rotary-wing drones [6]). The
experimental results allow us to characterize the impact of
the wind-dependent mobility nature of balloon-based UAVs
on the optimization process of the most informative sensing
locations. We reveal, in addition to other findings, that the
performance improvement of balloon-based UAVs compared
to traditional drones is not only due to the sensing accuracy
improvement (non-presence of propellers) but is also related
to the wind-dependent mobility of balloons.

Paper structure: The remainder of this paper is organized as
follows. In Section II, we discuss the related work. Section
III highlights our system design of FloatSense balloon-based
UAVs. In Sections IV and V, we address the mission planning
of balloon-based UAVs for air pollution mapping, and exper-
imentally evaluate FloatSense compared to traditional drones.
We finally conclude our paper in Section VI.

II. RELATED WORK

We highlight in this section the prior work that is related to
our paper, which includes the areas of (i) aerial gas sensing

and (ii) UAV mission planning.

A. Aerial Gas Sensing

Gas sensing can be performed using either (i) large-size
and heavy sensors that provide high accuracy, or (ii) small-
footprint and lightweight sensors that are less accurate than the
first category. Due to their payload and power limitations, gas-
sensing UAVs are rather equipped with lightweight sensors.
The low accuracy of these lightweight sensors is due to the
high impacts of weather conditions (wind, temperature, and
humidity) on gas measurements [5].

Several literature works were focused on the evaluation
of aerial gas sensing [5], [6], [14]–[16]. In these works,
conventional rotatory-wing UAVs were considered in the ex-
perimental setups while authors focus mainly on analyzing
the effects of propellers on the sensing quality of air pollution
measurements.

As part of the aerial gas sensing accuracy analysis, some
prior work performs multiple experimental flights in an ur-
ban area and then correlates drone measurements with the
proximity to traffic sources [14]. This work showed the high
noise level in pollution measurements and the need for a
proper characterization of measurement errors. Other prior
work proposes to characterize the airflow generated by the
propellers of the drones and use the wind velocity level as a
qualitative indicator of pollution measurements’ errors [5] [15]
[16]. In another recent work, authors infer the measurements’
errors by co-locating drones and ground sensors and then
extracting the correlations between pollution data and wind
in addition to temperature and humidity [6].

B. UAV Mission Planning

UAV mission planning refers to the optimization process
that allows drones to determine the most informative locations
where they should collect their data in order to optimize the
flight mission objective (for instance, optimizing the quality of
gas maps that are generated/interpolated based on the collected
data).

Mission planning of mobile sensors for environmental mon-
itoring, in general, and air pollution mapping, in particular,
has been extensively studied in the literature [9]–[13]. Most
existing work relies on the spatial correlation of air pollution
concentrations: that is, closer locations have a higher prob-
ability of being at the same concentration level [1], [17]–
[19]. Based on that, the uncertainty of pollution estimation
at unmeasured locations is formulated as a function of the
spatial correlations of the measurements. The optimized sens-
ing mission plan (i.e. the optimal set of sensing way-points)
is then obtained by minimizing the uncertainty of pollution
estimations at unmeasured locations.

C. Discussion

Unfortunately, prior work does not provide insights on the
performance of balloon-based UAVs for environmental moni-
toring. Indeed, and contrary to conventional drones, balloons
can be easily affected by moderate to high wind speeds.



Existing drone mission planning works don’t take this into
account as they are mainly designed for conventional UAVs
where wind speed is assumed to have a negligible impact. To
cope with that, we tackle in Section IV the mission planning
optimization problem while taking into account the wind-
dependent mobility of balloon systems.

III. SYSTEM DESIGN OF FLOATSENSE UAVS

In order to focus on providing a proof-of-concept of the
gas sensing application, we target experimental evaluations
where wind speeds are less than 10 miles per hour as we
build our UAV system using a small-size foil-based balloon
that inflates to 800mm x 400mm (32in x 16in) as illustrated in
Fig. 1. The balloon is coupled with 3 motorized fans that are
placed underneath and control both the horizontal and vertical
mobility of the UAV system. When filled with pure helium,
our system can lift up to 40𝑔 payload while floating in the air
for more than a week without any required propulsion power
due to minimal helium leakage. As for steering the vehicle
with the motorized fans, we pack a 2.4V 120mAh battery,
which can run for up to 30 continuous minutes.

Fig. 1: FloatSense UAV System.

As illustrated in Fig. 1, the sensing, communication, and
computation components of our system are mounted on top of
the balloon in order to provide a balanced form. This allows
us to provide both efficient sensing and propulsion. Moreover,
we use light-weight and very-low-power components in order
to meet the payload requirements of the helium balloon:

• In terms of computation, we employ a small footprint
board that is based on the ATSAMD21G18 microcon-
troller.

• In terms of gas sensing, we employ a metal-oxide sensor
developed by Bosch Sensortec to measure VOC con-
centrations that can provide a good signature of both
industrial and traffic-related pollution emissions. The gas
sensor chip has a response time of 8𝑠 and allows us also
to measure temperature and humidity data.

• In terms of wireless communication between multiple
UAV nodes, we employ low-power long-range LoRa radio
modules (SX127x) that can operate at either 868 MHz or
915 MHz.

The sensing, communication, and computation components
are powered using a 3.7v 500mAh battery, which allows
our very-low-power system to run continuously for a week
(or longer) depending on the sensing and communication
frequency of gas concentrations.

IV. MISSION PLANNING OF BALLOON-BASED UAVS

Balloon-based collected measurements are used to infer, by
interpolation, air pollution maps over the region of interest.
Therefore, the quality of these interpolated maps does not
depend only on the accuracy of sensor data but also depends
on the spatial distribution of measurement locations, which
defines the UAV mission plan. Due to the wind-dependent mo-
bility nature of balloon-based UAVs, prior work on traditional
UAVs, where the impact of wind speed is assumed negligible,
does not allow us at this point to determine the performance
of balloon-based UAVs in terms of the overall air pollution
mapping.

In this section, we tackle the mathematical fundamentals
of UAV mission planning while incorporating the wind-
dependent nature of the mobility of balloon-based UAVs.
We then provide in the following section an experimental
evaluation of our proposed mission planning approach while
using experimental datasets collected using our balloon-based
platform.

A. Objective and Main Notations

a) Region of interest: We approximate the region of
interest using a vector p of l discrete points. i.e. p =

[𝑝1, 𝑝2, ..., 𝑝𝑙]𝑇 where 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). The ground truth air
pollution concentrations (unknown values) that are associated
with space p are denoted using g ∈ R𝑙 . i.e. g = [𝑔1, 𝑔2, ..., 𝑔𝑙]𝑇
where 𝑔𝑖 is the pollution concentration at point 𝑖.

b) Drone measurements: For presentation purposes, we
first consider the case of a single drone and then extend this to
consider a network of multiple drones. Let z ∈ R𝑛 denote the
set of unknown measurements to be performed at a maximum
of 𝑛 different locations in space p. Here, 𝑛 depends on the
power constraints of the drone system.

c) Objective: In air pollution mapping, drone measure-
ments z are used to interpolate a vector c ∈ R𝑙 , which is
an estimation of g. The objective of the mission planning
process is therefore to find the optimal locations within space
p where the measurements z should be collected in order to
minimize the error of estimation of g by c. Moreover, due to
the limited power resources of drones, the mission planning
process also optimizes the order in which sensing locations
should be visited.

d) Decision variables: The main decision variables of
the mission planning problem (locations of measurement lo-
cations and their visiting order) are represented using a matrix
𝐻 ∈ R𝑛×𝑙 where each matrix element ℎ𝑖 𝑗 is a Boolean set to
1 if measurement number 𝑖 is performed at point 𝑗 . Note that
𝐻 is a matrix where the sum of each row is equal to 1.

Based on the definition of matrix 𝐻, the path that a
drone should take during flight missions is determined by
constraining the rows where the sum should be equal to 1
based on the distribution of pollution concentrations, and also
constraining the order of columns where the sum is equal to
1 based on the power consumption of the drone system.



B. Optimization of Pollution Estimation

a) Formulation of pollution interpolation: Let the co-
variance matrix of pollution measurement errors of vector z
be represented using matrix 𝑅 ∈ R𝑛×𝑛 while assuming that all
gas sensors are properly calibrated prior to flight missions (i.e.
measurement bias equal to 0). Assume also the availability of
an estimation of pollution spatial correlations that are denoted
using matrix 𝐵 ∈ R𝑙×𝑙 , where each element 𝑏𝑖 𝑗 reflects for
space locations 𝑖 and 𝑗 the probability of being at the same
concentration level [20].

In order to obtain the interpolated pollution vector c ∈ R𝑙 by
interpolating pollution concentrations at unmeasured locations,
the following matrix form is used:

c = 𝑊z, (1)

where interpolation weights’ matrix 𝑊 is calculated as [21]:

𝑊 = 𝐵𝐻𝑇 (𝑅 + 𝐻𝐵𝐻𝑇 )−1, (2)

and is a function of sensing errors’ covariance matrix 𝑅 and
the spatial correlation matrix of pollution concentrations 𝐵.

b) Optimization of pollution interpolation: Let 𝜂𝑖 de-
note the interpolated concentrations’ errors with respect to the
unknown ground truth value at each point 𝑖 (i.e. η = c − g).
The covariance matrix of η (denoted 𝐹) is calculated as [21]:

𝐹 = (𝐼𝑙 − 𝐵𝐻𝑇 (𝑅 + 𝐻𝐵𝐻𝑇 )−1𝐻)𝐵, (3)

where 𝐼𝑙 is the identity matrix.
Based on the definition of matrix 𝐹, the optimization of the

sensing locations where drones are sent to collect pollution
measurements is obtained by minimizing∑︁

𝑖∈[1,𝑙 ]
𝑓𝑖𝑖 .

This allows determining in an optimal way the rows of matrix
𝐻 where the sum should be equal to 1 in order to minimize
the overall mapping error of the interpolated pollution map c.

C. Mission Planning of Traditional UAVs

In order to provide a comparison baseline to the mission
planning of balloon-based systems, we focus first on the case
of traditional UAVs while assuming that the impact of the
wind dynamics on traditional drones’ speed is negligible (as
in the literature).

In order to ensure that the optimal measurement locations
are visited in an order that takes into account the flight power
consumption of the traditional UAVs, the optimization of the
matrix 𝐻 is constrained by the following formula:∑︁
𝑘,𝑖, 𝑗

ℎ𝑘,𝑖 · ℎ𝑘+1, 𝑗 ·𝑇𝑡𝑟𝑎𝑣𝑒𝑙 (𝑖, 𝑗) +
∑︁
𝑖, 𝑗

ℎ𝑖, 𝑗 ·𝑇ℎ𝑜𝑣𝑒𝑟 ≤ 𝑇 𝑓 𝑙𝑖𝑔ℎ𝑡 , (4)

where 𝑇 𝑓 𝑙𝑖𝑔ℎ𝑡 is the maximum flight time of the drone,
𝑇ℎ𝑜𝑣𝑒𝑟 is the hover time that is required to perform gas sensing
at each measurement location, and 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 (𝑖, 𝑗) is the travel
time between locations 𝑖 and 𝑗 based on the drone flight speed.

D. Wind-aware Mission Planning of Balloon-based UAVs

1) Balloon-based flight model: We assume that the propul-
sion mechanism of the drone system is powered separately
from the sensing and communication components by using
two different batteries (as in our proposed UAV system).
We focus on optimizing the flight power consumption as the
power consumption of flight motors is much higher than the
consumption of sensing and communication components. Let
𝑀𝐴𝑋𝑝𝑜𝑤 be the capacity of the battery (maximum energy)
that powers the propulsion mechanism of the drone system.
Our optimal flight path is therefore constrained by 𝑀𝐴𝑋𝑝𝑜𝑤

as this impacts the selection of both sensing locations and their
order.

Moreover, we assume that drones travel between measure-
ment locations at a constant speed 𝑢. We also assume that
the wind speed within the region of interest does not exceed
the resistance threshold of the drones, which means that the
drones’ speed 𝑢 can be maintained even when travelling
upwind by adjusting the speed of the flight fans.

2) Wind speed and direction: For presentation purposes,
we first focus on the case where wind speed and direction
are constant within the region of interest during the relatively
short time period of flight missions (the following formulations
are extended later in this section to take into account variable
wind). We denote the effective wind speed using

⃗⃗ ⃗⃗
𝑤, i.e. when

the drone’s fans are turned off, the drone flies following the
direction of

⃗⃗ ⃗⃗
𝑤 at a speed equal to 𝑤. In order to determine

⃗⃗ ⃗⃗
𝑤

during flight missions, we propose to either access local data of
weather stations or infer it using the internal accelerometer and
gyroscope of the drone system while deactivating the drone
fans during the inference process.

3) Wind-aware optimization of mission planning: Due to
the nature of balloon-based UAVs, the wind speed and di-
rection can have a high impact on the mobility of the drone
system.

Let 𝑖 and 𝑗 be, respectively, the origin and destination
locations at a given time during flight missions. Let

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑢𝑖 𝑗 be

the drone’s effective speed and direction vector as the drone is
moving from location 𝑖 to location 𝑗 (we recall that | ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑢𝑖 𝑗 | = 𝑢).

In order to ensure that the drone is moving accurately in the
direction of 𝑗 and at speed 𝑢, the generated drone propulsion
power should be adjusted depending on the wind vector

⃗⃗ ⃗⃗
𝑤.

Indeed, given
⃗⃗
𝑣 that denotes the drone fans’ generated speed

and direction vector, the relationship between
⃗⃗
𝑣,

⃗⃗ ⃗⃗
𝑤 and the

drone effective speed and direction vector
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑢𝑖 𝑗 is defined as

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑢𝑖 𝑗 =

⃗⃗ ⃗⃗
𝑤 + ⃗⃗

𝑣 . (5)

Based on (5), the energy consumption that is due to flying
from point 𝑖 to point 𝑗 at speed 𝑢 given a wind vector

⃗⃗ ⃗⃗
𝑤 is

equal to

𝑓𝑝𝑜𝑤 ( |
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑢𝑖 𝑗 −

⃗⃗⃗⃗
𝑤 |) · 𝑑𝑖𝑠𝑡 (𝑖, 𝑗)

𝑢
, (6)

where 𝑑𝑖𝑠𝑡 is the Euclidean distance and 𝑓𝑝𝑜𝑤 is a known
function that defines the drone-specific power consumption
depending on the drone fans’ generated speed | ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑢𝑖 𝑗 −

⃗⃗⃗⃗
𝑤 |.



Based on (6), we constrain the maximum energy consump-
tion 𝑀𝐴𝑋𝑝𝑜𝑤 of each drone by the wind-dependent energy
consumption when moving between every two locations 𝑖 and
𝑗 :

∑︁
𝑘,𝑖, 𝑗

ℎ𝑘,𝑖 ·ℎ𝑘+1, 𝑗 · 𝑓𝑝𝑜𝑤 ( |
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑢𝑖 𝑗 −

⃗⃗⃗⃗
𝑤 |) · 𝑑𝑖𝑠𝑡 (𝑖, 𝑗)

𝑢
≤ 𝑀𝐴𝑋𝑝𝑜𝑤 . (7)

Formula (7) impacts the optimal mission plan obtained in
matrix 𝐻 in two ways. First, given a configuration of sensing
locations that minimize the pollution interpolation accuracy,
Formula (7) ensures that the sensing locations are visited in
an energy-efficient way by leveraging the dynamics of wind
within the region of interest.

Moreover, and due to the joint optimization of both pol-
lution estimation and wind-dependent flight power consump-
tion, formula (7) also ensures that the selection process of
sensing locations favours downwind locations whenever they
offer similar interpolation performance compared to upwind
locations (i.e. sensing locations are selected based on a joint
combination of (i) pollution dynamics, and (ii) the effects of
wind dynamics on drone mobility).

Case of non-constant wind vector: To take into account
variable wind speed and direction, we extend Formula (7) by
adding a time index to the wind vector, ensuring that the power
consumption due to the wind-dependent mobility will be also
time-dependent.

Case of balloons’ network: To address the case of a
network of multiple balloons, we extend decision variables
ℎ𝑖 𝑗 with an additional index that defines the path plan of each
balloon-based UAV individually in the optimization output.

V. EXPERIMENTAL EVALUATION

A. Data Collection Setup

In order to experimentally evaluate balloon-based air quality
mapping, we collected an experimental dataset of co-located
measurements of (i) FloatSense balloon-based UAVs, (ii)
traditional drones (hexacopters designed in our prior work [6])
and (iii) reference ground sensors. We performed our dataset
collection experiments in Houston, Texas during the months
of September and October 2021 within two different industrial
and residential neighbourhoods. The two neighbourhoods and
their associated grid data collection points are illustrated in
Fig. 2. Neighbourhood A (500m × 500m experiment area)
is a residential neighbourhood mainly exposed to urban traffic
pollution while Neighborhood B (1000m × 1000m experiment
area) is an industrial neighbourhood that is exposed to the
high activity of multiple chemical plants. In addition to our
pollution data sets, and in order to assess the impact of wind-
dependent balloon mobility, we also used wind data sets that
are provided by local weather stations.

B. Obtained Dataset

Before evaluating the air pollution mapping performance of
balloon-based UAVs, we first analyze the spatial characteristics

(a) Neighborhood A
(500m × 500m)

(b) Neighborhood B
(1km × 1km)

Fig. 2: Regions of Interest used in our experiments.

Fig. 3: Spatial autocorrelation of reference concentrations.

of the collected dataset as we depict in Fig. 3 the spatial
autocorrelation function of the collected pollution maps.

Fig. 3 highlights, as expected, the intrinsic spatial correla-
tion between sensing locations as a function of distance. Most
importantly, Fig. 3 shows that higher wind speeds within our
regions of interest lead to better spatial correlation. This is
mainly due to the spatial distribution of pollution sources and
the fact that our regions of interest have a relatively small size
of less than 1000m x 1000m.

Moreover, we also analyze the distribution of the variability
of pollution concentrations within our regions of interest
during the data collection time periods. Fig. 4 depicts the
histogram of the variance of the collected maps and shows
that our dataset has a uniformly distributed variance. This
allows us indeed to consider later in this section the impact of
pollution variability on the air pollution mapping performance
of balloon-based UAVs compared to traditional drones.

C. Flight Power Consumption

In order to provide a fair experimental comparison between
balloon-based UAVs and traditional drones, we assume that
both aerial systems travel between measurement locations at
the same speed that we set at 5𝑚/𝑠. Although traditional
drones might seem faster in practice, balloon-based UAVs can
actually still be as fast depending on their size and the amount
of helium they contain. However, the power consumption that
is due to fly at that common 5𝑚/𝑠 is wind-dependent in the
case of balloon-based UAVs compared to traditional drones.



Fig. 4: Distribution of the pollution variability of collected
reference maps.

Moreover, we assume that, by default, both aerial systems
are capable of the same payload (i.e. by default, they are
equipped with the same battery capacity). Note that the overall
flight time of the two aerial systems can still be different
though as the power consumption required to fly the balloon-
based UAV is wind-dependent.

D. Evaluation Metric and Baseline

We evaluate the air pollution mapping quality of both
aerial systems by running the corresponding mission planning
approach. While evaluating the performance of each one
of the aerial systems, we use the corresponding collected
measurements to perform the interpolation process and hence
obtain an estimation of ground truth concentrations.

We consider as a theoretical baseline the mission planning
results that can be obtained with the balloon system given a
perfect knowledge of the distribution of pollution concentra-
tions (i.e. by assuming a perfect knowledge of the not-yet-
measured locations during the mission planning process). We
refer to this baseline in what follows by the theoretical lower
bound.

In order to quantify the quality of the interpolation provided
by each system and the proposed baseline, we use as a
performance metric the relative mean squared error (RMSE)
of the interpolated map with respect to the map collected using
reference ground sensors.

E. Experimental Results

1) First performance comparison scenario: In order to
assess the overall mapping performance provided by the two
aerial sensing systems, we vary the battery budget of both
balloon-based UAVs and traditional drones as we evaluate
the RMSE of the interpolation maps resulting from optimal
mission plans.

Due to the nature of wind-dependent balloon-based UAVs,
the initial location of both systems in the region of interest is
set to the corner of the map that allows the balloon system
to maximize down-wind flights. This is usually the case in
practice as launching the balloon system from a different
location would result in unnecessary energy consumption. The
obtained results corresponding to our 30 collected pollution
datasets are averaged and depicted in Fig. 5.

Fig. 5: Air pollution mapping performance of
FloatSense UAVs compared to traditional drones.

First, the results in Fig. 5 show that the air pollution
mapping error corresponding to balloon-based UAVs is lower
than what is achieved using traditional rotatory-wing UAVs
assuming that both systems are provided with the same power
budget. The performance difference between the two systems
is noticeable even for low power budgets as balloon-based
UAVs outperform the traditional UAVs by at least a factor
of 3 with respect to the theoretical lower bound. This result
shows that the sensing accuracy improvement of balloon-
based UAVs over traditional drones has been maintained in
the mission planning process and highlights therefore that
the balloon system is power efficient in terms of leveraging
the effects of wind dynamics on balloon mobility. Indeed,
Fig. 5 shows that the balloon system appears to undergo
two phases during the flight missions: the first phase ends
at about 25 normalized energy units and is characterized by a
faster-decreasing evolution compared to the following second
phase where the ratio between performance improvement and
power consumption appears to be much less pronounced. The
reason behind the existence of these two phases is actually
the way the balloon system takes advantage of the wind speed
and direction’ dynamics. Indeed, during the first phase, the
balloon-based UAV travels mainly downwind which results in
minimal power consumption compared to the second phase
where the balloon system travels mostly upwind as it finally
reaches the side of the map that is opposite to where it was
launched.

2) Impact of drone battery payload and wind dynamics:
Note that the improvement factor obtained so far is achieved
while assuming that both the traditional drone and the balloon-
based UAV have the same payload (same maximum battery
capacity). However, traditional drones are capable in practice
of carrying larger batteries in general. We, therefore, evaluate
in what follows the impact of the maximum payload of the
balloon system compared to traditional drones while also
identifying the effects of the wind-dependent mobility of bal-
loons. We depict in Fig. 6 the resulting air pollution mapping
performance depending on the wind speed that is observed in
our regions of interest while considering 3 scenarios regarding
the maximum battery payload of the balloon system. Mainly,



(a) Payload(Balloon UAV) = Payload(Traditional UAV) (b) Payload(Balloon UAV) = 50% x Payload(Traditional UAV)

(c) Payload(Balloon UAV) = 30% x Payload(Traditional UAV)

Fig. 6: Air pollution mapping performance depending on wind velocity and maximum balloon payload.

we average for each payload scenario the pollution mapping
performance that is achieved by the balloon-based UAV system
while separating the data sets into 3 groups in function of the
wind velocity: less than 6 miles per hour, between 6 and 8
miles per hour, and finally over 8 miles per hour.

In terms of the effects of the balloon maximum payload,
Fig. 6 does show that the performance improvement achieved
in the previous results drops as the traditional drone system
is equipped with larger batteries compared to the balloon.
Indeed, the performance improvement factor with respect to
the theoretical lower bound drops to less than 1.5 when
traditional drones are equipped with more than 3 times larger
batteries. Therefore, in a real-life scenario, balloon-based
UAVs need to be equipped with large enough batteries to
ensure a better performance compared to traditional drones.
This can be achieved by using larger balloons that are filled
with more helium to increase their maximum payload while
maintaining their power efficiency during the data collection
hovering time.

Furthermore, the results in Fig. 6 show that the higher the
wind speed, the lower the pollution mapping performance.
This is indeed due to the fact that higher wind speeds have
a negative impact on balloon-based sensing accuracy. Never-
theless, Note that higher wind speeds also allow the balloon-
based UAV system to reduce its power consumption when
travelling downwind, but this appears to have less impact on
the performance results compared to lower wind speeds.

Moreover, Fig. 6 also emphasizes the impact of wind ve-
locity on the mission flights and their two phases of operation

that we identified in the previous Fig. 5. Indeed, we observe
in Fig. 6 that wind speeds that are higher than 8𝑚𝑝ℎ appear
to accelerate the downwind travel phase (which ends with less
than 20 normalized energy units) while wind speeds that are
lower than 6𝑚𝑝ℎ appear to extend this first phase of flight
missions (which takes more than 30 normalized energy units
as opposed to the average value of 25 units that we observed
earlier). This fact means that the performance improvement
in the presence of lower wind speeds is not only due to the
sensing accuracy improvement but is also jointly dependent
upon the wind-dependent mobility nature of balloon-based
UAVs.

3) Impact of pollution variability: In addition to the impact
of the drone payload and the wind dynamics, we also assess
the performance of the balloon-based UAVs depending on the
variability of pollution concentrations within our regions of
interest. Based on our previous dataset analysis in Fig. 4,
we classify our dataset maps into 3 groups: high pollution
variability where the variance of reference concentrations is
higher than 135𝑝𝑝𝑏2, low pollution variability where the
variance is lower than 105𝑝𝑝𝑏2 and finally average pollution
variability within the remaining variance interval. In all three
scenarios, we assess the improvement factor of balloon-based
UAVs over traditional drones using the default evaluation
parameters. We report the obtained results in Fig. 7 while
highlighting the performance improvement factor achieved at
the initial stage (20%), mid-stage (50%) and final stage (80%)
of the drone missions.

Fig. 7 shows that the performance improvement achieved



Fig. 7: Mapping performance vs. pollution variability.

at the final stage of the drone missions is overall maintained
and only decreases slightly (less than 0.3) when the pollution
variability increases. This is indeed due to the fact that sensing
errors are accentuated in the interpolation process of pollution
mapping in the presence of high pollution variability, and this
is the case for both traditional and balloon-based UAVs.

Furthermore, Fig. 7 also shows that the wind-dependent
balloon mobility is altered depending on the variability of pol-
lution concentrations. Indeed, in the presence of high pollution
variability, we observe that the change in the performance
improvement from early stage to mid-stage, and from mid-
stage to final stage is much less pronounced compared to the
two scenarios of low and average pollution variability. This
is indeed due to the fact that the balloon upwind mobility is
much more used in the case of high pollution variability, which
requires the balloon system to collect dense measurements
compared to the case of low pollution variability.

VI. CONCLUSION

Unmanned Aerial Vehicles (UAVs), also known as drones,
are a vital part of air pollution mapping platforms. Unlike
existing drone-based gas-sensing platforms that use traditional
rotatory-wing UAVs, we propose and validate in this paper
the first end-to-end gas-sensing balloon-based UAV network
system by addressing the design of balloon-based gas-sensing
UAVs, and the characterization of the sensing and mapping
quality of balloon-based UAVs compared to traditional drones.
We show that balloon-based UAVs outperform traditional
drones even in the presence of considerable wind speeds. We
also show that the wind-dependent balloon mobility nature
also contributes to the performance improvement of balloon-
based UAVs.
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