This page and its links contain all of the general information you need for the course, and they will be updated frequently. Please check this page regularly, and make sure you hit your browser's `Reload' button so you get the latest version.

Overview, and Expected Learning Outcome

PHYS 610 is designed to teach mathematical concepts and methods that are useful in physics in general, and in the theory of classical electromagnetism in particular. Successful completion of the first quarter will result in knowledge of simple algebraic structures that frequently appear in physics, and of basic concepts and methods in analysis.

PHYS 622 covers basic notions and simple applications of classical electrodynamics. Successful completion of the second quarter will result in knowledge of Maxwell's equations as well as their static and simple dynamic solutions.

The two quarters will be taught as one contiguous course; if you contemplate taking 622 without having taken 610 please talk to me first.

Time and Location:

- MW 14:00 - 15:50 in 147 WIL

- Speaking of time, here is the [official time](https://nist.gov/pubs/time/) from NIST

Lecture Notes:

- The [table of contents for 610](https://pages.uoregon.edu/dbelitz/teaching/2023_24/PHYS_622/) may be updated as the course proceeds. The links are to a (not quite up to date) scanned version of my handwritten notes that you may find hard to read. I will write everything I say on the board, so if you take good notes then by the end of the term you'll have your own set of my lecture notes. An incomplete set of typeset notes is [here](https://pages.uoregon.edu/dbelitz/teaching/2023_24/PHYS_622/). These notes are still a work in progress and will be updated as we go along.

- The tentative table of contents for 622 is [here](https://pages.uoregon.edu/dbelitz/teaching/2023_24/PHYS_622/), with links to a version of my handwritten notes. Typeset notes for an earlier version of the course are [here](https://pages.uoregon.edu/dbelitz/teaching/2023_24/PHYS_622/).

- Please keep in mind that anybody else's lecture notes, including the lecturer's, are next to useless unless you have your own set taken by YOU. This goes for textbooks as well. My notes are only meant as a record of my blackboard art to check against.

Instructor:
• **Dietrich Belitz**
 email: dbelitz@uoregon.edu
 phone: upon request
 office: 459 Willamette
 office hours:
 ◦ real: Catch me after or before class if possible. If you can't, or we don't have enough time to resolve the issue I'll give you a time when you can find me in my office. I'm also happy to discuss problems via zoom.
 ◦ virtual: Anytime. My e-mail response time is rarely longer than a few hours, and usually it is much shorter. If desirable, we can set up a zoom session.

TAs:

• Austin Batz
 office: tba
 email: abatz@you-know-where
 office hours: tba

Textbooks and other helpful material:

- **Recommended texts:**

 These are books that I used heavily in preparing the lecture notes. They are **NOT** required, and my lectures are designed to be self-contained. They all are excellent reference texts, but make sure you really like a book before you buy it. If you find some other books more useful for background reading or reference, by all means use those.

 Recommended books for 610:

 ◦ **M.J. Lighthill**, *Introduction to Fourier Analysis and Generalized Functions*

 Recommended books for 622:

 ◦ **L.D. Landau and E.M. Lifshitz**, *The Classical Theory of Fields*
 ◦ **J. Schwinger et al.** *Classical Electrodynamics*

- **Other useful books:**

 ◦ **C.M. Bender and S.A. Orszag**, *Advanced Mathematical Methods for Scientists and Engineers*
 ◦ **R. Courant and D. Hilbert**, *Methods of Mathematical Physics*
 ◦ **P. Dennery and A. Krzywicki**, *Mathematics for Physicists*
 ◦ **L.E. Elsgolc**, *Calculus of Variations*
 ◦ **J.D. Jackson**, *Classical Electrodynamics*
 ◦ **F.E. Low**, *Classical Field Theory*
 ◦ **P.M. Morse and H. Feshbach**, *Methods of Theoretical Physics*
 ◦ **F.W.J. Olver et al.**, *NIST Handbook of Mathematical Functions*
D.E Soper, Classical Field Theory

Exams and Grading

Midterm 622: tba
Final 622: tba

Homework will count for 20% of the grade. (This may change in the event of a GTF strike. I'll keep you posted.) Your grade will thus be mostly based on the exams, but it will be next to impossible to do well on the exams unless you have spent a lot of time and effort on the homework problems. If your performance on the final is better than on the midterm, the midterm will not count and the final will count 80%. If your performance on the midterm is better than on the final, the midterm will count for 30% of the grade and the final for 50%.

Homework:

Homework problems will be posted on this page in pdf format (see below). They will be assigned weekly on Wednesday and will be due the following Wednesday in class. I will post scans of my solutions, also in pdf format. If I forget, please prompt me.

Don't be fooled by the 20% weight given to the homework. The homework problems are an integral part of the course, and spending substantial time on the homework will be essential for understanding the material discussed in class. One can learn very little physics by just reading a book, or listening to lectures, so make sure you allow adequate time for doing the homework problems. Also, doing well on the exam will be next to impossible without a thorough understanding of the homework problems.

Note: Of course I know that the solutions to most of my homework problems can be found on the web. Find and look at them at your own peril.

Collaborating on the homework is okay, and even encouraged. You should make sure, however, that you really understand the material yourself rather than just tagging along.

Problem Sets for PHYS 622

Problem Assignment #1: 01/10/2024, due 01/17/2024
Problem Assignment #2: 01/17/2024, due 01/24/2024

last update 1/6/2024

Dietrich Belitz
Department of Physics
University of Oregon
Eugene, OR 97403
USA
dbelitz@uoregon.edu