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ABSTRACT

A back to the future approach to climate change refines Neogene records of paleoclimatic cooling and drying as
future climate states for a warming world. Near Alcoota station in central Australia is a late Miocene fossil
mammal site for Alcoota (10 Ma) and Ongeva (8 Ma) local faunas. The Alcoota fauna includes the largest known
land bird (Dromornis stirtoni) and early diprotodontid (Kolopsis torus), but the geologically younger Ongeva fauna
has a larger diprotodontid (Zygomaturus gilli). These faunas are evolutionary predecessors of Australian
Pleistocene megafauna. Calcareous paleosols recorded a marked turn toward aridity compared with underlying
thick lateritic duricrusts which lack fossils. Laterites of likely middle Miocene age are evidence of wet
(> 1100 mm mean annual precipitation) tropical (> 17 °C mean annual temperature) paleoclimates, but these
were deeply eroded and redeposited by the time of the late Miocene mammals. A succession of 19 paleosols of 5
pedotypes were recognized in the 19 m thick section, with shallow calcareous nodule (Bk) horizons as evidence
of mean annual precipitation ranges from 100 to 400 mm, and mean annual range of precipitation of 50 mm,
very similar to the modern climate of Alcoota (296 mm precipitation with 56 mm difference between wet and
dry month). This was neither a rainforest nor monsoonal paleoclimate, and vegetation inferred from paleosols
was open woodland and gallery woodland similar to that of today. Central Australia was not covered by
monsoon rainforest during the late Miocene and its paleoclimatic history of Neogene desertification matches

well that of other parts of the world.

1. Introduction

Neogene paleoclimate records may be guides to climate change
expected with increased carbon dioxide in the atmosphere, because the
future will reverse Neogene cooling and drying now known from a
variety of detailed proxies (Breecker et al., 2010; Beerling and Royer,
2011). Thus climate and vegetation of the future can be predicted by
reconstructing plants, animals and soils of the past formed at times of
known atmospheric carbon dioxide concentration (Retallack et al.,
2018a). Estimates of 612 + 24 ppm atmospheric carbon dioxide for
the middle Miocene are of special interest because comparable with
predicted carbon dioxide by the year 2100 with current emission sce-
narios (Retallack et al., 2016). One difficulty for predicting Australian
future climate in this way is debate whether Miocene monsoon rain
forest was widespread in central Australia (Archer et al., 1994;
Travouillon et al., 2009) or limited to northern Australia (Megirian
et al., 2004; Herold et al., 2011). Paleosols are useful to such a task
because rainforest soils are thick lateritic or bauxitic duricrusts
(Retallack, 2010), and aridity and monsoonal seasonality is reflected in
patterns of pedogenic carbonate nodules (Retallack, 2005). This study
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addresses paleoclimate and vegetation changes for two successive
mammal assemblages in the late Miocene, Waite Formation near Al-
coota, Northern Territory, Australia (Woodburne, 1967; Megirian et al.,
1996; Murray and Vickers-Rich, 2004). These can be added to other
records of Australian Neogene paleoclimate (Metzger and Retallack,
2010) for comparison with paleoclimatic records from paleosols in
other parts of the world (Retallack, 1991a, 2007; Retallack et al., 2016,
2018a).

2. Geological background

The Alcoota local fauna from 150 km northeast of Alice Springs,
central Australia (Fig. 1), has at least 25 species of vertebrates including
the largest known land bird (Dromornis stirtoni) and early diprotodontid
(Kolopsis torus: Megirian et al., 1996; Murray and Vickers-Rich, 2004)
from a quarry at the base of our measured section (Figs. 2C, 3). A se-
parate fauna of 6 vertebrate species including the large diprotodontid
(Zygomaturus gilli: Megirian et al., 1996, 2010) were found at 9.5m in
our measured section (Fig. 3). The Alcoota local fauna is envisaged as a
clayey waterhole which attracted animals during drought (Murray and
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Fig. 1. Study area and geological map of Alcoota fossil beds, modified after Woodburne (1967).

Vickers-Rich, 2004), but the Ongeva local fauna is in sandy alluvial
deposits (Megirian et al., 1996). The age of the Alcoota and Ongeva
local faunas has been estimated between 5 and 12Ma by biostrati-
graphic correlation of the Waitean Australian Land Mammal Age with
comparable faunas in Victoria, where they are constrained by radio-
metric ages (Megirian et al., 2010). These lacustrine and fluvial deposits
are the Waite Formation, which fills depressions in 10 m thick laterite
above 14 m of saprolite (Woodburne, 1967) developed on gneiss of the
Paleoproterozoic (> 1870 Ma), Narwietooma Metamorphics (Shaw and
Warren, 1975; Rohde, 2005). The age of the laterite is constrained by
formation on late Oligocene, Tug Member of the Hale Formation in the
Hale Basin 40 km south of Alcoota (Senior et al., 1994). However, K-Ar
and *°Ar/*°Ar dating of manganese oxides in the Groot Eylandt laterite
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of Northern Territory shows that laterites mostly formed at 16, 26 and
29 Ma, with lesser peaks at 12, 17 and 42 Ma (Dammer et al., 1996).
Middle Miocene laterite formation is most likely, because it was a
global phenomenon, when laterites formed as far north as Portland,
Oregon, and as far south as Sydney, Australia (Retallack, 2010).

3. Materials and methods

A geological section was measured from the main fossil quarry
(Figs. 1-2) to the top of nearby Cowpat Hill (22.8617°S, 134.4214°E,
617 m elevation), 5.5 km southwest of Alcoota homestead, northeast of
Alice Springs, central Australia. The present-day climate in this area has
hot dry summer and cold winter. Paleosols were identified in the field
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Fig. 2. Field images of the measured section: (A) overview of Cowpat Hill; (B) quarry for Ongeva local fauna in hill; (C) main quarry for Alcoota local fauna at base of

section.

mainly based on root traces, soil horizons and soil structures (Fig. 3)
and individual pedotypes were sampled for geochemical analysis and
micromorphology in thin section (Fig. 4). Depth to calcareous nodules,
thickness of paleosol with calcareous nodules, and nodule diameter
were recorded because of their paleoenvironmental implications
(Retallack, 2005). Paleosol development (weak, moderate, strong) was
estimated from the degree to which sedimentary features were ob-
scured by pedogenic features (Retallack, 2001). Calcareousness (weak,
moderate, strong) was estimated by relative reaction with dilute
(0.1 mol) HCl. Hue was recorded using a Munsell Color Chart. Petro-
graphic thin sections were ground in kerosene to prevent clay
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expansion (Tate and Retallack, 1995). Each thin section was point
counted (500 points) for grain size and mineral content using a Swift
automated stage and Hacker counting box. X-ray diffraction traces were
made under Cu-Ni radiation using a Rigaku goniometer in the Depart-
ment of Earth Sciences, University of Oregon, and custom Fortran code
for migration to an Excel spreadsheet. Major elements were analyzed
using X-ray fluorescence by ALS Chemex of Vancouver, BC, against
CANMET standard SDMS2 (British Columbia granodioritic stream
sand). Soil-forming chemical reactions evaluated by molar ratios of
major elements (Retallack, 1991a). For example, molar ratio of Na,O/
K,O is an indication of salinization, (CaO + MgO)/Al,03; of



X. Mao, G. Retallack

grain size

M -

c,o"ic}'z’?c,\\'l‘ sand | gravel |
Wwhite (5Y8/12
light gray 8Y7/2i
e ole o o

Sk T

5
i/

lithology
M. ——
9

—_

I122cm

I122¢em

I 28 cm

17 I21cm

I16cm

I 24 cm

[{e]

o

I 29cm
I 24cm

~

e— e E e E = |

ARLPENTYE L
27 em diameter 4 cm

ARLPENTYE
[ 25em diameter 3 cm

ARLPENTYE
diameter 2 cm

146

ARLPENTYE
230M Giameter 2 om -

ARLPENTYE

gngega LF(ca. 8 Ma) ULYE

a

@

9 ®

°M  diameter 2 cm - b e

cm < Pl

L &)}

p @

e 3

AHELHE .

104 N I160md|ameter1v3cm c&in
26cm P =)

I I 18 cmdlameler 32cm g ) []?l

114 ey o 231inémdiameter 25cm Iji: §
= I 11(§m diameter 1.8 cm < o
T13cm o

S ate{ &
»

Py

o

@

~N

o

AHELHE
21 cm diameter 3 cm

Pisolites dusky red
(2.5YR3/2) in white
(2.5YR8/1) matrix

diameter 5 cm
w

ba =4
20°¢m carbonate bench I
om
1oy diameter 4 cm <
112116Cg1m diameter 3 cm

Palaeogeography, Palaeoclimatology, Palaeoecology 514 (2019) 292-304

development calcification hue
weak strong we?k str9ng 10\|(R 10.R
1 1

VoTTY

rann I Y

6
f |conglomerate KEY
Jsandstone — planar bedding C S cal((:‘arleous
siltstone \> , trough cross nodues
) e b%ddmg “o pisolites
Ehmestone W drab-haloed root traces o sz
aray color =G fossil bones “Z = pebble imbrication
‘:l red color paleocurrent vector mean from pebble imbrication
46
no outcrop 4 m
z ARLKENYE p
125 CM upto3cem [
S <2\ I16em ‘:‘
1 ULYE b
¢ p
p
Alcoota LF (ca. 10 Ma) 4
0 T . : :

Fig. 3. Composite geological section of Cowpat Hill. Pedotype names are to the left of the development boxes (black rectangular boxes), based on the soil maturity
(Retallack, 2001). Calcification as a guide to aridity is based on field reaction with dilute HCI (Retallack, 2001). Hue as a guide to waterlogging is based on Munsell
Color Chart. Palaeocurrent direction from northwest to southeast at 16 m was obtained by calculating frequency of pebble dip angles in the imbrication structure.

calcification, Al;03/SiO; of clayeyness, Al,O3/(CaO + MgO + Na,O +
K,0) of base loss, Ba/Sr of leaching, FeO/Fe,O3 of gleization. Bulk
density was measured by the clod method; comparing weight paraffin-
coated and uncoated of 10-20 g rock samples in both air and water
(Retallack, 1997). All petrographic and chemical data are tabulated in
Supplementary materials online.

Soil forming processes were modeled by computing mass transfer of
elements (Brimhall et al., 1992) versus volume change (called strain ¢;

w in mole fraction) and mass change (mass transfer z;, in mole fraction)
compared with parent materials (defined as O strain and 0 mass
transfer), the less weathered materials at the bottom of the observed
profile. The relevant equations of strain ¢; ,, and mass transfer z;,, are
below:

_ pp Cip

PW ci,w

Ei,w

(€8]
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¢
= M(si,w +1) -1

Tjw

PoCip 2)
where p is bulk density in g/cm?, ¢ is element concentration in wt%, i is
immobile element (Ti used here), j is mobile element, p is parent ma-
terial, w is weathered materials. Choice of parent material is critical to
this kind of tau analysis, and our choice of lower parts of the profiles is
supported by comparable Al,03/SiO, ratios and high clay content
throughout the profiles (Fig. 4).

4. Paleosol recognition

Root traces were conspicuous guides to paleosols near Alcoota, and
consisted of drab-haloed root traces and also calcareous rhizoconcre-
tions (Fig. 3). Most of the paleosols had calcareous Bk horizons of
pedogenic carbonate nodules ranging from 1 to 5cm diameter, but
some had a solid bench of carbonate, and others were thin and weakly
developed. There also were beds of lateritic pisolites, but in a calcar-
eous matrix, indicating that they were redeposited as pedoliths, rather
than in place lateritic profiles (Retallack, 2010). These pisolitic gravels,
and other horizons of conglomerate with gneiss and vein-quartz pebbles
are interbedded with massive red paleosols.
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Paleosols recognized in the field were confirmed by point counting
thin sections and a variety of molecular weathering ratios (Fig. 4).
Sharp changes of grain size and mineral composition were found be-
tween sediment and paleosol in the profiles, but transitional changes
within paleosols, consistent with field observations. Vertical distribu-
tions of calcite correspond well with Bk horizons, confirming calcifi-
cation as the main soil-forming process (Retallack, 2001). There are
subtle changes in clay content, mainly greatest toward the surface, that
reveal little differentiation of clayey subsurface (argillic) horizons.
There is no chemical indication of soda enrichment (salinization),
which sometimes accompanies calcification (Retallack et al., 2018b).
Alumina/silica, alumina/bases, and barium/strontium ratios are all
higher than expected for calcareous desert soils (Retallack et al., 2003;
Retallack, 2012b). These anomalies are evidence of parent material
derived from pisolitic laterite and deeply weathered saprolite like that
underlying the Waite Formation (Woodburne, 1967; Megirian et al.,
1996).

Thin sections also reveal little remnant sedimentary structure and
porphyroskelic, mosepic to isotic soil fabrics (Supplementary Table S1).
Some thin sections show carbonate cementation with spar-filled root
traces and replacive micritic nodules (Fig. 5A). Other thin sections show
sand-size grains floating in clayey matrix, and sometimes grain
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Fig. 5. Petrographic thin sections of paleosols (A) and parent materials (B). (A)
is from Bk horizon of Arlkenye pedotype (R5380), characteristic of pedogenic
calcite (micrite and sparry calcite) and abundant and stress-oriented clay (red).
(B) is from C horizon of Ate pedotype (R5365), characteristic of eroded rock
fragments, sand-sized quartz and feldspars. Both are under cross nicols. Both
bars represent 2 mm. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

fragmentation and dissolution of labile grains (Fig. 5B).

A more sophisticated demonstration of soil formation is tau ana-
lysis. Soil development can be distinguished from sediment accumula-
tion by tau analysis of mass and volume change, because both are ne-
gative in soil but positive in sediment. Only three pedotypes had parent
material samples adequate to this analysis. As seen in Fig. 6, all three
paleosols are largely within the collapse-and-loss quadrant, though
some elements (e.g. Mg, Na, Al, Fe*") have positive mass transfer,
suggesting pedogenic enrichment.

5. Paleosol diagenesis

Soil formation is a form of early diagenesis, or alteration after de-
position, but additional alteration after burial requires assessment for
interpretation of paleosols. Three common burial alterations are evi-
dent in paleosols of Alcoota: burial decomposition of organic matter in
A horizons, burial gleization of remnant organic matter in roots, and
dehydration of ferric hydroxides to hematite (Retallack, 1991b). This
would have changed colors to lighter gray in surface horizons and red
rather than brown in matrix, and also left prominent green root haloes
that were not in the original soil. The illite peaks at 8.9 26 on the X-ray
diffractogram (Fig. 7) are broad and low, like pedogenic rather than
metamorphic clays. Metamorphic clays have a Weaver index (height

Palaeogeography, Palaeoclimatology, Palaeoecology 514 (2019) 292-304

above background at 10 A/height above background at 10.5 A) > 2.3,
but Weaver indices for our samples are 1.5, 2.0, and 2.1 respectively for
specimens R5366, R5377, and R5383. Metamorphic clays have a Kiibler
index (260 width at half height of 10A peak) < 0.42, but our samples
have Kiibler indices 0.7, 1.1 and 0.8 respectively. Nor is there any
evident potash enrichment (Fig. 6), often observed with burial illitiza-
tion (Novoselov and de Souza Filho, 2015). Burial compaction can be
corrected using standard curves (Sheldon and Retallack, 2001), but
compaction effects for only 19 m of burial are insignificant, especially
when offset by pervasive cementation with hematite and calcite.

6. Paleosol classification and interpretation

Many successive paleosols were identical in profile form so that the
19 successive profiles were classified into 5 distinct pedotypes named
using Arrernte language spoken in northern and central Australia
(Green, 1994; Henderson and Dobson, 1994). Table 1 summarizes di-
agnostic features and classification of the five pedotypes in classifica-
tions of US soil taxonomy (Soil Survey Staff, 2014), the old Australian
classification (Stace et al., 1968), and the FAO soil map of the world
(FAO, 1974). The paleosols are identified as Calcids rather than Argids
(of Soil Survey Staff, 2014), because the clay is kaolinitic and inherited
as sedimentary parent material, rather than pedogenic. The classifica-
tion is non-genetic, but can be used to identify comparable modern
soilscapes. The ancient soilscape for both the Alcoota and Ongeva local
fauna levels was dominated by Calcic Xerosols (Xk) with minor Eutric
Fluvisols (Je) and Haplic Phaeozems (Hh). The most similar modern
soilscape in central Australia is map unit Xk46-2ab with associated Xh
and Hh around Lake Idamea, near Toko in southwestern Queensland.
These modern soils developed on alluvium of the Georgina River, mixed
with pisolitic laterite from residual ridges, under mulga (Acacia aneura)
shrub steppe (FAO, 1978). Modern climate near Toko is 216 mm mean
annual precipitation, 40 mm mean annual range of precipitation, and
31.8 °C mean annual temperature (Bureau of Meteorology, 2018).

Table 2 outlines soil-forming factors inferred for each pedotype. The
role of paleotopography, for example, can be inferred from Munsell hue
and depth of penetration of root traces. Drab hue is evidence of wa-
terlogging but red hematite is evidence of freely drained paleosols
(Lindbo et al., 2010). Roots respire, and will not penetrate anoxic wa-
terlogged ground (Retallack, 1997). Ulye paleosols with gray color,
weak granular structure, limited root penetration, and sometimes also
tabular carbonate were probably waterlogged soils of permanent wa-
terhole margins or streamsides. The other pedotypes have deeply pe-
netrating roots as well as pedogenic carbonate from soil that dried out
at least seasonally (Breecker and Retallack, 2014). Drab-haloed root
traces in many of the paleosols are vertical and deeply reaching, but are
considered to have formed by burial gleization after subsidence of or-
ganic matter below water table for use by anaerobic bacteria (Retallack,
1991b). This mechanism implies that the well-drained paleosols were
part of a subsiding floodplain of low relief. One bed of gravel at 16 m in
the measured section (Fig. 3) shows prominent pebble imbrication. The
downstream (uptilted) dip and long orientation of 56 of these pebbles
was measured with a Brunton compass to derive a vector mean current
flow of 146°, which is orthogonal to the flow direction of modern Waite
Creek. This reversal of paleocurrents also affected the Sandover River
and may have been due to Pliocene uplift of the MacDonnell Ranges to
the south (Senior et al., 1994). Upland landscape reconstructions
(Figs. 8-9) are based on connecting currently dissected remnants of the
thick laterite underlying the Waite Formation, but retaining modern
hills of pre-Miocene rocks.

Parent materials of these paleosols are deeply weathered clays and
pisolites redeposited from local laterites, in stark contrast with the
shallow calcareous nodules and calcite cements to pisolitic conglom-
erates (Fig. 3). Content of clay exceeds 50% in all paleosol profiles
(Fig. 4), although they appear sandy to conglomeratic in the field. This
discrepancy may be due to pisolites and cements (Fig. 5A), and
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scattered sand-sized grains (Fig. 5B) visible in thin section. There is very
little silt in these samples, unlike calcareous paleosols of loess
(Retallack et al., 2003; Retallack, 2012a). Moderately and weakly de-
veloped paleosols are inconsistent with the presence of deeply weath-
ered materials and structures. Red pisolites like those at 7-9m are
usually formed under intense weathering conditions of at least
1100 mm mean annual precipitation and 17 °C mean annual tempera-
ture (Retallack, 2010), whereas calcareous soils form under < 800 mm
mean annual precipitation (Retallack, 2005). Also, the dominant clay
mineral of kaolinite (Fig. 7) represents intense weathering (Retallack,
2010). The deeply weathered sedimentary parent materials derive from
erosion of underlying Tertiary laterite nearby (Woodburne, 1967).

Time for formation of calcareous paleosols can be estimated from
the diameter of nodules which increase with duration of soil formation
(Retallack, 2005). This relationship has been calibrated by radiometric
dating of carbonate nodules to derive a relationship between soil age (A
in kyrs) and nodule size (S cm; with R* = 0.57, S.E. = * 1.8k.y.), as
follows

A =3.92.8034 3

The estimated time duration for calcareous soils is shown in Table 2
and Table 3, whereas the time duration for non-calcareous soils such as
Ate and Ulye pedotypes is approximately 100 years or less due to their
very weak development. The short time of formation of the Ulye
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pedotype is evidence of high rate of deposition (Retallack, 1984) for
burial of late Miocene mammals.

7. Vegetation reconstruction

Depth to carbonate in soils is a productivity proxy, reflecting not
only mean annual precipitation (Retallack, 2005) and respired soil CO,
(Breecker and Retallack, 2014), but the height of trees (Retallack,
2012b). This relationship was different for pteridophytic trees of the
Devonian (Retallack and Huang, 2011), and for mesophytic deciduous
trees of the northern hemisphere, and the relationship established for
evergreen sclerophyll vegetation of Australia was used here (Retallack,
2012b). Most pedotypes in the Waite Formation are Aridisols with
calcareous nodules at depth < 30 cm, found under desert shrubland
whose height (H, in m) is related to depth (D, in cm) of Bk horizon by
the following relationship.

H =12.39InD — 35.74, with R = 091, S. E. =+2.3 m 4)

The reconstructed height of these desert shrublands (Table 3) was
generally < 8 m, much lower than typical rainforest (Adam, 1992), and
comparable with vegetation around Alcoota today (Carnahan and
Deveson, 1990).

Deeply penetrating contorted roots are evidence of woody plants,
rather than of grasses or succulents (Retallack, 2001). Paleosol red color

kaolinite

—RS5366
R5377
—R5383

Fig. 7. X-ray diffraction curves of selected samples. Beside quartz, the three samples are dominated by kaolinite with minor illite. R5366 and R5377 are from A

horizon of Ulye pedotype. R5383 is from A horizon of Arlpentye pedotype.
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Fig. 8. Reconstruction of Alcoota local fauna level of Waite Formation (ca. 10 Ma).

and sandy to gravelly texture is evidence of vegetation of well drained
floodplains and riparian zones (Lindbo et al., 2010). Two exceptions are
the gray and weakly developed Ulye pedotype, with sparse and shallow
root traces above bone bearing sands and gravels. These paleosols
contain both the Alcoota and Ongeva local faunas, considered to have
accumulated in droughts because of waterhole tethering of animals
(Murray and Vickers-Rich, 2004). Common trees in waterlogged de-
pressions of Northern Territory today with soils like Ulye pedotype
(Fig. 8) are paperbarks (Melaleuca leucadendra and M. argentea; O'Grady
et al., 2006). Common trees of outback Australian gravelly river mar-
gins like Arlpentye pedotype (Fig. 9) today are river red gum (Eu-
calyptus camaldulensis: Gibson et al., 1994) and ghost gum (Corymbia
bella: O'Grady et al., 2006) (Fig. 9). Common on lateritic residual soils
such as Ahelhe pedotype (Fig. 9) is mulga (Acacia aneura: Dawson and
Ahern, 1973; Miller et al., 2002; Bowman et al., 2008).

The Miocene faunas of Alcoota and Ongeva local faunas include
kangaroos, but no grazers (Murray and Vickers-Rich, 2004; Retallack,
2012b), so grasses were probably uncommon. In contrast with desert
vegetation and soils similar to modern from some 5-12 Ma at Alcoota

300

are laterites underling the Waite Formation, probably 12-16 Ma in age,
like other laterites of Northern Territory (Dammer et al., 1996). Such
deeply weathered profiles are produced by wet (> 1100 mm mean
annual precipitation) tropical (> 17 °C mean annual temperature) pa-
leoclimates under rainforest. A modern analog for such forests may be
closed monsoon vine forests of Holmes Jungle, Northern Territory
(Murray and Vickers-Rich, 2004). Rain forests more like those creating
lateritic profiles elsewhere in the world (Retallack, 2010) are better
known in northeast Que.ensland (Carnahan and Deveson, 1990). Thus
under high CO,, and warmer and wetter paleoclimate of the middle
Miocene rainforests may have migrated as far south as Alcoota. Such
Neogene migrations have been thought to explain relict cabbage palms
(Livistona mariae) in Palm Valley, western Macdonnell Ranges (latitude
24°S), Northern Territory (Wischusen et al., 2004). However, these
particular palms may have been planted between 7 and 31ka by
aboriginals from the Roper River at 14°S or Gregory River at 18°S to the
north and east, as revealed by DNA similarities (Kondo et al., 2012) and
aboriginal legend (Bowman et al., 2015). Nevertheless the wider dis-
tribution of tropical cabbage palms (Livistona australis) as far south as
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Fig. 9. Reconstruction of Ongeva local fauna level of Waite Formation (ca. 8 Ma).

Table 3

Paleoclimate, soil duration and tree height for Miocene paleosols of Alcoota, Northern Territory.
Pedotype Depth (m) Age (Ka) Depth to Bk Bk thickness Nodule size MAP ( = 147mm) MARP Time of formation Tree height

(cm) (cm) (cm) (+ 22mm) (+1.8ka) (*x2.3m)

Arlpentye 18.8 5.9 27 22 4 302 311 6.3 5.1
Arlpentye 18.2 6.1 25 22 3 290 31.1 5.7 4.1
Arlpentye 17.2 6.3 28 21 2 308 30.3 5.0 5.5
Arlpentye 15.7 6.6 23 16 3 279 26.3 5.7 3.1
Arlpentye 13.9 7.0 27 25 2 302 33.5 5.0 5.1
Ahelhe 12.5 7.3 32 16 1.3 330 26.3 4.3 7.2
Arlkenye 12 7.4 26 18 3.2 296 27.9 5.8 4.6
Arlkenye 11.4 7.6 23 14 2.5 279 24.8 5.4 3.1
Arlkenye  10.8 7.7 21 13 1.8 267 24.0 4.8 2.0
Ahelhe 9.3 8.0 24 21 3 285 30.3 5.7 3.6
Ahelhe 7.7 8.4 29 24 5 313 32.7 6.8 6.0
Ahelhe 7.2 8.5 20 21 15 261 30.3 9.8 1.4
Ahelhe 6.6 8.6 19 13 4 255 24.0 6.3 0.7
Ahelhe 6.3 8.7 21 16 3 267 26.3 5.7 2.0
Arlkenye 1.8 9.7 25 16 3 290 26.3 5.7 4.1

Note: Paleoclimate reconstruction based on depth to Bk, Bk thickness, and calcareous nodule size (Retallack, 2005). Tree height is reconstructed based on depth to Bk
horizon (Retallack, 2012b).
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Bermagui in NSW (37°S), and (L. nasmophila) in Purnululu, Western
Australia (17°S) may be relict from the middle Miocene, judging from
molecular dating of choroplast and nuclear DNA (Crisp et al., 2010).
Lateritic profiles of middle Miocene age as far south as Sydney, New
South Wales (34°S) support the idea of rain forest climate far to the
south at that time (Retallack, 2010). Other relict rainforest taxa per-
sisting in fire-protected patches of Northern Territory aridlands are
bullwaddie (Macropteranthes), rosary pea (Abrus), sarsaparilla tree (Al-
phitonia), phalsa (Grewia), stinkwood (Gyrocarpus), and strychnine tree
(Strychnos: Adam, 1999). These rainforest relicts have large fruits pro-
posed as essential dietary items for the giant birds, Dromornis stirtoni of
the Alcoota local fauna, and cf. Dromornis and cf. Ilbandornis of the
Ongeva local fauna (Murray and Vickers-Rich, 2004).

Wet rainforests did not extend much south of the MacDonnell
Ranges, because the middle Miocene greenhouse spike near Lake
Palankarinna, South Australia (29°S) supported mallee vegetation, not
rain forest (Metzger and Retallack, 2010). Rainforests of the Miocene
were diverse like those of tropical Australia today (Archer et al., 1994;
Travouillon et al., 2009), and their retreat into refugia since the late
Miocene may be partly reversed with global climate change in the next
century (Retallack et al., 2016).

8. Paleoclimate reconstruction

A perennial debate is when the aridity started in the Australian
outback and over how much of the continent (Archer et al., 1995;
Herold et al., 2011). Fossil floras and faunas reflect general paleocli-
mate and paleovegetation (Archer et al., 1995), but evidence from
paleosols is also useful (Metzger and Retallack, 2010), and increasingly
well quantified (Sheldon and Tabor, 2009). Calcareous paleosols in our
section near Alcoota reveal the onset of Miocene aridity (Retallack,
2005).

Geochemical climofunctions (Sheldon and Tabor, 2009) based on
chemical ratios of B horizons within individual soil profiles have been
proposed as proxies for mean annual precipitation (MAP) following Eq.
(5) (Sheldon et al., 2002).

MAP = 221.1e00197(CIA-K) | \yith R? = 0.72, S. E. =+182 mm. 5)

where CIA-K is the molar ratio of 100 X Al,03/(Al,03 + CaO + Na,0).

However, the attempt to reconstruct Alcoota MAP in this way
yielded unrealistic values: > 1200 mm, because these paleosols devel-
oped on redeposited, deeply weathered pisolitic laterite with only local
carbonate nodules. This and other chemically based methods are thus
discarded.

Pedogenic calcareous nodules (Bk horizon) in soil profiles are better
proxies for amount and seasonality of precipitation (Retallack, 2005).
Mean annual precipitation (MAP) and mean annual range of pre-
cipitation (MARP, the difference between monthly means of wettest and
driest months) can be quantitatively reconstructed based on the depth
(cm) to Bk horizon and the thickness (cm) of Bk horizon, respectively,
following Egs. (6) and (7).

MAP (mm) = —0.013D? + 6.45D + 137.2, with R* = 0.52, S. E. =+147 mm/y.
(6)
where D is depth (cm) to Bk.

MARP (mm) = 0.79T + 13.7, with R? = 0.58, S. E. =+22 mm/y. 7)

where T is thickness of Bk.

Reconstructed MAP for the late Miocene in central Australia ranges
from 100 mm to 400 mm with MARP up to 50 mm (Fig. 10A). This
paleoclimate is similar to modern Alcoota with MAP 296 mm and
MARP 56 mm, and to modern Alice Springs with MAP 282 mm and
MARP 33mm (Bureau of Meteorology, 2018). It is thus neither a
rainforest (> 1100 mm MAP) nor monsoonal (> 100 mm MARP) cli-
mate. Ephemeral pools or rivers existed for a short period to accumulate
lacustrine and fluvial sediments around Alcoota (Fig. 3). This result is
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Fig. 10. Reconstructed paleoprecipitation variation in central Australia (A,
from Metzger and Retallack, 2010) and comparison to that in eastern Oregon,
USA (B, from Retallack, 2007) based on depth to Bk horizons in paleosol pro-
files. The gray curve or bars in (A) and (B) represent error range. (C) Global
climate changes from late Oligocene to present; oxygen isotope variation from
late Oligocene to present (Zachos et al., 2001), global sea level variation from
late Oligocene to present (Hagq et al., 1987), global atmospheric CO, from late
Oligocene to present (Beerling and Royer, 2011), sea surface temperature from
late Miocene to present (Herbert et al., 2016). Laterite age probability (A) is
from Dammer et al. (1996).

similar to early Miocene arid climate (200-600 mm MAP, up to 50 mm
MARP) in near Kangaroo Well (Dammer et al., 1996; Metzger and
Retallack, 2010) (Fig. 10A), 150 km south of Alcoota. Thus arid climate
in central Australia started in the early Miocene (Murray and Megirian,
1992), was interrupted by middle Miocene warm-wet spikes (Metzger
and Retallack, 2010), and resumed in the late Miocene. Continental
drying likely developed from the south, because arid Oligocene paleo-
climate (< 200 mm MAP) was inferred around Lake Palankarina in
South Australia from paleosols with gypsum nodules (Metzger and
Retallack, 2010) (Fig. 10A). If aridity spread from the south, the warm-
wet climate spike spread tropical northern rainforests southward
forming lateritic and bauxitic paleosols. The abundance of arboreal
mammals and high species diversity near Riversleigh in northwest
Queesnland are evidence of wet rainforest climate during the middle
Miocene (Archer et al., 1995), when laterites expanded to Alcoota.
Fossil plants however are evidence for dry climates in northern Aus-
tralia before and after this middle Miocene warm-wet spike (Hill, 1994;
Guerin and Hill, 2006; Hill et al., 2016). After the middle Miocene,
rainforest retracted to northern Australia. Central Australia thus be-
came arid in the early Miocene, then humid in the middle Miocene, and
arid again by late Miocene.

Late Miocene drying was a global phenomenon (Fig. 10). Late
Miocene drying in central Australia coincides with global cooling
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inferred from isotopic studies of deep-sea cores worldwide (Zachos
et al., 2001: Herbert et al., 2016). Central Australian aridity in the early
and late, but not middle Miocene is comparable with paleosol records in
Oregon (Retallack, 2007), northwest USA (Fig. 10B). Oligocene cooling
and drying coincided with appearance of Antarctic ice-sheet and late
Miocene cooling with advances of northern hemisphere ice (Zachos
et al.,, 2001). Haq et al. (1987) show that global sea level decreased
more during the late Miocene than early and middle Miocene
(Fig. 10C). Herbert et al. (2016) attribute global cooling in late Miocene
to decreased atmospheric CO, (Beerling and Royer, 2011). The decline
in atmospheric CO, has in turn been attributed to Himalayan uplift
(Raymo and Ruddiman, 1992), southern ocean reorganization (Kennett,
1977), or expansion of grassland soils (Retallack, 2013).

9. Conclusions

The antiquity of Miocene aridity in central Australia was addressed
by studying late Miocene paleosols near Alcoota, Northern Territory. In
a 19-m-thick stratigraphic section including stratigraphic levels with
Ongeva and Alcoota local faunas, 19 paleosols of 5 different pedotypes
were investigated in detail. Most paleosols included shallow Bk horizon
of pedogenic calcareous nodules, developed on redeposited middle
Miocene lateritic pisolites and clays. Unlike the lateritic paleosols
formed under rainforests of the middle Miocene, the depth to Bk hor-
izon and Bk thickness of late Miocene paleosols are evidence of mean
annual precipitation ranging from 100 mm to 400 mm and mean annual
range of precipitation up to 50 mm. This arid climate is similar to that
of modern central Australia, thus neither a rainforest nor monsoonal
paleoclimate. Paleovegetation of open woodland and gallery wood-
land < 8 m was inferred from depth to carbonate, root traces and
modern analogs of the paleosols. Late Miocene drying in central
Australia coincides with global cooling and drying with declining at-
mospheric CO,, but future warmer and wetter climate with rising CO»
may bring rainforest vegetation southward again.
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