QUALIFYING EXAM, Winter 2024

Algebraic Topology

NAME __

(STUDENT NUMBER _____________ SIGNATURE _____________)

Do all 10 problems. Please write clearly.

Problem 1 Let $f : S^n \times S^n \to S^{2n}$ be the quotient map collapsing $S^n \vee S^n$ to a point. Show that f induces the zero map on all homotopy groups but f is not nullhomotopic.

Problem 2 Define the Hopf invariant. Assume the Hopf invariant is a homomorphism. Prove that $h([\iota_{2n}, \iota_{2n}])$ is non-zero, and use this to prove that $\pi_{4n-1}(S^{2n})$ contains \mathbb{Z}.

Problem 3 State the Freudenthal Theorem. Assuming that the group $\pi_4(S^3)$ is non-trivial, prove that it has order two.

Problem 4 Give a construction of an Eilenberg-McLane space $K(\pi, n)$. Prove that

$$H_{n+1}(K(\pi, n); \mathbb{Z}) = 0$$

if $n \geq 2$ and π is an arbitrary abelian group.

Problem 5 Let $f : S^{2n} \to S^{2n}$ be a map of degree zero. Prove that there exist two points $x, y \in S^{2n}$ such that $f(x) = x$ and $f(y) = -y$.

Problem 6 State the Lefschetz Fixed Point Theorem. Prove that any map

$$f : \text{HP}^{4k} \times \text{RP}^{2n} \to \text{HP}^{4k} \times \text{RP}^{2n}$$

always has a fixed point.

Problem 7 Let $h : S^3 \to S^2$ be the Hopf map. If $c : T^3 \to S^3$ is the map which collapses the complement of a ball to a point, prove that $h \circ c : T^3 \to S^2$ induces the trivial map on homology and homotopy, but is not homotopic to a constant map.

Problem 8 Show that a closed simply-connected 3-manifold M is homotopy equivalent to S^3.

Problem 9 Compute the homotopy groups $\pi_q(\text{CP}^n)$ for $q \leq 2n + 1$.

Problem 10 Let M be a closed, simply-connected manifold of dimension $4k + 2$. Show that the Euler characteristic of M is even.