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O Chemical Thermodynamics

OREGON CENTER FOR
ELECTROCHEMISTRY

Consider a chemical reaction:

agA +bB < cC+dD

What criteria do we use to determine
if the reaction goes forward or
backwards?
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o,products ,
AG,an= AGf p _ AG]? reactants

Gibbs free energy can be used to calculate the
maximum reversible work that may be performed
by system at a constant temperature and pressure.

Gibbs energy is minimized when a system reaches
chemical equilibrium at constant pressure and
temperature. 2



O Chemical Thermodynamics

OREGON CENTER FOR
ELECTROCHEMISTRY

If not at standard state, then:

AG, . = AGP, + RTInQ

a, 1s the activity of product p

H Y C_P a, 1s the activity of reactant »
Hp Ay Vp P\'P Cp 0 v; is the stoichiometric number of i
0 = _ _ thestoichiometric umber o
Hr a, Ur C, r V; 1S t.he activity coef§01ent c.)f I
Hr Yr ﬁ c; 1s the concentration of i
T

¢ is the standard state concentration of i

* Activity coefficients are “fudge” factors that all for the use of
// ideal thermodynamic equations with non-ideal solutions.

/m\\\\) I.iSA * For dilute solutions, y; goes to 1
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O Chemical Thermodynamics
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Consider that the Gibbs energy can be written as a sum of enthalpy and entropy terms:

Aern — Aern o TAS’rxn

T T \ irreversible heat
maximum reversible total heat released/gained by the
work released/gained reaction

by reaction

I
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O Electrochemical Thermodynamics
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Consider the following thought experiment
Zn + 2AgCl S Zn?*+ 2Ag + 2Cl-

do chemical reaction in do electrochemical reaction in C do electrochemical reaction in
A calorimeter: B calorimeter: calorimeter, resistor in second calorimeter
e —<
Zn + 2AgCl —> M- Q
Zn?*+ 2Ag + 2CI
Zn Ag/AgCl
®e
® ® .‘ Q.
Q. = AHrxn =-233 kJ/mol Q.= AHrxn =-233 kJ/mol

TASrxn = }%im Q. =-43 kl/mol

all species at standard state, extent of reaction small AG,., = lim Qg=-190 kJ/mol

R—o0

‘<///m\\)) I-is A Q. +Q,=AHrxn =-233 kJ/mol

\\\U' 4 LIQUID SUNLIGHT ALLIANCE Example from Bard and Faulkner



O Electrochemical Thermodynamics
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Gibbs energy change is the maximum reversible work the system can do.
_ nF is the number of charges per mole of reaction,
AG — _nFEcell E.. is the voltage... charge x voltage = energy

\ —nFE = —nFEY + RTInQ

RT
AG = AG° + RTInQ / E=E°——InQ

nkF
RT log Q
— 0 _
Remember Q includes ALL species in the E=E nF ]og e
balanced reaction, including ions, solids,
e po _ 2302RT
— — o
///I ‘\\\\\ 0 O.OSZZFV :
(( LiSA ..and at298.15 K, E = E® — 22222 1og @
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O Electrochemical Thermodynamics
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O+ne =R

Consider a electrochemical

reaction: BT fivity of R
ap, < activity o
E=E°——In—=
nF  ap «<—— activity of O
RT C
= po_ 00 YRrRUR
nF  volo

RT yp _RT e
nk Yo nk CO

E=EY—

i Lsa
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O Electrochemical Thermodynamics
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RT ve| RT Cr

E =E°——In
nk Yo nk CO
E° O+ne =R
C What happened to the
EFE=F% —___1n —R “electrons” in our Nernst
\ nkF  Cp equation?

the formal potential... this depends on the identity and
concentration of all species present in solution

Lsa
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O Nernst Equation and Reference Electrodes
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In this form we actually mean:
E(vs.ref) = BV (vs. ref) — Xoin 2
VS.re = VS. re — —— 1N —
nk CO

Which is (when the reference is the hydrogen electrode):

O™ + (n/2)H, = R + nH*

RT (aH+)n aR

E =FO° _— n at standard state, ay+= ay =1.
rxn 2
nF o (a7 ag
Key point: anytime you write the Nernst equation for a “half” reaction
///”\\\ you are in fact using a short hand to represent the full reaction
‘< \\) LiSA including the reference electrode/reaction
NI LinuiD SUNLIBHT ALLIANCE



O Equilibrium and the Chemical Potential
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— Gibbs energy is minimized when a system reaches chemical
aA + bB — CC + dD equilibrium at constant pressure and temperature.

How does the Gibbs energy change with amount of a substance?

pure mixture or

. figs. from
substance - . solution Mark Lonergan
L _ &
G B
- i O
1 (amount in mol) n; (@amount in mol)
_& IG;
/ \ U= u; = mix
() LiSA " o .
W Linuip SUNLIGHT ALLIANCE
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Chemical potential

F=(0G/on;)

Mz j

=
—
1

u;j = puj +RT Ina;

/ \

(arbitrary) standard activity term
state reference

jis the species
a is the phase (e.g. metal, electrolyte, ionomer, etc.)

chemical potential increases with concentration...

although we call it a “potential” units are energy, J

11



O Chemical Reactions and u
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AGron(T, Py, ony) =Y vipi(T, Pona. ..oy

aA = bB

AG =vp (U + RT'Inag) —va(py + RT Inaa)

= vy —vapy + Rlvplnagp — RTvalnaa

" — AG’ + RT'In ZBj
\ A
Musa o



O Electrochemical potential
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—5=V2U + VU = ihSL —

When we quantify (6 G/0 nj)
for a charged particle, it is
useful to define a new quantity,
L, that partitions the “quantum

e o() mechanical” internal free
_ energy and the “classical”
S & electrostatic energy
=
(Y] (7]
IS)
fig. from —‘—qu) /-_L — M + ZQQD

Mark Lonergan

¢ =— J‘ E.dv electrochemical potential

path
///“\ \ in electrochemistry, electrochemical potential determines equilibrium
‘( )) LiSA (other sources of free energy could be included, e.g. gravitational,

\\“,’ // L0UID SUNLIGHT ALLIANCE but these are not generally important)



O Properties of the electrochemical potential
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or an uncharged species: jif' = ¢

~or any substance: ¢ = 1) + RT In af

For any pure phase at unit activity u = pi®

For electrons in a metal (2 = —1): % = p2® — Fo°

-or equilibrium of species ¢ between phases o and 3: i = [7/8

i Lsa
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Other Potentials in Electrochemistry

OREGON CENTER FOR
ELECTROCHEMISTRY

unit brief definition significance / example of use
. defines criteria for equilibrium; differences in ﬁ}?‘ drive the
electrochemical —a . . . L -
I p— TF J/mol partial molar Gibbs free energy of a given species j in phase a transport, transfer, and reactivity of both charged and uncharged
species
. . artial molar free energy of a given species j in phase a neglectin differences in u$ describe driving force for reactions between
chemical potential Th J/mol P &Y g pecies ) . P & g H ) ) . . ce -
electrostatic contributions uncharged species and the direction of diffusive transport
electric work needed to move a test charge to a specific point in space

defines direction of electron transport in metals; gradient gives

electric potential \" from a reference point (often at infinite distance) divided by the value of o . -
P ¢ P ( ) y electric field; used to calculate electric potential energy

the charge

free-energy change divided by the electron charge associated with
moving an electron (and any associated ions/solvent indicates oxidizing or reducing power of an electrode; related to
movement/rearrangement) from a reference state (often a reference the Fermi level of electrons in electrode
electrode) to the working electrode

electrode potential Ewe \"

free-energy change divided by the electron charge associated with indicates oxidizing or reducing power of electrons involved in
. . moving an electron (and any associated ions/solvent electrochemical redox equilibria; related to “Fermi level” of the
solution potential Egol \" . . . . .
movement/rearrangement) from a reference state (often a reference electrons in solution and equivalent to the solution reduction
electrode) into the bulk of a solution via a redox reaction potential
generally, the difference between the applied electrode potential and 7 - F gives the heat released, above that required by
overpotential n Y the electrode potential when in equilibrium with the target thermodynamics, per mole of electrons to drive an

electrochemical reaction electrochemical process at a given rate; F = 96485 C-mol*!

a that is, no ‘long-range’ electrostatic interactions due to uncompensated charge, as would be described by the Poisson equation in classical electrostatics. The electrostatic terms that describe
electron-nucleus and electron-electron interactions and dictate Coulombic potentials in the Schrodinger equation are included.

&/// )LiSA .

\\\U’ / LIQUID SUNLIGHT ALLIANCE



O What does a voltmeter measure?
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Voltage, but what is voltage?
o B 8 8
—__ | ~. ?
R Z I E-dl Not in this case
2 path
—/\/\- If the resistor/wire is the same material, then:
R £ _ _ B
1 _
A.ue — .ue He

— F¢® — pf + F¢P = —FA¢

</Il\ JLiSA

\\\\” LIBUID SUNLIGHT ALLIAN

16



O Changes in total free energy drive transport

C;D;
i ==\"r )1

ELECTROCHEMISTRY
2 1 . . . .
flux (mol cm s7%) gradient in electrochemical potential

&= Uy + zFp® Ui =u; +RT Inaj

The electrochemical potential is usually the proper measure of free energy in electrochemical systems,

though other terms might be added in special cases
|Zi |F

( /“ )I-|SA u; is mobility

\\\\I

17



O Changes in total free energy drive transport
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In one dimension, the gradient of ji; leads to the drift diffusion equation.

.4 Zig € — ). ¢ Zi g . dO
J@ - D@ d:}i‘ _I_ ‘Z@‘u?’cﬁg - D@ dﬂf‘ ‘Zl‘u(&c% d:}f‘
diffusion drift ]
u; is mobility E = _d_ﬁ
D; — diffusion coefficient ( cm? s 1)
u; — mobility (cm? V™' s71) |z®|F
/I\ £ — electric field (V m™) up = D; RT
// '\\ _ ¢ — electrostatic potential
‘<\\\Uf \\) LISA ANCE



O Consider the electrode potential
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e units of V

* given by the difference in [i,, per charge, in the working electrode, relative to
[l, in a second electrode

* second electrode is usually reversible electrochemical half reaction (i.e. a
reference electrode):

— (e — )
F

Ewe (vs.Ere) =

* Ee and E.. are each themselves defined relative to an arbitrary reference
(that cancel in the difference). The cell voltage is usually written E..;; =

‘ Ewe _ Ere or (Ecathode _ Eanode)

|
M Lsa
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O Summary of Key Points
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e Measurements of “potential differences” are necessarily of the total free-energy
difference. Decomposing into differences in activity, electric potential, and other
terms requires a model and assumptions.

e Transport of any species is governed by the spatial gradient in the electrochemical
potential.

e At equilibrium, the electrochemical potential of any given species must be the same
throughout the system

e For any chemical reaction, the sum of the electrochemical potentials of the reactants
must equal those of the products. Processes with very slow kinetics are typically
ignored.

/m The use of the word ‘potential’ alone should be avoided; the type of should be clear.

( )LiSA
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O Review of Key Points
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e Measurements of “potential differences” are necessarily of the total free-energy
difference. Decomposing into differences in activity, electric potential, and other
terms requires a model and assumptions.

e Transport of any species is governed by the spatial gradient in the electrochemical
potential.

e At equilibrium, the electrochemical potential of any given species must be the same
throughout the system

e For any chemical reaction, the sum of the electrochemical potentials of the reactants
must equal those of the products. Processes with very slow kinetics are typically
ignored.

/m The use of the word ‘potential’ alone should be avoided; the type of should be clear.

( )LiSA



O Equilibration at a metal/redox-electrolyte
G on solution interface

. after contact
consider 0O+ ne,, =R

metal solution 4  metal ; solution
A .
metal : : solution + Q/_
| | C
| | O
- -FO =
—_ - . uS —
> _ [ | | e -—
g F@ h :'_-_ ugn §
:51\ Ug’ . . [ym ITE -
] _ SR s e e O
a} m -
P ke
— >
position ; ] S
in — U We define i though
How do these equilibrate? He = = He there are “practically” no
///I \\\\ n electrons in the solution
‘( \) LiSA shows no surface charge initially, in reality E__, is the applied potential where this surface
NI LinuiD SUNLIBHT ALLIANCE charge is balanced by electronic charge such that the net charge is zero.
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—Ue
F

A Lsa

The solution potential

expand via definition of electrochemical potential

/ \

—S —S (0} (0)
— RT Z RT Z
nF nF nF n nF nF n

AR

RT
— E(())/R _n_Fln /a?) - (ps = Egq

e AN

Nernst equation need to account for different electrostatic potentials!

the addition of the —¢® term that depends on the electric
potential reference state and cancels when measured versus a
reference electrode at the same ¢*

\\\U," LIBUID SUNLIGHT ALLIANCE
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O Equilibration at a metal/redox-electrolyte
G on solution interface

* initial difference in [, drives charge transfer
across the interface, leading to an interfacial

after contact electric potential drop that affects ;" until it

A

metal § solution equals [i3
+  amount of charge transferred depends on
S the capacitance of the electrode
E + * small compared to the number of
e electrons in the metal and redox species
_ Y + in the electrolyte (so that the bulk
§ o ® activity and thus u for all the species is
*1/ Ccations practically unchanged)
+ = =
e e concentration of the compensating ions

given by the Poisson-Boltzmann distribution

fj for all species are constant with position

I

M Lsa

\\\U' LIBUID SUNLIGHT ALLIANCE



O Membrane (Donnan) potentials
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consider two solutions with different What happens if we connect them with a cation-selective membrane like Nafion?

concentrations of KCl
A% = uS + RTInals + F$® = uS+ +RTInal, + Fof = b,

K+
before contact B
. . ¢a_¢B=EnaK+/
solution - - solution F Ag+
T . membrane after contact membrane
Hc+ —— & : : A . .
< R solution solution solution solution
L . - —B ) ©
> DT He _ 0
(o) . : — B = ©
‘g u|g+ E : UKQ“L - - Mk+ ‘5 Ck+ 0® a e
i S | E
. . a UK"' ClCJ
+F® o Her S
position . v
membrane block ClI-
il Hok T g
‘< | \)) LiSA transport - # Ugp-- — N+
W/ LinuD SUNLIGHT ALLIANCE °



O Measuring membrane potentials
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Cell . . . .
_ How do we measure electrostatic potential changes in electrochemical cells?
cr
flar o With a voltmeter? But a voltmeter doesn’t measure electrostatic potential!?
e
(o) o° ” 3&2 Consider what you measure with two reference electrodes:
S (o) I
o ©
Extracellul g o W Intracellular a Ag /AgCl
Charg;acs:z:a?;tion + = Acro:sr:/ﬂ(;;zraane Ag/AgCI ¢ ¢B g/ &
lon Concentration Gradients
Na+t~ )
. _ K+
CcI- ) U
membrane
~Ag _Ag —s _ AgCl —srel —sre2 —s,rel —s,re2
//m\ He= =Hag T Hal- —Hagl Hel= " # [ and fe= ™" # fi-
‘< \\» LiSA The two reference electrodes make a “battery” and are not a equilibrium.
NI Liauio SUNLIGHT ALLIANCE
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O Fuel cells and batteries

/4H++ 4e+ 0,— 2H,0

ELECTROCHEMISTRY
1 9 _77Ss _— 77Pt g equil
/2“H2 M+ = Me© __Y_/

1 atm H, Nafion 1 atm O,

4H+ — -
——> t |

@/ T = Vol Yotk 1

/

+ -
2H, — 4H" + 4e /
first consider “open circuit”
/// \ negligible net current is flowing through the external circuit
‘( )) LiSA (e.g. during measurement with a high-impedance voltmeter)
NI Linuio SUNLIGHT ALLIANCE e
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)

1 atm H,

2H, — 4H" + 4¢’

Fuel cells and batteries:

g TS — 77Pt equil.
Vapay, - 5 =l S/

4H*+ 4e+ 0,—> 2H,0

Open circuit: If zero net current is

flowing does that mean (i, at the
Pt anode and cathode are the

same?

\\\U’

Nafion 1 atm O,
AH+ —
g @ P Yabheor S i
Anode:
Cathode:
He

out of equilibrium - O, and H,
cannot mix across the membrane
and react; electrons cannot
exchange

LIBUID SUNLIGHT ALLIANCE

open circuit

No.

AH* (Nafion) + 4e~ (Pt,a) = 2H,(g)

1_
=i

> — fig+ = 0kJ/mol  Why?

:ue_

0,(g) + 4H*(Nafion) + 4e~ (Pt c) = 2H,0

1, 1

—_ _g T ~
= S M0 — 770, ~ i+ = —119k]J/mol
AG
— Pt, — Pt,
.ueEC - :ueEa — TI;XH = _FEcell,oc
Ece”'oc— 1.23V

29



O Fuel cells and batteries: during operation

OREGON CENTER FOR
ELECTROCHEMISTRY 4H* + de+ O,— 2H,0
2
/

g TS — 77Pt g equil
Vapay, - 5 =l S/

| |
1 atm H, (NEYifelp 1 atm O,
4H+ ;

— > |

) /e e Vapy,o- Vaps, = Hiis
2H, — 4H" + 4¢e @

—Nafi Nafi i
,UHE ion _ .u[c;+ + RT In aHi ion + F(PNaflon

under current flow there must be gradients

. .
in i of all species that transport — electrons, What drives the flow of H'

ions, water. % IIN_aI_fion ~ F¢Nafion
H ~

What drives the interfacial electrochemical

reactions for ORR and HOR? in terms of electrostatic potentials:

_ _ n=Ap-— A(l)eq
/m\ N = Eapp — Erey (for a given reaction)

I LiSA

\\\U’, LIQUID SUNLIGHT ALLIANCE



O Electroosmotic effects and concentrated
O o, electrolytes

Transport of solvent and electrolyte ions are coupled.

Electric potential leads to solvent movement too. iontﬂux carrying diffusion of water
water
o - 9)
K: ionic conductivity (S/m) K'f K&
« ¢&: electroosmotic drag coefficient (unitless) Flux of water: —= — F V¢2 — | o+ 9 V//lo
* &,: electric potential in electrolyte (V) F
* o: dimensionless diffusion coefficient (unitless) K
* W, chemical potential of water (J/mol) Proton current: — —KV¢2 —_ F V/,{O
66 N Ohm’s Law ‘
C5/I/\|;+\6’3 Gradient in water chemical
5 Lé-\-_-/ 6;) potential can drive ion transport

<(/// LSA 31

\\\U" LIOUID SUNLIGHT ALLIANCE see Newman for complete treatment

Il\ 2"



O

OREGON CENTER FOR
ELECTROCHEMISTRY

‘<///ﬂ\\\\\‘ LiSA

|

Part Il

Electrochemical Thermodynamics and
Potentials: Double Layer Structure and
Adsorption

Prof. Shannon Boettcher
Department of Chemistry
University of Oregon

32



O

OREGON CENTER FOR

ELECTROCHEMISTRY

¢

\\\\!’

The inner Helmholtz plane (IHP) passes through the

center of the specifically adsorbed ions.
e typically anions, that can shed hydration sphere e.g. sulfate.

The outer Helmholtz plane (OHP) passes through the
center of solvated ions at the distance of their closest

approach.

A layer of orientated “low-entropy” water covers the

surface.

« if G;=¢,g/d, where C;and d, are the capacitance and
thickness of layer /, respectively, then € ,~ 6 at metals.

Double layer structure is critical in influencing electrode

kinetics, as we will see later.

U Lsa
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Double Layer Structure - Basics

: 2
| 1 diffuse layer
14" F

- solution e
- J“‘” l( (:’
| - TJJ

’
TS VA
"F‘r" 1745

-

”D‘ﬁ &v ‘
U )1

fig. from S. Ardo 33



O Interface Thermodynamics
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Consider a ideally polarizable electrode (no faradaic charge transfer)

The interface is a “phase” with finite thickness where o __ S
1

concentrations differ from bulk values. ni = N

1

AGR = 69GR dT + 3GR dP + E 3G dn R total differential of electrochemical Gibbs
9T 9P ﬁnR energy of reference phases (no interface)

—s (9GS 9GS oGS aGS total differential of Gibbs energy of
dG> = ( )dT + (313 dpP + dA |+ 2 dn; interface region

~S

change in G with interface area A dG” _ Y | surface tension
JA "

S el _

o = (@) _ (é’g_) at equilibrium T must be the same |
c?nR anls everywhere for any Species how much free energy it takes to
/m create new interface
( )) LiSA
\\\Uf LIOUID SUNLIGHT ALLIANCE Following Bard and Faulkner Ch. 13

R . .
— N define excess concentrations

34



O Gibbs adsorption isotherm
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dG’ = dGS — dGR = ydA + D i d(nd — n) = ydA + 3 w,dn?
1 i
differential “excess” free energy of interface
G’ = (-‘?—G—U) A+ E -‘ﬁy) n The Euler theorem allows one to define linear

1
homogenous function in terms of derivatives
G” = yA + X wn{ and variables.
1

Gibbs adsorption isotherm
—dy=2 T, d
1
Fi - n‘i’/A

surface excess concentration

dG” = ydA + X dn] + Ady+ X n{dp;  wmm)  Ady+ D n?dwm =0
1 1 i

total differential compare to above, then

Miusa

\\\U’, LIQUID SUNLIGHT ALLIANCE
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O Gibbs adsorption isotherm

OREGON CENTER FOR

ELECTROCHEMISTRY
Now following Schmickler and Santos for a more general form: Define a reference phase, usually the solvent,
and remove from sum in Gibbs-Duhem eqgn
~ Gibbs absorption
dy = — E ' dn?
v i Qh isotherm sol
0}

. dji; —;’ No dpi;

absolute surface excess of species

in solution bulk, Gibbs-Duhem

Z N’i d“i =0 egn. (at constant T and P) holds

(http://staff.um.edu.mt/jgril/teaching/che2372/notes/05/02/01/gibbs duhem.html)

Define “relative surface excess” with respect to
the bulk reference phase (i.e. solvent, 0):

places a compositional constraint upon any N?

. : - * LTk
changes in the electrochemical potential in a Fz — FZ — . FO
mixture I N[j

we cannot measure absolute surface excess,
//// \\\ only relative to the solvent reference
() LiSA
| 1
I LinuiD SUNLIGHT ALLIANCE
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O Gibbs adsorption isotherm

OREGON CENTER FOR
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rewrite Gibbs absorption isotherm positive charge
sol in electrode

— _Z! L dfig) = D=t dity-v — Lo dii; — I dpyy

negative charge
everything in the solution in electrode

neutral metal

Expand electrochemical potentials: v
iy g >
M=+ d,u- Mz+ — [ edﬂ-e — I M d#ﬂ«f
m m
= — i1,fz+flﬂ-i1,fz+ — Fed‘#'e — dﬂf) (3€0F1Iz+ — GUF ) Fﬂfd/uﬂ_{

(A)

T i 1T
—4 przt d#ﬂfﬁ — I ed#e —odo™ — I Md#M

0= zeol =+ —eole = — Z <j eUFj balanced by excess charge in the electrolyte
< \)) L.SA surface charge density; e_ here is fundamental charge
Wl 37
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O Gibbs adsorption isotherm
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M*+e S M

in eq. with constant ¢ in metal

(B) UM = Hprz+ T Zfe

use (A), (B) and (C) to simplify expression for differential surface tension:

dy = —0 do — ZF?; du;

|

from the electrostatic
energy terms

\

uncharged solution
species except solvent

I

<(/// I LiSA

\\\\W LIDUID SUNLIGHT ALLIANCE

decompose electrochemical potential of solution species

@ pf = pi+20°

This is the electrocapillary equation.



O G|bbS adSOrpt|On |SOtherm Divergence due to increase of the

OREGON CENTEREOK work function by anion adsorption.
o S
dy = —o de) — E Fi d,lL,i
. 400
1
Notice there is s
af\/ a maximum in Z 3501
g = — — surface energy T
0@ 1 with potential.
! Why? 300 L can in principle 7\ KBr
. . measure surface Kl
Lippmann Equation excess with conc.
. dependenlce | .
* At the potential of zero charge (PZC), o = 0 and there is 10 05 0 05
no net charge on the metal. o/V

* Moving from the PZC, charge accumulates and tends

: . Interfacial tension of a mercury electrode at
to repel, counteracting surface tension Y

0.1 M electrolyte.

”\\ D.C. Grahame, Chem. Revs. 41 (1947) 441

<(/// I LiSA .

\\\U' LIBUID SUNLIGHT ALLIANCE



O Interfacial differential capacitance
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02 y The differential capacitance of an interface is given by the
5 — —( second derivative of the interface tension, because:
9J0 "
dO' i.e. the capacitance measures how much
—=_ charge is stored as the electrode potential is
dE changed by modulating Ad

This is extremely useful, because we can measure interfacial capacitance
directly using impedance spectroscopy

I

M Lsa

\\\U" LIDUID SUNLIGHT ALLIANCE
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Interfacial differential capacitance
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T T T T T T T T T T T T higher work function = more electronegative = more positive PZC
36 : : 14:[][] T T T
32 (— — A
| 0.1 M | PR
28 — NaF ] 0.50 + - - il
B ] @Y -7 Au(t10).
o 24 _ — > e P ~ ,”
£ - _ ~ P
2 _ S 0.00 T+ o 27 .
S 0.01 M ] X LR
16 |— — Bi - ((\Q’
o Ag(1111x6 3
| _ ol ) .~ |
1o |- 0.001 M | .50 o n &b .
— — ® e Ga . Ag(100)
g 2
8- — - cd Ag(110)
- L
— rd L
B -1.00 A : ;
4 PZC - 3.50 4.00 4.50 5.00 5.50
S T O A A B B | | ®/eV | o
0.8 04 0 -04 08 -12 -16 S. Trasatti, Advances in Electrochemistry and Electrochemical Engineering
E-E, (V)

D. C. Grahame, Chem. Rev., 41, 441 (1947) * A minimum in Cd exists at the PZC.

///I \\\\ L « C,increases with salt concentration at all potentials, and the "dip"
() LiISA

near the pzc disappears.
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International Edition: DOI: 10.1002/anie.201911929
Metal-Electrolyte Interface German Edition:  DOI: 10.1002/ange.201911929
OREGON CENTER FOR
ELECTROCHEMISTRY .
Double Layer at the Pt(111)-A queous Electrolyte Interface: Potential

of Zero Charge and Anomalous Gouy—Chapman Screening
Kasinath Ojha, Nakkiran Arulmozhi, Diana Aranzales, and Marc T. M. Koper*
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O Models of the Electrical Double Layer

OREGON CENTER FOR
ELECTROCHEMISTRY

* Helmholtz ©,
@
. 880 surface charge on a parallel 8
o V plate capacitor
d ®
O,
Jdo —C _ €&y ©)
v 4 g ®
@
predicts constant C,, which is not G_)
‘ what is observed experimentally. @
MLsa :
I LinuiD SUNLIGHT ALLIANCE
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Gouy-Chapman theory and Boltzmann factors

OREGON CENTER FOR
ELECTROCHEMISTRY

lamina can be regarded as energy states with
equivalent degeneracies — concentrations related
by Boltzmann factor

Laminae dx ) ) |
RN bulk ion bulk” electrostatic
concentration potential
N,
[ Reference lamina n = n() ex <j ¢
® o 8o & o o in bulk solution 1 1 p éT
charge density
| - P(x) = 2 n,z;e e is fundamental charge
Electrode | Electrolyte .

—ziep
= 2 niz;e exp T

M Lsa
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Poisson-Boltzmann Equation

2
(x) = —gg d ﬁb Poisson equation: integral of charge density is electric field,
p | 0 dxz integral of electric field is electric potential

dx?
apply for 1:1
d2¢, 1 4 [dd 2 electrolyte;
note — = 5 35 Tr e.g. NaCl or
CaSO,
thus: do 2 e 0 —zed integrate d¢ zied
d(a) = —?02 niZi eXp| —r A iy (dx) Zn exp( T

(/m )LiSA

\\\U' LIQUID SUNLIGHT ALLIANCE from Bard and Faulkner
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separate and integrate

[\
o sinh(zep/2€T)
resulting in

—KX

tanh(ze/4£T)
tanh(zegp/44T)

2!10 1/2
= ( SSOéT)

k = (3.29 X 107)zC*12

</Il\ JLiSA

\\\\” LIBUID SUNLIGHT ALLIANC

84Tn°\ 2 fxd
— 880 0 X

k=1/L,

Ly = Debye screening
length

from Bard and Faulkner

/8o

. —_— —KX
1.0 and: d) — (f)o e
\Y
\
\
N
08} N C*(M)? 1/k(A)
Y
\\ 1 3.0
AN 107} 9.6
0.6 |- \\ 1072 30.4
s, $g=10mV 1073 96.2
Limiting expontential form) —4
S 10 304
~
04 \\~ “For a 1:1 electrolyte at 25°C in water.
do =100 mV \'\\ bC* = n%/N, where N, is Avogadro’s
S ~ number.
0.2
0o = 1000 mV
0.0 ' '
0 10 20

Gouy-Chapman potential distribution

if: (zecho/44T) < 0.5

then: tanh (zed/44T) =~ zep/44T
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Capacitance from Gouy-Chapman

OREGON CENTER FOR
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0N 172
Electrode surface — dO—M _ 2Z € 880”’ Ze(bo
G = e T cosh ST

Gaussian enclosure bo Any problems with this?

[T T T T T T T T T T T TTT]

36 i

500 — = —

______ 2 \oam i

28 — NaF —

End surface . n

Area = A 400 o 24 -

@=0 E - _

Surface against electrode dx L; 20: 0w 001M:

1.0 M " el 7]

o_ 300 — B 0.001 M

& 12 |- _

a¢ ds : T -

9= %%\ gy " 200 0.1 M 4t -

"irx=l} end ol 1 1 Lt by ]

surface 08 04 0 -04 —08 -12 -1.6
E-E, (V)
0.01 M
M= — S = 12 Z ¢'{] 100 = How is this different than
= (SéTssgn )< sinh .
24T experiment?
0 i I | | | |
150 100 50 0 -50 —-100 -150
\) E—E,mV

) LISA 47
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* lons in Gouy-Chapman
are point charges with
no restriction on
concentration

* unrealistic at high ion
density
e With no physical size,
no distance of closest
ion approach

* no limit torise in
differential capacitance

<(/// “\\\), LiSA
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Stern’s Modification

Helmholtz parallel plate capacitor
de
$bo= by — (_) X
140 — | dx X=X

__+—Linear profile to x,

120
)

100 —

$ 80 —

> Gouy-Chapman / Poisson Boltzmann
s 60— 5 tanh(zed/4€T) _—k(x—xy)
& tanh(ze¢,/44T)
3
40— 8

non-specific 20 Diffuse layer

adsorption

20 30 40 50

from Bard and Faulkner 48
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Capacitance in the Gouy-Chapman-Stern

(GCS) mode

OREGON CENTER FOR
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I
Cy : Cp
| )
I
|
1_1 ., 1
G G G

</Il\ JLiSA
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S

High electrolyte

minima atE—-E,, =0

Low electrolyte
concentration

Cd’ 11 F/ sz

|
(+) 0 (=)
E-E, (V)

Closer to experimental data. What else could be happening?

from Bard and Faulkner
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\\\\H

PZC depends on concentration

Concentration,

Electrolyte M

E,,
V vs. NCE?

NaF 1.0
0.1
0.01
0.001
NaCl 1.0
0.3
0.1
KBr 1.0
0.1
0.01
KI 1.0
0.1
0.01
0.001

—0.472

—0472 ho specific
—0480  adsorption
—0.482

~0.556 .
_os04 | Specific

—0.505 | adsorption
—0.65
—0.58
~0.54
~0.82
~0.72
—0.66
-0.59

“From D. C. Grahame, Chem. Rev., 41,
YNCE = normal calomel electrode.

M Lsa

LIBUID SUNLIGHT ALLIANCE

441 (1947).

from Bard and Faulkner

Specific adsorption and the PZC

15 —

10 |

Spe*]cific?IIy |
absorbed Br must
-5 -be compensate

Z,‘)UFJ'{ He0)? HC/CmE

by K*
—10 -
-15 | -
—20 —
25 @ -

15| 10 5 0o -5 -10 -15

d(_FFBI‘“(HZO))/dO-M >1
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O Adsorption phenomena and isotherms
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Langmuir Isotherm

S = kInW Wisnumber of ways of selecting M out of N sites

N'!
F=Me,q — kT In OF v
Helmholtz free energy adsorption t+ ,
(constant V) energy entropy ¢ = M/N is the coverage
C
lsol = o + KT In — ideal solution
Inn! ~ nlnn — n for large n Co
at equilibrium (electro)chemical potentials in adsorbed
F=Meq+ |Mln % + (N —=M)n N—-M layer and electrolyte must be the same
? N N
M are the filled sites 0 _ ¢ exp Hsol — Had
«/// \\\» L N are the total sites 1—60 ¢ kT
) LiSA
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Langmuir adsorption ignores interactions between adsorbates.

Adsorption phenomena and isotherms

Frumpkin isotherms

Had = #g,d + 0

Frumpkin: ./Aﬁﬂ,__ .
/ 08 B ;’// //C//’
= [ =4 / f/re el
positive if repel, negative if attract | attract! / P
I /7 \/ 1
© | ika
0.4} I ‘s
9 C Hsol — Had —qgb i /:{/ .
—— = — exp e [ Langmuir
1—60 ¢ kT L (no interaction)
jﬁ
00 1 1 1 1 1 1 1
—4 -2 0 2 4
In(y)

g =y/RT

U LSA
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O Why are these concepts important?

OREGON CENTER FOR
ELECTROCHEMISTRY

e Changes in V¢ from equilibrium are
responsible for affecting electrochemical
reaction thermodynamics that drive ion and
electron transfer

* In a mean field picture, the location of
electroactive species in the double affects
the driving force for charge transfer

* New ideas in electrocatalysis involve
situations where mean-field approach breaks
down

Miusa
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140

120

100

80

P Linear profile to x,

* How close doions
approach surface?

9, =100 mV * |sion transfer or
electron transfer
rate limiting?

 What fraction of the

=
£ applied potential
60— & affects the transition
5 state energy?
e >

20

Diffuse layer
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