Physics 684 Quantum Optics and Laser Physics Fall 2004

Instructor: Hailin Wang
Office: 274 Willamette; Phone: 6-4758;
Email: hailin@uoregon.edu
Office hour: Wed. and Fri. 11:00-12:00

TA: None available this term.

Supplementary text: Elements of Quantum Optics, Meystre & Sargent

References:

Optical resonance and two-level atoms, L. Allen and J.H. Eberly (Dover, 1987)
Optical coherence and quantum optics, L. Mandel and E. Wolf (Cambridge, 1995)

Grading:

Home work: 25%
Mid-term: 30%
Final: 40%
Term paper: 5%
Course topics: In this term, we will focus on the semi-classical description of light-matter interactions. After the introduction of the basic theoretical framework, we will explore a variety of fascinating optical phenomena.

I) Basic theory
1) Atom-field interactions for a two level system
 Interaction Hamiltonian
 Fermi’s golden rule
 Rotating wave approximation
 Rabi oscillation
2) Density matrix for a two-level system
 Equation of motion
 Level damping
 Bloch vectors and optical Bloch equations
3) Maxwell-Bloch equations
 Polarization and susceptibility
 Slowly varying field
 Absorption and dispersion
 Steady state solution
 Rate equation approximation
 Power broadening
 Semi-classical picture of stimulated emission and absorption

II) Special topics:
1) Semi-classical laser theory
 Population inversion and optical amplification
 The laser self-consistency equations
 Steady state amplitude and frequency
2) Coherent transient phenomena
 Photon echo
 Pulse propagation and area theorem
 Self-induced transparency
3) Atomic coherence in a three level system
 Coherent population trapping and dark states
 Electromagnetically-induced transparency
 Slow light
4) Mechanical effects of light
 Radiation pressure
 Laser cooling
 Doppler cooling limit and recoil cooling limit
 Sympathetic cooling
5) Pump-probe spectroscopy
 Spectral hole burning
 Optical stark splitting and Mollow spectrum