The two-course sequence PHYS 424-425 is not presently offered. Instead, PHYS 425 has become a stand-alone course, dealing mostly with material that had been covered in PHYS 424. The following is a list of topics that I hope to cover this term.

RAY OPTICS
Fermat's Principle and its application to various optical elements
The Paraxial Approximation
Ray Transfer Matrices and applications to various optical situations

OPTICAL RESONATORS
Stability conditions for various resonator configurations

RAY TRACING
Some general principles and use of a simple ray-tracing software

REVIEW OF ELECTROMAGNETIC WAVES
Derivation of the Electromagnetic Wave Equation for free-space and dielectric media
Introduction of the "quantum optics" notation for complex electromagnetic field solutions
Plane waves and vector plane waves

INTERFERENCE AND INTERFEROMETERS
Superposition of plane waves
Mach-Zehnder interferometer
Stokes Relations
Michelson interferometer
Sagnac interferometer

PARAXIAL WAVE EQUATION AND GAUSSIAN BEAMS
Paraxial approximation for the wave equation
Gaussian beams
The ABCD Law for Gaussian beam propagation
Application of the ACD Law to propagation through various lens and mirror systems
HERMITE-GAUSSIAN BEAMS
Beams with transverse mode structure

FABRY-PEROT (PLANE MIRROR) CAVITIES
Resonance condition
Cavity damping, finesse and Q
Optical spectrum analyzer

SPHERICAL MIRROR CAVITIES
Gaussian modes and resonant frequencies

POLARIZATION
Polarization ellipse
Special cases of the polarization ellipse linear, circular polarization etc.
Polarization states, Jones Vectors
Polarization devices: polarizers, retarders, rotators etc.
Birefringence
Optical activity, the Faraday Effect

THE FRESNEL RELATIONS
Propagation of electromagnetic waves through interfaces
Brewster angle etc

IF TIME PERMITS...
More optical devices, possibly non-linear optical devices