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Abstract—Wireless eavesdropping on phone conversations has
become a major security and safety concern, especially with ad-
vancements toward 5G and beyond featuring higher frequen-
cies and higher sensing resolution. As demonstrated recently,
attackers can remotely detect even micron-scale acoustic vibra-
tions emanating from a smartphone’s earpiece via off-the-shelf
millimeter-wave radar for audio information eavesdropping,
all without the victim ever noticing. Here, we present a new
architecture, MiSINFO, that not only thwarts such attacks
but also enables the victim to counter-attack by spoofing
of eavesdroppers with audio misinformation. With emerging
attacks targeting the physical medium, i.e., acoustic signals,
which cannot be protected by digital encryption and are
the weakest segment of the communication chain, MiSINFO
aims to systematically modify the eavesdroppers’ fundamental
sensing observations, concealing native signals while encoding
alternate synthetic data. MiSINFO incorporates a low-profile,
reconfigurable metasurface and double-inference principles
to dynamically generate artificial audio-vibration signatures,
injecting deceptive misinformation. We design, implement, and
experimentally evaluate MiSINFO. Our results reveal that
eavesdroppers detect none of the original words emitted by
the speaker, while the injected misinformation is reconstructed
with a low average word error rate of 2.29%.

Our work represents the first such eavesdropping coun-
termeasure which not only prevents attackers from accurately
decoding the true signal but also uses a false signal to fool them
into believing that they have succeeded. This approach trans-
forms defensive measures from merely reactive to proactively
deceptive, giving the defender an advantage and the capability
to delude attackers into trusting false information.

1. Introduction

With over 6.9 billion smartphone users worldwide [1],
sensitive information, including financial records, personal
identifications, healthcare details, and classified business and
government information, is communicated daily over the
phone. However, the confidentiality of such audio infor-
mation can be readily compromised with the emergence

of inexpensive yet highly advanced high-frequency radar
systems [2], [3], [4], [5], [6], [7]. Namely, attackers are
empowered with new micron-resolution wireless sensing
capabilities, allowing them to remotely acquire even minus-
cule byproduct information about the physical world with
extreme accuracy, all without the victim ever noticing. That
is, attackers can now remotely detect tiny vibrations of a
phone’s earpiece or speaker and reconstruct the underlying
audio information, all without needing to install any mal-
ware on the smartphone or monitor voice traffic [2], [3].

In fact, the adoption of millimeter-wave frequencies (30
GHz - 300 GHz) in 5G and beyond marks a significant
shift in wireless, with an order of magnitude increase in
available bandwidth and a decrease in wavelengths that en-
able unprecedented wireless sensing capabilities, facilitating
not only emerging applications such as interactive virtual
reality systems and self-driving vehicles [8], [9], [10] but
also bringing forth new security challenges of malicious
side-channel information sensing with fine-grained resolu-
tion [4], [5], [6], [7]. Specifically, the eavesdropper, Eve, can
direct a millimeter-wave radar system towards the victim,
Alice, who is talking on her phone, to detect few-micron
scale vibration patterns. With these tiny displacements being
strongly correlated with the generated sound waves [2],
[3], Eve recovers audio conversation, intercepting sensitive
information. Unfortunately, this analog micro-information
cannot be encrypted or protected by existing methods, as
Eve deliberately exploits the physical propagation of sound
to steal information during interactions between users and
the analog world, in contrast to directly targeting sensitive
data in the highly protected digital domain. In fact, due to the
inherent physical medium, the acoustic signal is the weakest
link in the communication chain of a phone call, making it
very challenging to protect with existing methods.

In this paper, we present MiSINFO, a new class of
proactive defensive architecture for audio misinformation
security. We develop a novel eavesdropping countermeasure
that not only prevents attackers from succeeding but also
injects a false signal into their wireless sensing observations,
enabling strategic misinformation capabilities for defenders.
Unlike traditional approaches that obscure malicious sensing



signals, such as by randomizing or jamming, we design
a radically stronger counter-method that makes attackers
oblivious to the countermeasures while also spoofing 1 them
with false information. This approach provides significant
strategic and security advantages across various scenarios.
For instance, attackers could be misled into intercepting fake
business contracts and negotiations (corporate), false bank
account details and social security numbers (civilian), or
incorrect coordinates and mission details (military). In this
work, we make the following three contributions.

First, we develop the key principles of MiSINFO. We
study the foundations and implications of the attack and
subsequently exploit these features to develop the basis of
the proposed defensive mechanism. Specifically, we find
that the overall attack is built upon a double inference
process: Eve infers targeted acoustic signals from physical
vibrations (due to the mechanical coupling between the
smartphone speaker/earpiece and the phone case) while also
inferring these micron-level vibrations from radar wireless
signals. MiSINFO exploits Eve’s double inference process
and secretly modifies the characteristics of the wireless sig-
nal interacting with vibrations, thereby enabling subsequent
alteration of all observations in the inference chain. More-
over, MiSINFO integrates on-phone dynamic metasurface
- a surface structure with programmable electromagnetic
(EM) properties - to proactively induce EM changes to Eve’s
radar chirp transmissions. As such, Alice can potentially
emulate any targeted vibration pattern, in essence, taking
control over Eve’s fundamental sensing observations. We
also propose several key schemes to manipulate Eve’s sens-
ing, including scrambling the phone conversation that Eve
wishes to extract, as well as spoofing Eve with legitimate
yet false audio information, completely misleading Eve.

Second, we realize MiSINFO by designing an experi-
mental testbed with a dynamic programmable metasurface
and investigating its key characteristics. In particular, we
design a metasurface comprising an array of metallic sub-
wavelength-sized split-ring resonators (SRRs) lithographi-
cally deposited on a GaAs substrate. The SRR array is
constructed to form a Schottky contact with the GaAs, with
applied reverse bias majorly changing the carrier density
in the depletion region underneath the metallic elements,
which modifies the split-gap conductivity and, thus, the
electromagnetic response of the surface. Our prototyped
metasurface, an integral part of the MiSINFO, comprises
18 programmable columns that are dynamically controlled
by applying a tunable voltage in the range of −10 V to
0 V. To demonstrate the proposed architecture, we first
characterize the metasurface by studying the phase response
across different switching frequencies. We discover that it
exhibits a low-pass response, providing Alice with a broader
range of phase control at slower switching frequencies,
while the range decreases at higher rates. Moreover, we
establish the mapping between time-varying voltage control
signals and phase responses, which is later employed to

1. In the paper, “spoofing” refers to deceiving the attacker with an
alternate audio inference vs. the true one emitting from the speaker.

implement different defense strategies. Our results reveal
that Alice can achieve very high-resolution, sub-micron
control over displacement by operating in the non-saturated
control signal region, enabling Alice to accurately modify
Eve’s sensing observations.

Third, we implement our proposed defense strategies
and experimentally evaluate the system. To do so, we first
create a set of different audio samples using deep learning-
based algorithms that analyze human voice patterns and
generate speech from text. Demonstrating the attack with
Eve employing a Texas Instruments millimeter-wave radar
and Alice implementing MiSINFO and yet initially in the
off state (i.e., no control signals are applied to activate the
metasurface), we show how Eve intercepts audio informa-
tion emanating from Alice’s smartphone speaker using the
time-varying phase of the reflected radar signal and accu-
rately recognizes all words with automatic speech recogni-
tion algorithms. However, as a strong baseline strategy, we
demonstrate how Alice can reconfigure the metasurface with
random voltage signals at audio sampling rates to scramble
the phase of the signal reaching Eve, thereby disrupting
the integrity of the audio information Eve aims to extract.
Furthermore, we experimentally demonstrate how Alice
generates and applies a temporal sequence of control signals
that mimic the signature of legitimate and yet misleading
information, thereby spoofing Eve with misinformation. We
showcase this by injecting audio misinformation with pur-
posefully altered sensitive details such as different personal
identification, bank account numbers, and social security
numbers, with all of the false information being accurately
decoded by Eve as legitimate data. Finally, we conduct a
large-scale experiment with more than a thousand words of
audio. We demonstrate that MiSINFO not only thwarts such
a devastating attack but also effectively spoofs the attacker,
with Eve detecting none of the original information while
accurately decoding misinformation with an average word
error rate of 2.29%.

The remainder of this paper is organized as follows:
Section 2 reviews related work, Section 3 describes the
threat model, and Section 4 presents the MiSINFO design.
Section 5 introduces the fabrication and implementation,
while Section 6 describes the experimental results. Finally,
Section 7 provides a discussion, and Section 8 concludes
the paper.

2. Related Work

Eavesdropping on Smartphones. Given the ubiquity
of smartphones and the vast amount of sensitive informa-
tion communicated via these devices, attackers have been
exploiting different methods, including internal smartphone
sensors such as accelerometers and gyroscopes, sensitive to
acoustic signals, to eavesdrop on the phone speech [11],
[12], [13], [14], [15]. While devastating, such techniques
often require the installation of malware on phones to ac-
quire pre-collected data and necessitate training for specific
smartphone user-victims for accurate speech reconstruction.
With the recent advancement towards 5G and beyond, the



attackers have been shown to exploit high-frequency tech-
nologies such as millimeter-wave radars to remotely eaves-
drop on phone conversations [2], [3], utilizing side-channel
vibration information [4], [5], [6], [7], [16]. As a result,
these attacks are devastating as well as extremely difficult
to detect, as attackers do not require physical access to the
phone to install malware, nor do they need to train user-
specific models to accurately reconstruct intercepted speech.
Unlike prior work, in this paper, we present the first counter-
measure against such audio-vibration eavesdropping, which
not only thwarts the attacks but also spoofs the attackers
with misinformation. Our short, 2-page report-paper [17]
outlines a similar roadmap, but it neither has a full system
design nor evaluation.

Metasurface Wireless Security. Metasurfaces are two-
dimensional structures capable of manipulating electromag-
netic waves in controlled ways, enabling various applica-
tions, including in wireless communication, sensing, and
security [18], [19], [20], [21], [22], [23], [24], [25], [26]. Re-
cently, switchable metasurfaces operating in the millimeter-
wave spectral ranges have become a focus of considerable
research [27]. A common goal of this body of research
has been to enhance the switching speed of such devices,
for example by reducing the area of the surface in order
to minimize its RC time constant [28], [29]. This scaling
can enable applications in data modulation [30] or high-
speed wavefront manipulation [31]. However, in this paper,
we exploit the unique properties of switchable metasurfaces
and realize the first smartphone misinformation security
capability. In fact, the metasurface in our design requires
relatively low-bandwidth (∼kHz) operation, and can there-
fore exploit a large (∼cm2) surface area. Given the size and
power constraints, our approach could readily be integrated
with commercial systems using methods analogous to those
employed for ultra–compact cameras [32], [33] or versatile
antenna [34], [35].

3. Threat Model

In this section, we first discuss the attack scenario and
then Eve’s principles for audio-vibration eavesdropping.

3.1. Audio-induced Vibrations on Phones

We consider a general attack scenario where Alice
communicates confidential information while speaking on
her smartphone. Meanwhile, an eavesdropper, Eve, aims to
intercept that sensitive phone conversation. Typical to many
cases, we consider that Eve does not have access to Alice’s
smartphone, for instance, to install malware and secretly
control the device, nor can she physically stand next to Alice
to overhear the conversation, thereby exposing herself.

In contrast, Eve exploits side-channel information to
carry out the audio eavesdropping attack. Specifically, she
takes advantage of the mechanical coupling between the
smartphone speaker/earpiece and the phone case, which
induces a vibration pattern d(t) that is strongly correlated
with the emitted sound waves from the device. That is,
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Figure 1: The remote attacker’s audio-vibration sensing
principles via FMCW millimeter-wave radar chirps.

a(t) represents the signal driving Alice’s speaker, which
triggers the speaker to vibrate and generate audio waves
that Alice hears. Then, the audio-induced subtle physical
displacements η(fa) on the speaker diaphragm [36] as a
function of acoustic frequency fa can be represented as

η(fa) =
eg

2πfrBlQes
|γ(fa)| (1)

in which eg indicates the voltage at the speaker’s terminals,
B is the magnetic flux density, l is the voice coil length, Qes

denotes electrical damping, fr is the speaker’s resonance
frequency, and γ(fa) is a dimensionless frequency response
function represented as

γ(fa) = 1/[1− fa
f2
r

+ j
1

Qts
· fa
fr

] (2)

in which Qts indicates the total damping effect, including
the electrical damping Qes and the mechanical damping
Qms. Given that the vibration exhibits typical harmonic
motion, the sound-induced time-varying displacement d(t)
can then be expressed as d(t) = η(fa) cos (2πfat). Eve
targets to infer a(t) via sensing these vibrations. For that,
Eve employs commercially available portable radar, direct-
ing the transmission beam towards Alice’s smartphone from
a distance. This allows her to remotely sense the vibration
patterns and recover the underlying audio information. Ex-
emplary demonstrations of the threat model we consider
here include [2], [3].

3.2. Eve with COTS Millimeter-wave Radar

Eve repurposes a frequency-modulated continuous wave
(FMCW) millimeter-wave radar, commonly employed in
automotive and industrial applications, into a vibration-
sensing system for the attack. She transmits a series of
FMCW signals, known as chirps, directed toward Alice’s
smartphone. With the physical displacements encoded onto
the chirp signals, she processes the reflected signals to
recover the vibrations and, subsequently, audio information.

As depicted in Figure 1, the frequency of the chirp
signal linearly increases with time, commencing from f0



and spanning a bandwidth of B within a duration of a chirp
Tc. Then, transmitted and received chirps at time t can be
shown as

STx(t) = ATx cos [ 2πfTx(t)t+ ϕTx]

SRx(t) = ARx cos [ 2πfRx(t)t+ ϕRx]
(3)

where ATx and ARx indicate the amplitude of transmitted
and the received chirps, respectively, fTx(t) and fRx(t)
designate the frequencies of transmitted and the received
chirps at time t, while ϕTx and ϕRx are the phases of
transmitted and the received chirps, respectively. With Eve’s
radar r distance away from Alice’s smartphone, the reflected
chirp frequency at the receiver fRx(t) = fTx(t− τ) with a
round trip delay τ = 2r/c where c is the speed of the radar
signal and fTx(t) = f0 + kt with k indicating the slope of
the chirp signal.

Further combining the transmitted and received signals
at the radar transceiver by a mixer and applying a low-pass
filter to focus on the frequency difference of the two carrier
signals, Eve generates a beat signal Sb(t). Such beat signal
can be formulated as

Sb(t) =
ATxARx

2
cos [ 2π(fTx − fRx)t+ (ϕTx − ϕRx)]

(4)
with corresponding beat frequency and phase information.

Traditionally, a range FFT operation is performed on
Sb(t) to extract beat frequency fb information and range
the object. In particular, the distance between the radar and
the object can be expressed as

r =
fb
k

c

2
. (5)

However, fb is insufficient to recover the micron-level
vibration patterns. That is, the ranging resolution of the
radar is limited to rres = c

2B and primarily governed by
the bandwidth B swept by the chirp [37]. For instance,
with a typical millimeter-wave radar of a chirp bandwidth
4 GHz, the ranging resolution corresponds to only several
centimeters, several orders below targeted resolutions.

3.3. Micron-scale Audio-vibration Sensing

In addition to the beat frequency fb component, the beat
signal Sb also contains phase information as formulated in
Equation 4. Eve exploits the beat phase details to sense such
minuscule vibration patterns.

In particular, Eve performs Doppler FFT operation on
beat signal to detect phase changes caused by the speaker
vibrations d(t). Such a relation can be formulated as

ϕ(t) =
4πd(t)

λ
(6)

in which λ denotes the free-space wavelength of the em-
ployed radar signal. Although the phase of chirp signals is
susceptible to noise in the radar hardware implementation,
Eve uses standard data processing techniques to readily
address such challenges.

Eve addresses common issues arising from hardware-
induced phase discontinuities such as frame reset artifacts
via polynomial interpolation to ensure smooth phase tran-
sitions across frames. Additionally, phase wrapping can
distort signal interpretation, but Eve corrects this using phase
unwrapping techniques to reconstruct the true phase evolu-
tion over time. Furthermore, radar systems often introduce
unwanted low-frequency noise that can obscure fine-grained
phase variations crucial for accurate signal extraction. To
counteract this, Eve applies bandpass filtering to isolate
the relevant frequency components, enhancing the clarity
and reliability of the recovered phase information. These
techniques, as demonstrated in prior work [16], enable Eve
to reconstruct phase-modulated signals with high precision,
underscoring the practicality of such attacks despite hard-
ware imperfections. Additionally, more sophisticated Eves
have been shown to utilize machine learning algorithms
to better recover phase information from noise, e.g., as
demonstrated in [3].

Importantly, due to the high frequency and smaller wave-
length of the employed radar signals, the phase changes en-
able Eve to dynamically track minuscule vibrations, achiev-
ing a resolution better than λ/100. For instance, using
a typical millimeter-wave radar, she can detect a phase
change as small as approximately 1◦, corresponding to an
acoustic-vibration displacement of about 0.005 mm for a
radar frequency of 77 GHz. Such fine-grained resolution
sensing allows the attackers to accurately detect audio-
vibration patterns and recover targeted audio information
a(t) with high precision, as demonstrated in prior works
and experimentally evaluated in Section 6 in this paper.

4. MiSINFO Architecture

In this section, we first discuss the principles of the
proposed defense mechanism and present MiSINFO archi-
tecture model that enables spoofing of the attackers with
audio misinformation. Next, we describe the design of our
system, including the emulation of speaker-scale vibrations
and their reconfiguration at audio sampling rates. Finally, we
present new strategies for generating audio misinformation
as well as random acoustic signatures.

4.1. Principles and System Model

The key principles of our proposed defense mechanism
stem from several insights about the attack and its implica-
tions. These observations provide the foundational basis for
the design of our MiSINFO architecture.

When Eve intercepts the phone conversation, it is impor-
tant to note that she does not directly access the source of
the information—the actual acoustic signals emanating from
Alice’s smartphone. Instead, she infers it from the sound-
induced mechanical displacement on the smartphone’s ear-
piece and speakers, as discussed in Section 3.3. Moreover,
Eve does not visually see or otherwise physically feel these
induced mechanical vibrations either. In fact, doing so would
be infeasible because a) such vibrations occur on a tiny



Figure 2: Schematic of the proposed MiSINFO architecture: (a) Malicious Eve directs a radar signal toward the victim, Alice,
who is talking on her phone, to sense micron-scale vibrations and recover sensitive audio conversations, as demonstrated in
prior works. (b) We develop and demonstrate the first system that enables Alice to dynamically and systematically modify
Eve’s malicious sensing observations, inducing targeted false signatures to spoof Eve’s sensing observations and thereby
mislead Eve with audio misinformation.

scale, at the micron level, making them extremely difficult
for her to perceive. In addition to that, b) Eve carries out
a remote attack to avoid detection, potentially from tens of
meters away from Alice’s smartphone, as shown in the prior
works, which would even further complicate the challenge
presented by a). In contrast, the attacker employs wireless
radar signals to also infer these minuscule vibrations. Then,
the overall attack is built upon a double inference process,
i.e., inferring acoustic signals from mechanical vibrations
and inferring vibrations from wireless signals, to realize the
secret eavesdropping attack on the phone call.

In the MiSINFO design, we leverage the attacker’s
inference processes to develop the defense mechanism.
Specifically, we propose to modify the characteristics of the
wireless signal interacting with vibrations, thereby subse-
quently altering all observations in the inference chain. That
is, a modified wireless signature would imply a different
vibration pattern than the original one, which in turn would
correspond to different audio information when decoded by
Eve. Moreover, we propose to strategically induce these
changes so that Alice can inject her targeted legitimate yet
false information, which we refer to as misinformation, to
Eve. This enables Alice to not only protect her sensitive
data, but to also convey fake, misleading data to Eve.

We illustrate the schematic of our proposed architecture
in Figure 2. In Figure 2(a), we first show how Eve remotely
senses vibration patterns reflecting off Alice’s smartphone
and reconstructs audio data from that sensory information.
With the proposed MiSINFO to thwart the attack, Alice
enables it during her phone conversation and controllably
alters Eve’s fundamental sensing observations as depicted in

Figure 2(b). We introduce new sensing security principles
that enable Alice to generate and inject audio misinforma-
tion m(t), selected by Alice. Thus, Alice can vibrate her
speaker with the true a(t) such that she has a live interactive
audio conversation while simultaneously conveying misin-
formation to Eve, effectively deceiving Eve into believing
she has succeeded.

4.2. Emulating Vibrations with a Metasurface

As discussed in Section 3 and formulated in Equa-
tion (6), Eve utilizes the phase information ϕ(t) of the
millimeter-wave radar chirps to extract the audio-vibration
patterns. Our MiSINFO system enables Alice to proactively
alter these phase changes, in essence taking control over
Eve’s fundamental sensing observations. For that, Alice
employs a smartphone-mounted dynamic metasurface with
a dynamically programmable electromagnetic response and
then emulates her targeted vibration signatures.

Metasurfaces are 2D structures composed of an array
of subwavelength metallic structures. They are engineered
to manipulate electromagnetic waves in controllable ways,
even surpassing the capabilities found in nature [38]. They
have facilitated a multitude of applications across various
domains and frequencies [38], [39], [40]. With the advance-
ment towards higher frequencies, such as millimeter-wave
in 5G and beyond, metasurfaces are shown to be particularly
valuable, especially for compact devices like smartphones.
They facilitate the miniaturization and versatility of antenna
systems and other components on phones by manipulating
electromagnetic waves at subwavelength scale [33], [34]. In



the MiSINFO design, we exploit an on-phone metasurface to
realize novel security capability. We discuss our smartphone-
mounted metasurface design in Section 5.1.

In order to emulate acoustic vibrations and deceive Eve,
Alice applies a control voltage signal V⃗ to the metasur-
face device, dynamically reconfiguring it. In response, the
metasurface induces targeted phase changes at the surface
interface. However, before controllably reconfiguring it, Al-
ice needs to first characterize her metasurface to understand
its excited electromagnetic properties. To realize it, she
constructs a mapping defines as

f(V⃗i) = ϕi, for i = 1, 2, ..., n (7)

which establishes the correspondence between each applied
control signal V⃗i and the resulting phase response ϕi. Alice
then employs pre-characterized metasurface with the map-
ping information to generate audio signatures discussed in
Section 4.3. We also present the details on the characteriza-
tion of our metasurface in Section 6.1.

4.3. Programming Acoustic Signatures

Having characterized her metasurface, Alice can spoof
the attacker, Eve, with potentially any audio misinformation
m(t), as each audio signal has a unique phase response
ϕm when observed via a radar. To achieve this, she can
determine the metasurface control signal V⃗ ∗(t) based on
the pre-characterized properties as

V⃗ ∗(t) = argmin
V⃗ (t)∈∨

|f(V⃗ (t))− ϕm(t)| (8)

in which ∨ denotes the set of feasible input control signals.
In response to the applied control signal, the on-phone
metasurface can then manipulate the electromagnetic waves
of Eve’s chirp signals to produce the targeted phase re-
sponse. Yet, considering Alice with a transmissive on-phone
metasurface (as described in Section 5.1), Eve’s radar chirp
signals will propagate through the metasurface while also
interacting with the physical vibrations on the phone. Then,
Eve’s observation ϕ∗(t) will effectively be the cumulative
impact of both phenomena, along with some noise ϵ

ϕ∗(t) = ϕa(t) + ϕm(t) + ϵ. (9)

Then Eve’s perceived vibration pattern can be expressed as

d∗(t) =
ϕ∗(t)λ

4π
. (10)

Evident from Equations (9) and (10), the true vibration
pattern from the smartphone speaker could be revealed, with
Eve reconstructing audio with both the actual information
a(t) and the injected misinformation m(t) overlaid on each
other. However, we note that the dynamic phase shifts
programmably induced on the radar electromagnetic wave
by the metasurface can be notably larger (and different)
than that induced by the mechanical vibration of the phone.
Consequently, this artificially injected signal overwhelms
the actual speech signal that Eve seeks to detect, with Eve

perceiving and reconstructing an alternate audio stream.
We experimentally demonstrate the high efficacy of Alice’s
ability to spoof Eve in Section 6.

Furthermore, we highlight that Alice has a large design
space for constructing audio misinformation m(t) in the
MiSINFO design. For instance, as a strong baseline strategy,
she could generate random audio. That is, Alice can induce
a random time-varying voltage signal at the metasurface
interface to randomize the phase of the signal reaching Eve,
thereby disrupting the integrity of the audio information
Eve wishes to extract. We demonstrate this strategy in
Section 6.2.

Beyond obscuring her conversation, Alice can imple-
ment our proposed novel defensive security strategy to
actively spoof the eavesdropper with false audio informa-
tion. In particular, she can generate a temporal sequence of
metasurface control signals to imitate a vibrational pattern
which is not random, but which instead corresponds to a
speech signal that is different from the one that Alice is
actually speaking. Because the phase shift induced on the
radar electromagnetic wave by the metasurface can be larger
than that induced by the mechanical vibration of the phone,
this artificially injected signal can overwhelm the actual
speech signal. As a result, Eve perceives and reconstructs
an alternate audio stream. We demonstrate this strategy in
Section 6.3.

Finally, we remark that with MiSINFO, Alice can con-
tinue to have a normal conversation (with Bob) without
altering the original a(t) and instead modifies only m(t)
to spoof the attacker. Then, there are a few ways for Alice
to generate m(t). First, she can pre-record a false message,
with Eve decoding it as legitimate one, as we demonstrated
in this paper. Second, Alice can dynamically select from
a set of pre-recorded messages, which essentially extends
the approach in the first method. Thirdly, she can employ a
dynamic AI engine to learn and change sensitive informa-
tion, e.g., dates, numbers, and names, in real-time. Such an
approach is beyond the scope of this paper but viable with
a strong Alice.

4.4. Reconfiguring at Audio Sampling Rates

Another essential aspect of the MiSINFO is the switch-
ing frequency of the metasurface, i.e., how quickly Alice
should reconfigure the on-phone structure with correspond-
ing control signals to generate audio misinformation that
Eve can decode effectively. Such a design choice is largely
governed by the key features of human speech as well as
Eve’s ability to recover and process audio vibration signals.

Human speech is a complex auditory system, with the
lungs producing periodic air pressure that passes through the
vocal cords and later through the throat, mouth, and nasal
cavity, modulated throughout each of those steps to form
fine-tuned speech. The frequency content of the speech then
depends on the sounds being produced, and the voiced and
unvoiced sounds are the main two categories [41].

Voiced sounds are mainly characterized by the vibration
of the vocal cords, resulting in patterns of compression



and rarefaction in the air. However, unvoiced sounds are
created without significant vibration of the vocal cords and
instead, formed by the passage of air through the vocal
tract, causing turbulence or frication at specific points of
articulation. All vowel sounds and certain consonants such
as ‘b’, ‘d’, and ‘g’ are voiced, while unvoiced sounds are
associated with consonants like ‘s’, ‘p’, ‘k’, ‘sh’, and ‘th’. In
voiced sounds, the energy is typically concentrated in lower
frequencies, whereas in unvoiced sounds, energy is more
evenly distributed across frequency bands. In general, the
bandwidth of 80 Hz to 1.7 kHz contains key components of
human speech: 100% of vowels’ fundamental frequencies,
62.5% of consonants’ fundamental frequencies, and 68.8%
of vowels’ second harmonics [2], [42], [43].

Yet, with Eve reconstructing these audio signals from
the vibration observations, the achievable highest frequency
content depends on her radar’s sampling rate. According to
the Nyquist theorem, the sampling frequency of Eve’s radar
chirps must be at least twice the maximum frequency she
aims to recover in the signal. In addition to the sampling
rate, the SNR of her received signal is equally important to
Eve to recover the speech with high accuracy. The SNR of
her received signal can be expressed as [37]

SNR =
λ2GTxGRxα

(4π)3r4F
(11)

in which GTx and GRx are the transmitter and receiver gains
of the employed radar, respectively, α represents the radar
hardware configuration coefficient, and F denotes the noise
floor of the sensor.

Considering the aforementioned factors, Alice should
clearly avoid configuring the metasurface at low frequencies,
i.e., below a kHz, as it would poorly emulate the audio
vibrations and negatively impact the clarity of her injected
misinformation data. On the other hand, typical metasur-
faces can switch far beyond the kHz scale. However, if
possible, Eve should also avoid extreme frequencies, such as
MHz scale or even hundreds of kHz, as this might introduce
unnecessary redundancy to the data (potentially exploitable
by a sophisticated Eve with very high SNR and an unusually
high sampling rate). In this paper, we demonstrate the high
efficacy of the proposed defense mechanism with a few kHz
switching rates, as shown in Section 6.

5. Fabrication and Implementation

In this section, we first discuss the design and fabrication
of our metasurface. Next, we discuss the metric for quan-
tifying the injected misinformation to Eve, along with the
automatic speech recognition system for detecting the words
in the recovered audio. Then, we describe our experimental
setup, including the millimeter-wave radar system.

5.1. Programmable Metasurface Design

We realize MiSINFO by designing an experimental
testbed with a compact 2.5 cm × 2 cm reconfigurable

metasurface. Our metasurface, show in Figure 3, comprises
an array of metallic split-ring resonators (SRRs). They are
lithographically deposited on a 2µm thick doped Gallium
Arsenide (GaAs) epilayer grown on a semi-insulating GaAs
substrate. The period, SRR size, gap, and width are 210 µm,
160 µm, 2 µm, and 6 µm, respectively. The metallic SRR
array is designed to form a Schottky contact with the GaAs,
such that a reverse bias applied to the array produces a
significant change in the carrier density in the depletion
region underneath the metallic elements. This enables the
modification of the split-gap conductivity and, thereby, also
the electromagnetic response of the surface [44]. That is,
the switching mechanism of our metasurface stems from the
charging/discharging of an effective capacitor formed by the
Schottky contact. The surface area of the device determines
the effective capacitance and, thus, the RC time constant.
Thus, a larger surface area corresponds to a slower response
time.

Our metasurface prototype is transmissive and comprises
18 programmable columns that are dynamically controlled
by applying DC voltage bias via a waveform generator.
Designed for millimeter-wave frequencies (with strong res-
onant response at a center frequency of 150 GHz with
around 20 GHz bandwidth), it manifests a phase response
over a much broader frequency range [45], [46], extending
to frequencies below the 77 − 81 GHz frequency band
of the commonly employed radar system. By varying the
bias applied to the metasurface, we can control the phase
imposed on the radar signal that interacts with it, thus
modifying Eve’s observations (which are based on analysis
of the phase of the returned radar signature).

To randomize the eavesdropper’s observation as demon-
strated in Section 6.2, we scale the white noise signal
to an amplitude of 6.2 and center it approximately 3.1,
as per the range of our phase modulation. We then map
these values onto the corresponding voltage values to four
decimal places in accordance with a polynomial best-fit line
shown in Figure 6. The resulting voltage waveform, ranging
from −7.1 V to 0 V and centered around −3.55 V, is
then dynamically configured through the metasurface at a

Figure 3: Custom-designed MiSINFO dynamic pro-
grammable metasurface, comprising metallic split-ring res-
onators (SRRs) on GaAs substrate.



frequency of 4 kHz. Similarly, we construct the misinforma-
tion waveform by scaling the targeted misinformation audio
signal according to our phase range, subsequently mapping
it onto the corresponding voltage values, and controlling
voltage signals of the metasurface over time at the audio
sampling rate.

5.2. Misinformation Metric

To demonstrate the principles of MiSINFO, we cre-
ate various audio samples in the paper using a deep
learning-based system. We leverage it to analyze human
voice patterns and converts text into speech using synthetic
voices [47]. Subsequently, we employ Amazon Transcribe’s
machine learning algorithms to process Eve’s reconstructed
audio and obtain transcribed text [48], which we analyze
further.

To evaluate the efficacy of misinformation injection, we
quantify the ratio of errors in Eve’s transcript to the total
words in the misinformation audio. Specifically, we compute
the word error rate (WER) defined as:

WER =
NSubstitutions +N Insertions +N Deletions

NTotal Words in Misinformation , (12)

in which NSubstitutions indicates the instances where the tran-
scribed word differs from the word in the reference text,
NDeletions represents null transcription results for a word in
the reference text, and N Insertions is additional transcribed
words without corresponding words in the reference text.
Note that in the WER calculation, misinformation words
are not in general connected to the words emitting from
the speaker; rather, WER quantifies Alice’s effectiveness
in injecting misinformation words. Overall, a lower WER
indicates improved accuracy for Eve in recognizing misin-
formation speech and thus quantifies Alice’s effectiveness
in misleading the attacker, which we demonstrate in Sec-
tion 6.2-6.4.

5.3. Experimental Testbed and Setup

We prototype and experimentally demonstrate the princi-
ples of our proposed system by positioning a smartphone 0.5
meters away from the radar, directly in front of the radar’s
receiver and transmitter antenna array. Our metasurface is
placed in front of the phone, as close as physically possible
within the constraints of the frame and wires of the surface.

Experiments are conducted using a commercially avail-
able radar system (Texas Instruments AWR1843BOOST)
radar operating in the frequency range of 77 GHz to 81 GHz
as shown in Figure 4. It has a horizontal 3 dB-beamwidth
of approximately ±28 degrees and an elevation 3 dB-
beamwidth of approximately ±14 degrees. The radar is
physically connected to a real-time data capture adaptor
(Texas Instruments DCA1000EVM), which transmits the
data to a computing unit for further processing and anal-
ysis. Eve transmits chirps in frames, each consisting of
128 chirps, at a sampling rate of 10 kHz, and analyzes

Texas Instruments 
AWR1843BOOST

Texas Instruments 
DCA1000EVM

Figure 4: Commercially available low-cost portable
millimeter-wave radar employed by the eavesdropper.

the received chirps as they reflect off the smartphone. The
originally transmitted chirps are mixed with the received
ones at the radar transceiver to produce a beat signal.

Once raw ADC data from the radar are collected and
converted to an IQ array, the Fourier transform of the beat
signal is performed to identify the beat signal frequency.
Then, the phase of that frequency component is extracted
to compute the vibration displacement at a given instant.
Due to the radar’s frame-based chirp transmission and the
frame reset process, the radar hardware causes artifacts in
the vibration measurements, manifesting as random spikes
every 128 readings. To address this, cubic interpolation
is performed to replace the artifact at the beginning of
each frame. Moreover, the phase resets at the start of each
frame, causing undesired phase drift. To correct this drift,
polynomial regression is applied. This regression subtracts
the hardware-induced phase shift from the original signal,
effectively detrending the phase drift over time. Finally, a
bandpass filter is applied to eliminate low-frequency noise
and harmonic artifactsand then the processed vibrations
waveform is converted into an audio waveform.

6. Experimental Evaluation

In this section, we perform a set of experiments to
demonstrate the proposed MiSINFO system. First, we con-
duct experiments to characterize Alice’s on-phone meta-
surface, focusing on both metasurface switching frequency
and control signal to phase shift mapping. Next, we show
MiSINFO strategy to scramble Alice’s conversation, which
Eve wishes to extract. Then, we demonstrate how Alice
actively spoofs Eve with false audio information. Finally,
we perform large-scale experiments with over a thousand
words generated by the MiSINFO.

6.1. Alice’s Metasurface Characterization

To implement the proposed defense mechanism, Al-
ice must first characterize her on-phone metasurface, as
described in Section 4. Here, we demonstrate how Alice
acquires the metasurface phase response across different
switching frequencies and establishes the mapping between
control signals and phase responses. With this information,



she can then dynamically reconfigure the structure to emu-
late acoustic-vibration patterns.

Metasurface switching frequency: Different metasurface
designs and hardware will produce distinct electromag-
netic responses across switching frequencies. Employing the
metasurface described in Section 5.1, we first conduct exper-
iments investigating the phase response of the metasurface
across different switching speeds. For that, we utilize the
experimental setup detailed in Section 5.3, positioning Eve’s
smartphone-metasurface and Alice’s radar at a distance of
half a meter. We then apply a square-wave control signal
(with a peak-to-peak voltage of 10 V and an offset of -5 V)
to the phone-metasurface at varying switching frequencies,
while keeping the phone silent, i.e., no ongoing phone
conversation during this experiment. Then we analyze Eve’s
chirp signals to extract the resulting phase shifts.

We present the results in Figure 5. The x-axis represents
the switching frequency of the metasurface, starting from
1 Hz and increasing to 5 kHz, while the y-axis displays
the corresponding phase shifts in degrees. We also analyze
the temporal response at exemplary frequencies, depicted in
insets on both sides of the figure. The inset on the left-hand
side provides a detailed view of the results at a switching
frequency of 100 Hz, whereas the inset on the right-hand
side zooms in on the results at 4 kHz.

Importantly, notice that the phase shift decreases with
increasing switching frequency, and this pattern is non-
linear. This phenomenon arises due to the collective RC
response of the split-ring resonator elements described in
Section 5.1. In particular, rapid voltage transitions lead to
shorter charging and discharging duration for the capacitor,
providing a smaller achievable phase range. Such response
suggests Alice has a broader range of phase control at slower
switching frequencies, exceeding 10◦ below 100 Hz, while
the range decreases at higher switching rates. We select a
4 kHz switching frequency that allows both sufficient phase
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Figure 5: Measured phase change by Eve as a function of
the switching speed of the signal applied by Alice to the
metasurface.
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Figure 6: Characterization of Alice’s metasurface through
measured control signal response mapping.

range and bandwidth to mimic the richness and comprehen-
sibility of voiced speech as demonstrated in Sections 6.2
and 6.3.

Control signal vs. phase shift mapping: Then, Alice
needs to characterize the mapping between her control signal
and the corresponding phase response to generate a targeted
vibration pattern. To study it, we adopt the previously dis-
cussed setup and conduct experiments in which we vary the
magnitude of the applied control voltages on the metasurface
from −10 V to 0 V, maintaining a fixed switching frequency.

The results are presented in Figure 6, with the x-axis
showing the applied reverse bias voltage, from 0 V to
10 V in steps of 0.1 V. Induced phase shifts are displayed
on the left-hand of the y-axis while the right-hand axis
shows the size of this phase shift converted to effective
equivalent displacement, as per Equation (6). The yellow
curve in the figure represents the best polynomial fit, the
grey dots depict the recorded phase shift readings, and the
blue region indicates the interquartile range. The inset shows
the measured phase shift induced by the metasurface across
a wide frequency range, spanning the 77− 81 GHz band of
the radar system.

Focusing on the key yellow curve, note that it is nearly
linear for approximately the first three quarters and then
levels off. This indicates that Alice can induce a unique
phase shift and displacement by operating within the range
of control signals from −7.1 V to 0 V. However, we also find
that at larger reverse bias values, the phase shift no longer
changes. It is due to saturation of the growth of the induced
depletion region at the SRR Schottky contacts [44]. As such,
the −10 V to −7 V control signals region is considered less
useful for Alice due to the many-to-one mapping.

Furthermore, the results reveal that Alice has extremely
fine control over the displacement resolution, down to sub-
micrometer scales, as illustrated on the right-hand axis in
Figure 6. As such, Alice can accurately reproduce even
complex vibration waveforms while also operating at an
audio sampling rate. Together with this characterization of



the bias-induced phase shift at 77 GHz, we also measure the
corresponding amplitude shift. However, since Eve employs
phase demodulation as discussed in Section 4.3, this data is
less relevant to this security situation.

Finding: The on-phone metasurface exhibits a low-pass
response, providing Alice with a broader range of phase
control at slower switching frequencies while the range
decreases at higher rates. Despite having only a few degrees
of phase range, Alice can achieve very high-resolution, sub-
micron control over displacement by operating in the non-
saturated control signal region and configuring the meta-
surface at an audio sampling rate of 4 kHz.

6.2. Generating Random Information

Thus far, we have demonstrated how Alice characterizes
her on-phone metasurface. Next, we study Alice’s strategies
to counter the eavesdropping attack. First, we show how
Alice scrambles Eve’s sensing measurements, inducing a
random time-varying voltage signal at the metasurface in-
terface to randomize the phase of the signal reaching Eve
and thus disrupting the integrity of the audio information
she wishes to extract.

Adopting the previous experimental setup, we conduct
experiments by configuring a control signal to a random
voltage between −7.1 V and 0 V (uniformly distributed) at
a rate of 4 kHz. Simultaneously, we play a 12 sec exemplary
audio signal through the phone’s earpiece speaker with the
phrase “Hi, I’m James Kelly. Sure, my bank account is 1,
2, 3, 5, 6, 7, and my social security number is 8, 9, 10.”
The audio ( see Audio 1) is recorded at a high 48 kHz
sampling rate and mimics a sensitive phone conversation
with personal identification and numbers. We refer to this
audio signal as the source audio information.

The results are depicted in Figure 7, and the source
audio waveform is shown in Figure 7(a). As a baseline, we
consider the scenario where Alice’s metasurface is turned
off, meaning no control signals are applied to activate the
structure. Then, remote Eve aims to intercept the infor-
mation using the time-varying phase of the reflected radar
signal. Figure 7(b) illustrates Eve’s observation in this base-
line scenario (see Audio 2), shown as the measured phase
shift in each time bin, converted to vibration displacement
using Equation (6). The text above each snippet of the
audio waveform indicates the corresponding word from the
Amazon automated speech recognition audio-to-text tran-
scription, as described in Section 5.2. Figure 7(c) displays
Eve’s measurements with the proposed defense mechanism
implemented

First, we discover that Eve is indeed capable of repli-
cating the audio information pattern by observing vibration
patterns (see Audio 2). Although she samples displacements
at a much lower chirp rate than the original audio source
rate, resulting in differences in waveform shapes between
Figure 7(a) and Figure 7(b), the subsequent audio-to-text
transcription shows that Eve can accurately recognize ev-
ery single word from the eavesdropped audio information,
emphasizing the severity of the threat.

However, the results reveals that our design enables
Alice to thwart the attack using randomly switching meta-
surface control signals. In particular, Figure 7(c) shows
that the random phase shifts induced by the metasurface
produce an arbitrary vibration displacement pattern which
completely overwhelms the (smaller) signal containing the
actual audio information. Consequently, Eve obtains only a
noisy random waveform (see Audio 3), several times larger
in amplitude and induced at the audio sampling rate. With
such a defense mechanism in place, Eve fails to recover any
audio information in the attack.

Finding: Eve can indeed remotely sense micron-scale
mechanical displacements to intercept audio information,
accurately recovering all the words in the eavesdropped
phone call. However, with our proposed defense mechanism,
in which Alice configures the metasurface with random
voltage signals to scramble radar phase measurements, Eve
fails to recover any of the words and observes only noise.

6.3. Generating Audio Misinformation

Until now, we have shown that MiSINFO can thwart the
attack by obscuring Alice’s conversation. Furthermore, here
we demonstrate how MiSINFO enables actively spoofing
the eavesdropper with false audio information. Unlike pre-
viously, Alice here generates a temporal sequence of meta-
surface control signals V⃗m(t) that can imitate a vibrational
pattern corresponding to misinformation m(t) containing
different sensitive data from what Alice is actually speaking.
This not only prevents Eve from accurately decoding the true
signal but also injects a false acoustic signal.

Building on the previous experimental setup, we first
create exemplary audio misinformation (see Audio 4) with
the phrase “Hi, I’m John Wick. Sure, my bank account is
7, 7, 3, 8, 0, 1, and my social security number is 3, 5, 9.”
This is similar to the audio information signal discussed
above (see Audio 1), but with the name and sensitive
numbers altered. We then create this waveform utilizing
the control signal characterization depicted in Figure 6 to
establish the mapping between the metasurface activation
voltages and their associated excited properties. We then
translate the temporal audio signal’s amplitude information
into corresponding displacement and phase data, generating
a sequence of reverse-bias voltage control signals. The active
metasurface, responding to these control signals, generates
a radar response that yields falsified data observed and
reconstructed by the eavesdropper.

Figure 8(a) illustrates Eve’s sensing observation when
the phone remains silent (with no audio on the speaker), but
the on-phone metasurface is activated with misinformation.
The results reveal that Eve infers an artificial vibration
signature corresponding to the misinformation despite the
absence of any mechanical sound wave vibrations from
the phone. As shown in the transcript text in Figure 8(a),
the word error rate, defined in Section 5.2, is zero in this
experiment. That is, Eve accurately intercepted and decoded
all of the misinformation (see Audio 5), even though the
phone was silent and no information was communicated.

https://github.com/Oakland-2025/MiSINFO/raw/main/Audio%201.wav
https://github.com/Oakland-2025/MiSINFO/raw/main/Audio%202.wav
https://github.com/Oakland-2025/MiSINFO/raw/main/Audio%203.wav
https://github.com/Oakland-2025/MiSINFO/raw/main/Audio%204.wav
https://github.com/Oakland-2025/MiSINFO/raw/main/Audio%201.wav
https://github.com/Oakland-2025/MiSINFO/raw/main/Audio%205.wav
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Figure 7: (a) An exemplary phone conversation audio incorporating personal identification, bank account details, and a
social security number. (b) Remote Eve accurately measures the temporal mechanical displacement using radar signals,
allowing her to recover all words in the eavesdropped data. (c) With the proposed defense mechanism, Eve completely fails
to recover any words, observing only noise.

Next, we conduct an experiment in which Alice acti-
vates the misinformation security capability while actively
speaking, such that the true audio information is simulta-
neously played on the phone speaker while the metasurface
is being programmed to inject misinformation. Additionally,
she intentionally introduces small-scale additive white noise,
totaling 10% of the maximum amplitude, into the misinfor-
mation signature. This serves to further obscure legitimate
information, which has an amplitude several times lower.
Figure 8(b)-(c) depicts Eve’s measurements, both temporal
and spectral responses.

Importantly, we discover that the eavesdropper detects
none of the original emitted words from the speaker, as
shown in the reconstructed audio transcript in Figure 8(b)
while intercepting only the misinformation injected by Alice
(see Audio 6). Specifically, Eve falsely detects the name as
“John Wick” instead of “James Kelly”, while the original
bank account numbers “1, 2, 3, 5, 6, 7” and the social
security number “8, 9, 10” is misleading intercepted as “7,
7, 3, 8, 0, 1” and “3, 5, 9”, respectively.

Finding: MiSINFO enables Alice to spoof Eve with false
information, purposefully altering sensitive details such as
personal identification, bank account numbers, and social
security numbers. Alice can also inject a false acoustic
signal even in the absence of a phone conversation.

6.4. More than a Thousand Words

Here, we investigate Eve’s performance in decoding
MiSINFO audio vibration patterns through a large-scale
experiment comprising over a thousand words of exemplary
audio.

Adopting the setup from the previous experiment, we
record the first 1006 words from the Declaration of Inde-
pendence. Next, we convert the amplitude information of the
temporal audio signal into displacement and phase data and
generate a sequence of reverse-bias voltage control signals,
as described in Section 4. As Eve activates the MiSINFO,
Eve’s sensing observations get modulated accordingly. We
evaluate the performance by analyzing Eve’s word error
rate as she intercepts misleading audio data. We present
the results in Figure 9, with Figure 9(a) depicting the ten
most commonly recognized words by Eve, while Figure 9(b)
illustrates the incorrectly recognized words.

We discover that Eve incorrectly decodes only 23 words
out of 1006. Namely, the number of substitution words
is 15, deletion words 7, and insertion words 1. That is,
Alice’s injected misinformation is reconstructed by Eve with
an extremely low word error rate of 2.29%. , Among a
small group of incorrectly decoded words, we also observe
a pattern of many voiceless consonants such as ‘f’, ‘s’, ‘sh’,
and ‘th’, for example, “sufferable”, “pressing”, “shewn”,
and “therein”. As such, these words contain some signal

https://github.com/Oakland-2025/MiSINFO/raw/main/Audio%206.wav
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Figure 8: (a) MiSINFO enables spoofing the eavesdropper with audio misinformation, even when there is no audio on the
speaker. (b) Eve observes superimposed information and misinformation patterns, recognizing none of the original words
while recovering all misinformation words. (c) The spectrogram of the audio in (b) shows that most of the human speech
energy is indeed below several kHz.

(a) Correctly recognized (b) Incorrectly recognized

Figure 9: Top ten words (a) correctly and (b) incorrectly
decoded by Eve in a large-scale experiment with over a
thousand words from the Declaration of Independence audio
information.

energy in higher frequencies, above 5 kHz, as detailed in
Section 4.4. Missing these details with the radar’s 10 kHz
chirp sampling rate may occasionally lead the audio-to-text
transcription algorithm to mistakenly associate them with
other similar and common words. For instance, “shewn”
is transcribed as “shown”, and “pressing” is transcribed
as “press”. However, we highlight that the majority of the
signal energy in human speech lies below 4 kHz, and this
is also illustrated by the yellow color in Figure 8(c) spec-
trogram heatmap. Therefore, MiSINFO effectively enables
the spoofing of the eavesdropper with legitimate yet false
information.

Finding: The large-scale experiment with over a thou-
sand words demonstrates that Alice can highly accurately
inject audio misinformation to Eve, achieving an average
word error rate of 2.29%

7. Discussion

In this paper, we present the MiSINFO architecture,
which introduces a new foundation for sensing security
and offers significant strategic advantages over conventional
countermeasures. Traditionally, malicious sensing signals
are either obscured, e.g., by randomizing the responses,
or jammed, e.g., [49], [50]. However, the key challenge is
that traditional countermeasures can quickly alert attackers
to the presence of a countermeasure, prompting attack-
ers to adapt and employ alternative audio eavesdropping
techniques, such as microphones, laser-microphones [51],
visual-microphones [52], or even malware [53]; although
each method has its own advantages and disadvantages - for
instance, using a microphone to recover audio is particularly
challenging due to the low sound pressure levels emitted
from smartphone earpieces (as opposed to loudspeakers) and
the presence of acoustic noise in the environment.

Millimeter-wave radars: An attacker using a
millimeter-wave radar can tap into various forms of



physical information leakage, including eavesdropping
on audio by detecting tiny vibrations on surfaces such as
windows and walls [54]. Unlike traditional listening devices
such as microphones, which rely on air pressure changes and
can be blocked by walls or other barriers, millimeter-wave
radars work remotely and can extract sound information
by analyzing Doppler shifts or microscopic surface
movements. This makes them a stealthy and contactless
alternative for audio surveillance. The risk becomes even
greater with advanced radar architectures—narrow-beam
phased arrays and high-resolution sensing allow attackers
to focus precisely on their targets while filtering out
background noise. As these technologies improve, the
potential for remote audio reconstruction grows, raising
serious security concerns and emphasizing the need for
effective countermeasures against unauthorized millimeter-
wave-based surveillance.

To address this, our architecture not only hides private
acoustic signals but also injects a misleading alternative
signal, potentially rendering the countermeasure unnoticed
by attackers. Such a proactive defensive capability to mis-
lead provides major strategic and security advantages across
civilian, corporate, and military scenarios. As such, our
proposed security approach transforms defensive measures
from merely reactive to proactively deceptive, giving the
defender an advantage.

On-phone metasurfaces: Metasurfaces are quickly
transitioning into commercially viable products, with a
growing presence in consumer electronics. This shift is
driven by their ability to replace traditional, bulkier sensors,
offering a more compact and lightweight alternative. Notable
examples of this trend include the integration of metasur-
faces as optical elements in high-end devices such as the
Galaxy S23 Ultra and Google Pixel 8 Pro, where they serve
to enhance functionality while reducing the overall size
and weight of the devices [55], [56]. Unlike conventional
sensors, metasurfaces can perform complex tasks such as
manipulating light and electromagnetic waves with high
precision, all within a thin, planar form factor. This devel-
opment not only highlights the potential of metasurfaces
to revolutionize consumer devices, but also strengthens the
case for their integration into our on-phone metasurface se-
curity architecture, ensuring that such technologies are both
feasible and scalable for practical, real-world applications.

We also note that MiSINFO can be activated on demand,
such as during sensitive conversations, ensuring minimized
power consumption when not in use. In fact, the power
consumption of our metasurface architecture is low (below
several mW) due to the reverse voltage bias design, which
results in minimal current flow. Additionally, we emphasize
that our metasurface is not intended to cover the phone’s
millimeter-wave antennas, if present, so the misinformation
signal is directed away from the phone. Any interference
would arise from Eve’s radar signal, which has been previ-
ously explored, e.g., [57]. This design makes our proposed
architecture both efficient and practical for continuous or
frequent use.

Counter-counter attacks: Wireless security is an arms

race, and a strong Eve could design sophisticated techniques
to counter the proposed defensive countermeasure. For ex-
ample, signal processing methods such as blind source sep-
aration [58] could be used to isolate audio misinformation
from legitimate information. Adaptive filtering [59] could
aid in identifying remnants of the actual audio vibrations
by leveraging statistical properties and exploiting stochastic
perturbations. Additionally, deep learning-based denoising
techniques, such as generative adversarial networks (GANs)
and deep autoencoders, could help reconstruct clean signals
from obfuscated content [60].

Similarly, on-phone metasurfaces could introduce non-
idealities that may be detectable. Specifically, resonance
meta-atoms on the structure are likely to create frequency
artifacts that are distinguishable from the natural spectral
characteristics [44]. By analyzing these artifacts, an adver-
sary could infer the presence of a defense mechanism. Then,
as a potential counter-counterattack, Eve could randomize
her radar signals, making it more difficult for Alice to
construct the correct spoofing phase, thus requiring an even
more advanced Alice than considered here. These topics
present promising directions for future research.

Current limitations and future work: In this paper, we
developed the concept, designed the system with a dynamic
on-phone metasurface, and experimentally demonstrated the
security mechanism. However, the considered threat model
is demonstrative, yet constrained, with experimental evalua-
tions limited to modest half-meter distances and fixed smart-
phone positions. Nevertheless, we emphasize that MiSINFO
is designed to modulate the phase of the incoming radar
beam, regardless of whether the chirps propagate over the
air for half a meter or tens of meters. Additionally, different
designs of the on-phone metasurface and angular responses
impact the control signal mapping. In general, considering
a stronger threat model, extending the operational range to
tens of meters, and exploring performance under varying
smartphone positions, motions, and user-holding conditions
are promising directions for future research.

8. Conclusion

In this paper, we develop, design, and experimentally
evaluate MiSINFO, a novel architecture for audio misin-
formation security. Our work is the first eavesdropping
countermeasure system that not only prevents Eve from
succeeding but also injects a false signal into her observation
to fool her into believing that she has. Our experimental
results reveal Eve detects none of the original words emitted
from the smartphone speaker, and reconstructs the injected
misinformation almost perfectly, so that she cannot tell that
she has been spoofed.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper presents a countermeasure on audio-
eavesdropping with mmWave radars. Without countermea-
sure, the radar signal from the attacker is modulated by small
audio-induced vibrations on the victim. The countermeasure
consists in reflecting the attacker’s signal with a metasurface,
modulating noise or even audio misinformation on top of it.

A.2. Scientific Contributions

• Establishes a New Research Direction
• Provides a Valuable Step Forward in an Established

Field
• Creates a New Tool to Enable Future Science

A.3. Reasons for Acceptance

1) Establishes a New Research Direction. The paper takes
a novel approach to defend against audio eavesdrop-
ping. The main contribution is that of turning the vic-
tim from a passive reflector (which leaks information
through its vibrations) to an active reflector (which uses
a metasurface to actively modulate the reflected signal
with noise or even misinformation). Such approach
might find applications beyond those discussed in the
paper.

2) Provides a Valuable Step Forward in an Established
Field / Creates a New Tool to Enable Future Sci-
ence. Prior work has demonstrated the threat posed
by mmWave radars capable of measuring minuscule
victim movements, for example, by recovering audio
from audio-induced vibrations. This paper contributes
to this field by further replicating the attacks and in-
vestigating a countermeasure. Similarly, prior work has
explored the use of metasurfaces for security, and this
paper further proposes another application.

A.4. Noteworthy Concerns

1) Threat model and experimental evaluation: The exper-
imental evaluation of the countermeasure (and corre-
sponding attack) occurs in simplified conditions (e.g.,
very short distance, stationary victim). In such condi-
tions, the practicality of the attack is very limited and
questions weather the additional cost and complexity
of the countermeasure are justified. On the one hand,
it is reasonable to evaluate a countermeasure in pos-
itive conditions for the attacker, and attacks in more

challenges conditions were discussed in prior work. In
addition, the countermeasure injects signals at higher
SNR and has thus an inherent advantage that would
likely apply also at larger distances. On the other hand,
only further experiments in more challenging scenarios
would fully prove the relevance of the threat model
and the performance of the countermeasure in realistic
conditions.

Appendix B.
Response to the Meta-Review

1) We agree with the reviewers that testing at longer
distances and under more complex conditions would
strengthen the evaluation. Moreover, prior work has
demonstrated the attack at distances of up to ten meters
and under varying smartphone positions, motions, and
user holding conditions [2], with key contributions
focused on neural network denoising algorithms and
radar sensor architectures to improve SNR and thereby
extend the range. Among the various methods em-
ployed, we performed cubic interpolation to remove
frame artifacts, polynomial regression to compensate
for phase reset drifts, and filtering with cluster sup-
pression to eliminate hardware-induced detrending and
noise. However, we believe that fully replicating [2],
including the design and implementation of neural
networks and improved radar architectures, along with
their experimental evaluations - on top of our primary
contributions to audio misinformation development, on-
phone metasurface design and implementation, and
experimental evaluations - would be beyond the scope
of a single conference paper but represents a promising
direction for future research.
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