Physics 156: Scientific Revolutions
Fall 2013
SYLLABUS

CLASS TIME
TuTh 2:00-3:50pm, Anstett 191 (in the Lillis complex)

INSTRUCTORS AND CONTACT INFORMATION
Professor Raghuveer Parthasarathy (Par-tha-sa-ra-thē)
Office: 362 Willamette Hall
Email: raghu@uoregon.edu

COURSE DESCRIPTION
This course will examine scientific revolutions that have dramatically altered the ways in which we view the world. Our discussions will explore major concepts (including quantum mechanics, evolution, plate tectonics, and chaos theory) central to a diverse group of scientific disciplines. Discussions will focus on understanding what these revolutions were, and what views they superseded. Students will gain an understanding of how science generates questions and defines the questions it investigates, while considering scientific revolutions in their respective historical contexts. We will also explore the technological and societal consequences of these revolutions, in order to understand the role of scientific discoveries in shaping our lives.

TEACHING ASSISTANTS
Win McLaughlin, GTF and Science Literacy Program Fellow¹;
Email: win@uoregon.edu
Blake Parris, GTF; Email: parris@uoregon.edu
Kendra Walters, Undergrad. Science Literacy Program Scholar¹ –
Email: walters@uoregon.edu

OFFICE HOURS
Make use of office hours! Even if you don’t have specific questions, feel free to drop by and chat about course topics.
Note that office hour times may change, both by request (if particular times are not good for many students) and due to scheduling conflicts of the instructors (e.g. travel).
Prof. Parthasarathy: Mon. 12:30-1:30 pm; Tu. 1:00-2:00pm, Willamette Hall 362.
Win McLaughlin: Wednesday 11:00-2:00pm and 2:30-3:30pm, 213 Volcanology
Blake Parris: Thurs. 1:00-2:00pm and Friday 1:00-2:00pm, outside Willamette 72
Kendra Walters: TBA

LEARNING OBJECTIVES
1. How does science work? We seek to gain an understanding of the scientific process by examining several “scientific revolutions”
2. We will learn about the importance of several major ideas (evolution, plate tectonics, chaos theory, and quantum mechanics) to history, society, and modern science.

ASSIGNMENTS
Readings and reading questions – For most topics, there will be one or

¹ Win and Kendra are funded by the University of Oregon’s Science Literacy Program (SLP), an initiative that spans several departments and involves students in designing and implementing in-class activities.
more readings (see below) and a small set of questions related to that reading, to be answered by each student on-line before class.

Homework – There will be weekly homework assigned that will provide practice in using the ideas and concepts explored in class.

BLACKBOARD
We will be using Blackboard in this course to distribute course materials, and also for on-line assignments. URL: https://blackboard.uoregon.edu/ Please pay close attention to formatting requirements for submitting on-line answers – Blackboard can be infuriatingly inflexible.

EMAIL
Email: You can certainly ask questions by email. Note, however, that we rarely respond to emails that begin “Hey...” or are otherwise poorly constructed.

TEXTBOOK
We will read parts of several books as well as various articles. The following books are required:
- John Gribbin, *In Search of Schrodinger's Cat* (Bantam, 1984)
- Michael Keller, *Charles Darwin’s On the Origin of Species: A Graphic Adaptation*

READINGS
Additional readings will be provided by the instructors on the course Blackboard site (https://blackboard.uoregon.edu/).

QUIZZES AND EXAMS
There will be four quizzes, each covering one of the four main topics of the course (see “Calendar,” below). The quizzes will contain multiple choice and short answer questions, and will span roughly half a class period each.
There will be a cumulative final exam, also with both multiple choice and short answer questions.

GRADING
Here are the weightings of the various grade components:
- 10% Pre-class Reading Questions (see “Assignments”)
- 25% Homework Assignments
- 40% Total Quiz Grade – each of the four quizzes is weighted equally
- 25% Final Exam (1pm Thurs. Dec. 12).

Final Grade:
A=88-100%; B=76-87.9%; C=64-75.9%; D=56-63.9%; F<56%.

ABSENCES
If there is a serious (e.g. involving illness) and well-documented (e.g. with a doctor’s note) reason for missing quizzes, the final exam score will count extra, in place of the missed tests.

CALENDAR
Week 1-2: Quantum Mechanics – Classical physics; the wave nature of light; early Quantum Mechanics and the wave nature of particles; measurement, uncertainty, philosophy and meaning in Quantum Mechanics. Also: technological applications and current research.

Weeks 3-4: Evolution – Natural selection, Darwin and Wallace; Age of the earth; Inheritance, genetics, and sources of variation; evolution of
development

Weeks 5-6: Chaos Theory – Determinism and classical physics – history and philosophy; pendulums and oscillatory motion; the logistic map and population dynamics; fractals and power-law scaling; turbulence; the scientific method, interdisciplinary science, and the history of chaos

Weeks 7-8: Plate Tectonics – uniformitarianism and catastrophism; structure of earth; continental drift; earth’s magnetic field; subduction, mid-ocean ridges, mountains, earthquakes, and volcanoes; unifying processes; resistance to changing ideas and how ideas spread

Weeks 9-10 (Week 9 is short, due to Thanksgiving): The philosophy of Scientific Revolutions, and failed scientific revolutions

Laptops in Class

The use of laptop computers in class is not allowed. Why? Several studies, plus past experience, show that students using laptops in class spend a great deal of time on non-class-related activities (surfing the web, playing games, ...) and that these distractions negatively impact both learning and grades. This alone isn’t a reason to ban laptops – you’re responsible for your own performance in class. In addition, however, studies have shown that non-class-related laptop use distracts and impacts the learning of other students nearby. (E.g. Fried, C. B. *Computers & Education* 50, 906-914 (2008).) Plus, students have complained to us about the environment created by their classmates laptop use.

Taking notes by hand, by the way, is more effective in cementing concepts in your mind. (Note, by the way, that lecture slides are posted on-line, so you don’t have to frantically transcribe everything anyway.)

In summary, laptops are not allowed in class. The only exceptions will be for people with documented medical needs; please see me if this is the case.

Expected Workload

Students should expect to spend approximately 3 hours per week on reading assignments, as well as another 5-10 hours per week on homework assignments and reading questions.

Homework, assigned weekly, will consist of exercises that assess and develop students’ understanding of scientific concepts covered in class and in the readings, and also mathematical exercises and analyses of graphs or other forms of scientific visualization.

Reading questions will assess specific topics encountered in the readings, ranging from simple facts to deeper scientific concepts.

Necessary Caveats

Students are expected to abide by university policies on academic honesty, avoiding plagiarism, fabrication, cheating, and academic misconduct. The Student Conduct Code (http://conduct.uoregon.edu/) provides definitions of these terms and explanations of the university policy on the subject. The UO Library also provides a guide to avoiding plagiarism (http://libweb.uoregon.edu/guides/plagiarism/students/). You are responsible for understanding these regulations and abiding by them. Students should be particularly careful to avoid plagiarism and excessive collaboration in writing up out-of-class assignments, and in working on projects and exams. Academic dishonesty will be dealt
with severely, as it is disrespectful to your fellow students and your instructor, as well as being against both university regulations and state laws.

<table>
<thead>
<tr>
<th>STUDENTS WITH DISABILITIES</th>
<th>If there are aspects of the instruction or design of this course that result in barriers to your inclusion, please notify Profs. Hopkins and Parthasarathy as soon as possible. You are also welcome to contact Disability Services in 164 Oregon Hall, 346-1155.</th>
</tr>
</thead>
</table>

SUCCEEDING IN THIS COURSE

Plan ahead and start early! The reading assignments are a vital part of this course, and it is important to start reading them early not only to understand the subject matter but to be able to articulate what you don’t understand – in class lectures and discussions will build on your reading experiences. Note that the reading assignments must be done before the days at which their topics are discussed in lecture. In general, it will be crucial to keep up with the course and not fall behind; later topics will build on earlier ones.

Make use of available resources. If you have questions about lectures, assignments, readings, or other matters, please visit Profs. Hopkins and Parthasarathy during office hours, or communicate by phone or email. Individual appointments can certainly be arranged to accommodate schedule conflicts with the regular office hours.

The University’s Academic Learning Services (ALS) center provides a variety of workshops, individual consultations, writing assistance labs, and more to assist UO students. For more information please see als.uoregon.edu, or call (541) 346 3226.