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ABSTRACT: Microbial earths are communities of microscopic organisms living in well-drained soil. Unlike aquatic microbial mats and stromatolites,

microbial earths are sheltered from ultraviolet radiation, desiccation, and other surficial hazards within soil cracks and grain interstices. Currently, such

ecosystems are best known in small areas of unusually cold, hot, or saline soils unfavorable to multicellular plants and animals. During the Precambrian,

microbial earths may have been more widespread, but few examples have been reported. This review outlines a variety of features of modern microbial

earths that can be used to distinguish them from aquatic microbial mats and stromatolites in the fossil record. Microbial earths have vertically oriented

organisms intimately admixed with minerals of the soil, whereas microbial mats are laminated and detachable from their mineral substrate as flakes,

skeins, and rollups. Microbial earths have irregular relief, healed desiccation cracks, and pressure ridges, whereas microbial mats have flexuous, striated

domes, and tufts. Microbial earths form deep soil profiles with downward variations in oxidation, clay abundance, and replacive nodular subsurface

horizons, whereas microbial mats form as caps to unweathered, chemically reduced sedimentary layers. Microbial earths develop increasingly

differentiated soil profiles through time, whereas microbial mats build upward in laminar to domed increments. Microbial earths are found in nonmarine

sedimentary facies, whereas microbial mats form in lacustrine, floodplain, and marine sedimentary facies. Microbial mats and stromatolites are known

back to the oldest suitably preserved sedimentary rocks in the 3458 Ma Apex Chert and 3430 Ma Strelley Pool Formation (respectively) of the Pilbara

region of Western Australia. The geological antiquity of microbial earths extends back to 2760 Ma in the Mount Roe paleosol of the Hamersley Group

near Whim Creek, Western Australia.
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INTRODUCTION

Microbial earth was defined by Retallack (1990, 1992) as a
terrestrial ecosystem of microscopic organisms in well-drained soils
(Fig. 1B). This review outlines criteria for distinguishing microbial
earths from microbial mats (Figs. 1C, 2A), from periphyton of salt
marsh, marsh, and fen (Fig. 2B), and from biofilms of stromatolites
(Fig. 2C, D), which are aquatic (marine, lacustrine, and wetland)
microbial communities (Reid et al. 2000, Noffke et al. 2001a, Kahle
2007, Takashima and Kano 2008, Reuter et al. 2009). Other distinct
communities include microbial rocklands (Retallack 1992) and marine
endolithic communities (Chazottes et al. 2009, Santelli et al. 2009),
which colonize indurated rock surfaces. In the terminology of
Retallack (1992) for communities of well-drained soils, megascopic
forms such as lichens, mosses, and liverworts mark polsterlands, and
small herbaceous tracheophytes (such as the lycopsid resurrection
plant Selaginella lepidophylla) mark brakelands. Microbial earths and
polsterlands are seldom extensive today, but they form patches within
angiospermous desert shrublands (Fig. 1B). Nevertheless, the concept
of microbial earth is experimentally useful in evaluating modern
ecological and physical properties of the microbial contribution to
these tracheophyte communities (Hu et al. 2002). Microbes and lichens
become more prominent in more disturbed, arid, and frigid areas,
where they cover the surface and also live between grains deep within
soil (Belnap 2003, Houseman et al. 2006).

A clear concept of microbial earth and their soils is needed to
establish the evolutionary history of these ecosystems, before evolution
of lichens, liverworts, mosses, and vascular land plants. The Middle
Cambrian (510 Ma) appearance of liverworts or mosses, and a Late
Ordovician or Early Silurian (450–440 Ma) appearance of vascular
land plants is supported by palynological (Nohr-Hansen and
Koppelhus 1988, Strother 2004, Beck and Strother 2008) and plant
fragment isotopic studies (Tomescu et al. 2009), as well as by studies of
rooting structures in paleosols (Retallack 1988, 2008, 2009a).
Unnamed permineralized lichens from phosphorites immediately
overlying a paleokarst paleosol in the Ediacaran (580 Ma; Condon et
al. 2005) Doushantou Formation of China have pyriform terminal

structures interpreted as spores or vesicles of a zygomycotan lichen
with coccoid cyanobacterial photosymbionts (Yuan et al. 2005). Gold-
permineralized podetiate lichens (Thucomyces lichenoides), 4–5 mm
long and 1–2 mm in diameter, in the Carbon Leader of the
Witwatersrand Supergroup near Johannesburg, South Africa (Hallba-
uer and van Warmelo 1974, Hallbauer et al. 1977), are no younger than
the sensitive high-resolution ion microprobe U-Pb date of 2764 6 5
Ma for authigenic xenotime of the Central Rand Group (Kositcin and
Krapež 2004). Their organic matter has isotopically light carbon,
pentose/hexose ratios of 1, and chlorophyll derivatives such as pristane
and phytane (Prashnowsky and Schidlowski 1967). These fossils are
cut by metamorphic veins, and so they are indigenous to the rock rather
than contaminants (MacRae 1999). Furthermore, these Archean
megascopic lichens form dense palisade-like colonies atop gray–green
kaolinitic paleosols of fluvial floodplains (Minter 2006, Mossman et al.
2008). This sparse fossil record rests on rare and exceptionally
preserved fossils, but this paper searches for wider recognition of
lichen polsterlands and microbial earths in Precambrian paleosols.

Modern microbial earths and polsterlands have distinctive mega-
scopic surface textures (Fig. 3) that may enable their recognition in the
fossil record, similar to microbially induced sedimentary structures
(MISS; Noffke et al. 2001a, 2001b; Noffke 2008, 2009), ‘‘old elephant
skin’’ (OES; Bottjer and Hagadorn 2007), and textured organic
surfaces (TOS; Gehling and Droser 2009). However, surface textures
are not in themselves sufficient to identify microbial earths. Microbial
filaments and other petrographic textures deep within paleosols are
needed, as documented for Ediacaran (Retallack 2011), Cambrian
(Retallack 2008), and Cretaceous paleosols (Simpson et al. 2010). In
addition, geochemical analyses and depth functions are indications of
weathering and life in Precambrian paleosols (Retallack 1986). For
example, isotopically light organic carbon of presumed photosynthetic
origin has been reported in a 800 Ma paleosol below the Torridonian
Supergroup in Scotland (Retallack and Mindszenty 1994), on 1300 Ma
paleokarst in the Mescal Limestone of Arizona (Beeunas and Knauth
1985, Vahrenkamp et al. 1987), and from a 2300 Ma paleosol below
the Huronian Supergroup near Elliott Lake, Ontario (Mossman and
Farrow 1992). Remarkably light C-isotope values indicative of
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methanotrophs have been recorded from the 2760 Ma Mount Roe
paleosol of Western Australia (Rye and Holland 2000), and
isotopically heavy C-isotope values have been found, as in hypersaline
microbes, from the 2600 Ma Schagen paleosol, South Africa
(Watanabe et al. 2000, 2004). More general arguments for Precambrian
life on land back to at least 800 Ma have come from widespread deeply
weathered quartz sandstones (Dott 2003), complex clays (Kennedy et
al. 2006), and carbonate isotopic compositions (Knauth and Kennedy
2009). These lines of evidence for Precambrian life on land require
laboratory analyses, but the principal aim of this paper is to develop
criteria for recognition of microbial earths in the field.

A NOTE ON TERMINOLOGY

The term microbial earth was coined by Retallack (1990) as an

ecosystem within modern and ancient, well-drained, living soils

lacking megascopic vegetation, such as microbial consortia (lichens or
other megascopic microbial aggregates), nonvascular plants (liver-
worts, hornworts, and mosses), or vascular land plants (tracheophytes).
The term was patterned after cryptogamic earth (Wright and Tucker
1991), which differs in containing cryptogams (lichens, fungi,
liverworts, or other embryophytes, and ferns or other pteridophytic
tracheophytes). Taxonomic problems also arise from general compa-
rable terms, such as algal mat (Golubic and Hofmann 1976) or
cryptalgal fabric (Aitken 1967), which imply eukaryotic algae, when
the main contributors are prokaryotic cyanobacteria. Although many
cyanobacteria are aquatic (Noffke 2010), as many as 20 different taxa
have been identified in single desert soils using 16S ribosomal
ribonuceleic acid (rRNA) genes (Garcia-Pichel et al. 2001) in
abundances up to 8 6 6 3 105 active cells per gram of soil (Garcia-
Pichel et al. 2003). Cyanobacteria can emerge from dormancy in soils
after as long as 70 years (Bristol 1919) and play a significant role in

FIG. 1.—Modern patches of microbial earth and mat around a hot spring south of Black Rock, Nevada, USA (40.9736458N, 119.0088768W): (A)

overview of hot spring and desert playa from alluvial fan flanking Black Rock, (B) microbial earth erosional profile and shrubs of shadscale

saltbush (Atriplex confertifolia) and greasewood (Sarcobatus vermiculatus), (C) cyanobacterial mats, rollup, and stepped erosion where

disturbed by livestock, and (D) button lichen (Toninia) polster land with healed desiccation cracks.
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chemical weathering (Beraldi-Campesi et al. 2009). A taxonomically
neutral term is needed for both modern and fossil microbial earths,
because biological affinities of the microbes are often problematic or
indeterminable.

A considerable depth (centimeters to meters) of poorly laminated,
weathered, living soil is implied by the term ‘‘earth,’’ sometimes
including subsurface carbonate nodules also of microbial origin
(Monger et al. 1991). Other comparable community terms differ in
implying thin surfaces, crusts, or laminations: biological soil crust
(Belnap 2003), cryptobiotic soil crust (Belnap and Harper 1995),
microbiotic soil crust (Eldridge and Greene 1994), stromatolite (Greek
for ‘‘layered rock’’; Kazmierczak and Altermann 2002, Altermann
2004, Allwood et al. 2007), microbial mat (Schieber 1999), micro-
bialite (Sheehan and Harris 2004), biofilm (Costerton 2007), OES
(‘‘old elephant skin’’ of Bottjer and Hagadorn 2007), and TOS
(‘‘textured organic surfaces’’ of Gehling and Droser 2009). Mats,
crusts, skins, and biofilms are thin by definition, and they do not do
justice to the depth of microbial colonization of well-drained soils,
which can extend many meters (Belnap 2003). Biological soil crusts
are defined independent of taxa present and can include land plants
(embryophytes) excluded for microbial earths. Microbially induced
sedimentary structures (MISS of Noffke et al. 2001a, 2001b) could
include all of the aforementioned names, because the phrase does not
imply thickness or organization. However, MISS has been defined to
include only siliciclastic aquatic depositional environments, and not
the chemical or erosional environments of stromatolites and paleosols
(Noffke 2010, p. 11). Microbial earths are a form of ecosystem within
soils, preserved in both carbonate paleosols (Beeunas and Knauth
1985, Watanabe et al. 2000) and siliciclastic paleosols (Retallack 1986,
Retallack and Mindszenty 1994), and they are amenable to the
geochemical and petrographic profiling techniques of paleopedology

(Retallack 1990). In essence, microbial earths occupy a volume of soil,
whereas microbial mats and crusts are surficial phenomena of a variety
of habitats. Microbes of well-drained soil shelter between grains from
ultraviolet radiation, desiccation, and other surficial hazards, whereas
microbial mats are sheltered and hydrated by ephemeral or permanent
water (Belnap 2003, Noffke 2010).

MATERIALS AND METHODS

This work involved fieldwork in the following regions with modern
microbial earths: Black Rock Desert, Nevada (Fig. 1B, D); Canyon-
lands National Park, Utah; Death Valley National Park, California (Fig.
3F); Petrified Forest National Park, Arizona (Fig. 3E); Kalbarri
National Park, Western Australia; Flinders Ranges National Park,
South Australia; and Lake Mungo National Park, New South Wales,
Australia (Fig. 3B–D). Summer drainage of Lake Dorena, near Cottage
Grove, Oregon, afforded views of early stages in cracking and
cyanobacterial colonization of soil (Fig. 3A). My impressions of
microbial mats, periphyton, and stromatolites are informed by
observations in Yellowstone National Park, Wyoming; Black Rock
Desert, Nevada (Fig. 1C); Everglades National Park, Florida (Fig. 2B);
Lake Thetis, Western Australia; Hamelin Pool, Western Australia (Fig.
2C, D); and seasonally dry streams near Otematata, on the South Island
of New Zealand (Fig. 2A).

Ancient examples of microbial mats and stromatolites are not a
focus of this research because they are widespread and well known
(Schieber 1999, Altermann 2004, Allwood et al. 2007). Insights into
microbially induced sedimentary structures were gained from obser-
vations of rocks associated with the Willamette flora in the Fisher
Formation (30 Ma), near Eugene, Oregon (Retallack et al. 2004); in the
Mount McRae Shale and Brockman Iron Formation (2470 Ma), in and

FIG. 2.—Modern microbial mats: (A) cyanobacterial mats and skeins draping sandstone cobbles in dry creek bed near Otematata, New Zealand

(44.5750468S, 170.2254598E), (B) cyanobacterial scum (periphyton) in freshwater marsh of spikerush (Eleocharis cellulosa), Everglades

National Park, Florida, USA (25.3652738N, 80.895938W), (C, D) calcareous stromatolites from intertidal zone of Hamelin Pool, Shark Bay,

Western Australia (26.4004678S, 114.1589198E). Image C is from display of Western Australian Museum, Perth, and includes a sawn cross

section of a stromatolite lower left.
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near Karijini National Park, Western Australia (Fig. 4A–D; Simonson
and Carney 1999, Pickard 2002); and in the Strelley Pool Formation
(3430 Ma), at the Trendall locality south of North Pole Dome, Western
Australia (Allwood et al. 2007). Memorable stromatolites were
examined from the Beck Spring Dolomite (1300 Ma) near Tecopa,
California (Licari 1978); the Helena Formation (1450 Ma) in Glacier
National Park, Montana (Maliva 2001); and the Strelley Pool Chert
(3430 Ma) at the Trendall locality near North Pole, Western Australia
(Allwood et al. 2007).

Ancient examples of microbial earths and lichen polsterlands were
discovered in the following units during a recent program of research
on pre-Devonian paleosols: Devonian–Ordovician (400–450 Ma)

Grampians Group, Grampians National Park, Victoria, Australia
(Retallack 2009b); Cambrian–Silurian (430–490 Ma) Tumblagooda
Sandstone in Kalbarri National Park, Western Australia (Retallack
2009a); Early Ordovician–Cryogenian (480–630 Ma) Grindstone
Range, Pantapinna, Balcoracana, Moodlatana, Billy Creek, Parachilna,
Rawnsley, Bonney, and Nuccaleena formations in and around Flinders
Ranges National Park, South Australia (Figs. 5A, B, E, 6A–C;
Retallack 2008, 2009b); Stirling Range Quartzite (1800 Ma) on
Barnett Peak, Stirling Range National Park, Western Australia (Fig.
5C, D; Bengtson et al. 2007); and Medicine Peak and Sugarloaf
Quartzites (2500 Ma) near Medicine Peak, Wyoming (Kauffman and
Steidtmann 1981, Kauffman et al. 2009).

FIG. 3.—Modern surface textures of microbial earth: (A) transparent, cracked crust of cyanobacteria extending down into desiccation cracks, with

leaf of big-leaf maple (Acer macrophyllum) from Dorena Lake, Oregon, USA (43.7626188N, 122.9186198W), (B) semitransparent, cracked

crust with light-green foliose lichen (Xanthoparmelia terrestris), and fecal pellets on red soil between belah (Casuarina cristata) trees at Back

Creek State Forest, 16 km east of West Wyalong, New South Wales, Australia (33.8661388S, 147.3564288E), (C) nontransparent, cracked,

carpet texture crust, with light-green foliose lichen (Xanthoparmelia reptans), and fecal pellets on red soil between red mallee (Eucalyptus

socialis) and porcupine grass (Triodia scariosa) near Damara station, New South Wales, Australia (34.1541988S, 143.3298388E), (D)

nontransparent, cracked, ‘‘old elephant skin’’ crust with purple-gray lichens (Psora decipiens) between bluebush (Maireana sedifolia,

Maireana pyramidata) and saltbush (Atriplex nummularia) at Lake Mungo National Park, New South Wales, Australia (33.7300888S,

143.0443288E), (E) deeply cracked (popcorn texture) smectite clay bound by desiccated interstitial lichens in badlands of Blue Mesa, Petrified

Forest, Arizona, USA (34.9431208N, 109.7721858W), (F) gypsum crust with interstitial green cyanobacteria from Mormon Point, Death

Valley National Park, California, USA (36.0590208N, 116.7653518W). Hammer for scale (A, F) is 25 cm long; pen (B, D) is 8 mm wide; coin

(C) is 28.5 mm diameter; and lens cap (E) is 5.5 cm diameter.
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MICROBIAL PRESERVATIONAL STYLES

Cellular permineralization in phosphate (Yuan et al. 2005), gold

(Hallbauer and van Warmelo 1974, Hallbauer et al. 1977), calcite
(Pflug 1994), or silica (Kenny and Krinsley 1992, 1998) has yielded the
most convincing fossil record of Precambrian terrestrial lichens and
microbes, but permineralization is rare in well-drained paleosols (Rye
and Holland 2000). In Phanerozoic rocks, permineralized trees

(Retallack 1981) and microbes (Klappa 1978, 1979; Trewin and Knoll
1999) are known from well-drained paleosols, but permineralization is
more common in intertidal or wetland paleosols, such as Cambrian
(510 Ma) phosphorites of Queensland (Fleming and Rigby 1972,

Southgate 1986, Müller and Hinz 1992), the Devonian (410 Ma)
Rhynie Chert of Scotland (Taylor et al. 2004), and (310 Ma)
Pennsylvanian, calcite coal-balls of Illinois (Stubblefield and Taylor
1988). Most known Precambrian permineralized microbiotas are

associated with marine or lacustrine stromatolites (Knoll et al. 1993,
Schopf et al. 2007), banded iron formations (Maliva et al. 2005), or
pillow basalts (Schopf and Packer 1987). Precambrian terrestrial
microbiotas remain poorly known, and taxonomic differences between
them and marine microbiotas are unclear.

Nodule preservation results from decay of buried organic matter,

which in turn causes precipitation of a preservative cement
(‘‘authigenic cementation’’ of Schopf 1975), such as the siderite

nodules surrounding weakly sclerotized Pennsylvanian animals and
plants of Mazon Creek, Illinois (Shabica and Hay 1997), and fossil

crabs from marine siderite nodules worldwide (Schweitzer and
Feldmann 2000). Siderite and pyrite nodules are common in

shallow-marine shales and in wetland paleosols, but they are unknown
in well-drained paleosols (Retallack 1997a). Thin layers of ferric

hydroxide cement coat leaves during their decay in aerated puddles
(Spicer 1977), and observed in modern soils, this process explains the

fine preservation of venation in fossil leaves of highly oxidized sandy
paleosols (Retallack and Dilcher 1981). The comparable ‘‘pyritic death

mask hypothesis’’ of Gehling (1999) infers that microbial decay early
in Earth history induced pyritization capable of preserving megascopic

fossils, a form of preservation unique to the Ediacaran period (540–635
Ma). The death mask model requires that the material now oxidized as

red sandstones was once black and pyritic, but Ediacaran red beds are
not due to post-Ediacaran oxidative weathering because they retain

diagenetic calcite, illite, and chlorite, but no kaolinite, and they remain
red beneath gray shales in boreholes (Goldring and Curnow 1967). My

FIG. 4.—Fossil microbial mats: (A) tufted microbial mat surfaces (top) and layers from 2479 Ma, Mount McRae Shale, Mundjina Gorge, Western

Australia (22.487898S, 118.731448E), (B–D) wrinkled (B), pustular (C), and redeposited flake (D) of microbial mats from the 2470 Ma Dales

Gorge Member of the Brockman Iron Formation, near Kalamina Falls, Karajini National Park, Western Australia (22.415578S, 119.404098E).

Australian 20c coin for scale in all images is 28.5 mm diameter.
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own extensive thin section and microprobe work in South Australia
(Retallack 2011) and comparable studies in correlative rocks of the
Northern Territory (Mapstone and McIlroy 2006) have failed to
demonstrate pyrite in association with Australian Ediacaran fossils,
which owe their relief to structural chitin (Retallack 1994, 2007) and
fine detail to Spicer’s (1977) mechanism of ferric hydroxide
encrustation. In contrast, Ediacaran fossils of the White Sea in Russia
are encased in pyrite films and distinctive lumpy pyrite nodules that

overgrow and obscure their morphology (Dzik and Ivantsov 2002), in a
way comparable with pyrite nodules of mangrove soils (Altschuler et
al. 1983).

Drab-haloed root traces are another variety of authigenic alteration
in which the chemical reduction of oxidized portions of paleosols by
bacterial decay creates prominent green clayey mottles within the red
matrix. In waterlogged paleosols, there is open-system translocation of
iron and manganese, but little loss of iron is detectable when the drab

FIG. 5.—Fossil microbial earths: (A) polished slab of Upi pedotype paleosol with wide red burrows (Myrowichnus arenaceus) and narrow red

strata of transgressive filaments from the Early Ordovician (ca. 484 Ma) Grindstone Range Sandstone in Ten Mile Creek, South Australia

(31.253658S, 138.977918E), (B) polished slab of Mindi paleosol with narrow drab-haloed filaments from the Middle Cambrian (ca. 509 Ma)

upper Moodlatana Formation in Ten Mile Creek, South Australia (31.257368S, 138.941428E), (C, D) desiccation-cracked sandstone (C) and

paleosol profile (D) with subsurface nodules (Gypsid) in the 1.8 Ga Stirling Range Quartzite on Barnett Peak, Stirling Range, Western

Australia (34.348748S, 117.882508E), and (E) oblique view of pustular microbial earth texture (Rivularites repertus) with smooth depressions

that include an arthropod trail (Diplichnites gouldi) from a Wilpi pedotype paleosol (Psamment) in the Early Ordovician (ca. 484 Ma)

Grindstone Range Sandstone in Ten Mile Creek, South Australia (31.253658S, 138.977918E).
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haloes formed in well-drained paleosols sealed by burial (Retallack

1997b). Both kinds of filamentous green mottles are known in

Precambrian red paleosols and are evidence of microbial earths of

seasonally waterlogged soils in the 1800 Ma Lochness Formation near

Mount Isa, Queensland (Driese et al. 1995) and of well-drained soils in

the 550 Ma Ediacara Member of the Rawnsley Quartzite in Brachina

Gorge, South Australia (Fig. 6B; Retallack 2011). The central tube of

these drab-haloed fossils is larger than cyanobacterial filaments and

was presumably formed around larger structures such as supracellular

ropes (Garcia-Pichel and Wojciechowski 2009) or rhizines (Vogel

1955).

Biomineralization of seashells, corals, bones, and teeth has created

most of the Phanerozoic fossil record, and when dissolved by

groundwater or weathering, these fossils remain as molds and casts.

These complex skeletal hard parts are formed under direct cellular

control, and they are examples of organic-matrix–mediated biominer-

alization. Stromatolites, on the other hand, are biomineralized by

simple encrustation with calcite, dolomite, iron-manganese, or pyrite

because of local chemical changes induced by metabolic pathways of

the living microbial community (Grotzinger and Knoll 1999, Schieber

1999, Reid et al. 2000, Kazmierczak and Altermann 2002).

Biologically induced ministromatolites of iron-manganese are com-

mon in rock varnish of modern deserts (Perry and Adams 1978,

Krinsley 1998) and may be present in the 2200 Ma Waterval Onder

paleosol near Waterval Onder, South Africa (Retallack 1986).

Thecamoebans are living soil protists that have a vase-shaped

organic-matrix–mediated exoskeleton, and a fossil record extending

back .742 6 6 Ma in the Chuar Group of the Grand Canyon, Arizona

FIG. 6.—Microbial earths and paleosols of the late Ediacaran (ca. 555 Ma), Ediacara Member of the Rawnsley Quartzite, Flinders Ranges, South

Australia: (A) Rivularites repertus (‘‘old elephant skin’’) showing sutured radial growth, crack fills, and ridge impressions, along with fossil

impressions (Hallidaya brueri in positive relief, and Rugoconites enigmaticus in negative relief), on sole of sandstone slab from Parachilna

Gorge (31.1308318S, 138.5098448E), (B) paleosols showing very weak (Wadni pedotype), weak (Yaldati pedotype), and moderate

development (Muru, Warrutu, and Inga pedotypes) in Brachina Gorge, and (C) Inga pedotype paleosol with a distinct subsurface horizon of

sand crystals pseudomorphous after gypsum, also in Brachina Gorge (31.344228S, 138.557638E). The fossiliferous surface (A) is part of a

large slab on display in the South Australian Museum, Adelaide. The hammer for scale in B and C has a length of 25 cm.
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(Porter et al. 2003). This locality has been interpreted as shallow
marine, not the usual soil habitat of thecamoebans, although the
succession does include brecciated red beds (Dehler et al. 2005).

Compressions are the principal preservational form of organic
unskeletonized fossils, and these leave impressions in shale and
sandstone when the organic matter itself has been destroyed (Schopf
1975). Carbonaceous compressions are mostly preserved in gray to
black shales, such as the 1030 Ma lower Neryuensk Formation
(Lakhanda Series) in the Ust Maya region of Siberia, which include a
variety of putative slime molds (Mycosphaeroides aggregatus,
Myxomycota) and fungi (Eosaccharomyces ramosus, Ascomycota;
Mucorites ripheicus, Zygomycota) of kinds best known today from
soils (Hermann and Podkovryov 2006). Filamentous and spheroidal
compressions are also common in Neoproterozoic intertidal shales
(Schieber 1999, Callow and Brasier, 2009). Ellipsoidal carbonaceous
compressions of uncertain origin also are known from the 2200 Ma
Waterval Onder paleosol near Waterval Onder, South Africa (Retallack
1986, Retallack and Krinsley 1993).

Many Phanerozoic paleosols have impressions of leaf litter, roots,
stumps, and footprints preserved by covering sandstones (Retallack
and Dilcher 1981; Retallack 1997a, 2009a). Similar surface impres-
sions of Precambrian paleosols could be a promising source of
information about microbial earths of the past (Figs. 5C, D, 6A–C).
These types of MISS (Noffke et al. 2001a, 2001b; Noffke 2008, 2009),
OES (Bottjer and Hagadorn 2007), and TOS (Gehling and Droser
2009) are increasingly being recognized in Precambrian rocks, and
distinguishing marine from nonmarine organic textures is the main
purpose of this account. Similarly, endolithic microbial borings in the
chilled margins of pillow basalts reveal marine microbial communities
of the Precambrian (Furnes et al. 2008, McLoughlin et al. 2009).
Unlike cellular permineralization or carbonaceous impressions though,
such fossils offer little prospect of organic chemical or histological
information about the fossils. Only general morphology is preserved in
sandstone impressions (Fig. 6A).

PARATAXONOMIC APPROACHES TO
FOSSIL MICROBES

Living microbes and lichens cannot easily be identified from their
morphology alone: Chemical tests, and increasingly genome sequenc-
ing, are needed to identify them (Brodo et al. 2001). Thus, the existing
taxonomy of Precambrian microbes is in effect a parataxonomic one,
and it is accommodated within the concept of form genera of the
International Code of Botanical Nomenclature (McNeill et al. 2006).
Within such systems of uncertain taxonomic affinities, names that
explicitly imply taxonomic affinities are to be avoided, although some
unfortunate names remain valid. Eomycetopsis (Greek for dawn-
fungus–like), for example, describes widespread permineralized tubes
generally comparable with fungal hyphae, though they lack end walls
and now are regarded as polysaccharide sheaths of mat-building
cyanobacteria (Knoll 1982). Tappania, named for Helen Tappan, is an
example of a taxonomically independent name, originally considered
an acritarch (likely dinoflagellate resting cyst) but now regarded as an
early multicellular fungal cyst (Dicaryomycota ¼ Ascomycota þ
Basidiomycota; Butterfield 2005). Parataxonomies such as those for
pollen (Traverse 2007) and stromatolites (Walter 1976) acknowledge
uncertainty concerning taxonomic affinities.

Other microbial fossils are megascopic bedding plane textures,
which can be labeled MISS (Noffke et al. 2001a, 2001b) or TOS, with
common descriptive names such as ‘‘ropy,’’ ‘‘baggie,’’ or ‘‘elephant
skin’’ (Gehling and Droser 2009), but they have also been given
parataxonomic names. Kinneyia similans, for example, is a system of
wrinkles with unusually steep sides and flat tops associated with
carbonaceous filaments and laminae of microbial mats. Walcott (1914)
established this name as a distinctive algal fossil from shaley partings

in the Mesoproterozoic (1300 Ma) Newland Formation of Montana
(Schieber 1999), as a concept comparable with stromatolite form
genera such as Baicalia, Conophyton, and Thyssagites (Walter 1976).
Häntzschel (1975) regarded ‘‘Kinneyia’’ as miniature ripple marks, and
thus a pseudofossil. Hagadorn and Bottjer (1997, 1999) also regarded
‘‘Kinneyia’’ as a pseudofossil (and stripped it of italicization) and as
wrinkled microbial mats dissected by, and thus predating, soft-
sediment burrows. Pflüger (1999) also demonstrated microbial mat
affiliation of ‘‘Kinneyia’’ wrinkles but advocated wrinkling at the base
(not top) of microbial mats under oscillating water levels of tidal flats.
Whether it formed at the base or top of the mat, Kinneyia is considered
here a valid form genus for a distinctive form of microbial mat created
by particular fluid and biological conditions on tidal flats, generally
comparable with stromatolites (Grotzinger and Knoll 1999). Like
Eoclathrus, which has a pustular rather than ridged morphology
(Häntzschel 1975), Kinneyia is a useful parataxonomic name to
express one form of sinuous to flexuous deformation of aquatic
microbial mats.

A very different kind of sharp-edged, pustular-textured surface, with
associated cracks and pedestals, is Rivularites repertus, described by
Fliche (1906) along with fossil plants from Keuper (Late Triassic)
fluvial facies of France. Fliche (1906) envisaged Rivularites as a
distinctive microbial texture, and it is regarded here as a valid form
genus for ‘‘elephant skin,’’ a textured organic surface best known from
the Neoproterozoic Ediacara Member of the Rawnsley Quartzite of
South Australia (Gehling and Droser 2009; fig. 3 is a superb example).
My own field studies of ‘‘elephant skin’’ in the Ediacara Member have
found it to be a natural mold at the base of covering sandstones over a
variety of paleosol surfaces (Fig. 6). Similar fabrics have also been
reported from Ordovician paleosols (Fig. 5E; Retallack 2009a). By this
view, the name Rivularites, which implies a relationship with the living
aquatic cyanobacterium Rivularia, is based on mistaken identity,
comparable with Eomycetopsis and other valid but misleading names.
Other indistinct fabrics from the Ediacara Member such as ropy-
textured organic surfaces have been given the Latin binomial Funisia
dorothea and have been compared with marine sponges or polyps
(Droser and Gehling 2008). In my opinion, surfaces covered in Funisia
more closely resemble puffballs, slime molds, or button lichens in
modern soils (Figs. 1D, 3D). Such differences of opinion are the main
reason for parataxonomic approaches to such fossils, and extend to
other Ediacaran fossils, such as Aspidella, Dickinsonia, and Ediacaria
(Retallack 1994, 2007, 2009a). The parataxonomic approach allows
the rigor of type specimen definition and descriptions at a level of
detail appropriate for fossil species of a wide variety of distinctive
fossil forms, while acknowledging that their true systematic affinities
are uncertain.

DIFFERENTIATING CRITERIA

The following paragraphs outline distinctions between microbial
mats and microbial earths based largely on experience with both
modern (Figs. 1–3) and fossil examples, but with emphasis on features
preserved in fossil examples (Figs. 4–6). The following paragraphs
depict extremes in the spectrum of variation from fully submerged
aquatic microbial mats to well-drained microbial earths. These criteria
can be confusingly combined in transitional environments such as tidal
flats and lake margins, or in fluctuating environments, such as desert
playas transiently awash after storms.

Textures and Relief

The most striking feature of modern aquatic microbial mats is their
smooth to flexuous surface with fine striations oriented in the direction
of flow (Figs. 1C, 2A). Modern microbial earths in contrast are lumpy
to irregular, with numerous sharp bounding cracks or irregularly
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sutured contacts from adjacent intergrown growth centers (Figs. 1B,
3D). Microbial earths form pedestals with shrunken buttresses and
short narrow towers (Fig. 1B), but stromatolitic microbial mats have
rounded domes or conical tufts (Fig. 1C). The internal fabric of this
microrelief is also very different: vertical strands in microbial earths
(Fig. 1B) and subhorizontal to domed lamination in stromatolitic
microbial mats (Fig. 1C). Stromatolitic laminae show marked variation
in porosity (Reid et al. 2000) not seen in microbial earths (Belnap
2003).

Color is a distinct feature in modern microbial mats, which are green
to pink (Noffke 2010), whereas microbial earths are only transiently
green and are more often multicolored, with flashes of orange and
white on a general background of brown to black (Belnap 2003). Color
is not preserved in the fossil record of microbial mats.

Desiccation cracks are found associated with both microbial mats
and microbial earths because of changing tides and floods. Microbial
mats either smooth over preexisting desiccation cracks or disruption by
plant growth (Fig. 2B) or dry to a hard skin that is resistant to cracking
(Fig. 2A). Microbial earths include desiccation cracks in sandy desert
soils with little clay content (Fig. 1D). The binding effect of microbes
thus induces loose sand to crack like clay (Prave 2002). Microbial
earths of supratidal flats also show multiple generations of desiccation
cracking, followed by microbial healing over and then cracking again,
giving banded cracks or oscillation cracks (Noffke et al. 2006), a
phenomenon conceptually similar to that which forms vertic soils
(Paton 1974). In badlands slopes of expanding clays (smectites), a very
complex system of cracks and irregularly swollen claystone clods
(popcorn peds of Fig. 3E) is formed by the binding action of
cyanobacteria and lichens (Finlayson et al. 1987, Cantón et al. 2004,
Lazaro et al. 2008). Popcorn peds are near-equant angular clasts of clay
quite distinct from the platy clasts produced by curling and erosion of
microbial-mat–bound desiccation polygons, but these peds are water
soluble (Finlayson et al. 1987) and require exceptionally high
sedimentation rates or dry deposition be preserved in the fossil record
(Retallack 2005a). Desiccation cracks are formed by shrinkage of
matrix as it dries, and they commonly (though not universally) have a
deep V-shaped cross section (Weinberger 2001). ‘‘Syneresis cracks’’
are another form of shrinkage crack characterized by shallow,
disconnected, sinuous tears, and they are U-shaped or irregular in
cross section (Ehlers and Chan 1999, Pflüger 1999, Bouougri and
Porada 2002). Syneresis in colloid chemistry is fluid expulsion from
gels, but ‘‘syneresis cracks’’ have usually been attributed to subaqueous
flocculation of clay due to salinity change or intrastratal fluidization
during earthquakes (Pratt 1998). Comparable shallow sinuous cracks
have been documented in modern and buried microbial mats of the
intertidal zone of Tunisia by Noffke et al. (2001b), but they were
attributed to transient desiccation of a gel-like mat rather than salinity-
induced flocculation or earthquake.

Substrate Relationship

Modern microbial mats are nonadhesive to their mineral substrates,
whereas modern microbial earths are intimately mixed with abundant
mineral grains. Microbial mats include few silicate grains and may
have abundant newly formed minerals such as calcite, especially in
stromatolites (Reid et al. 2000) and ‘‘sand mats’’ (Pierson et al. 1987),
but there is a clear demarcation between the base of the laminated to
crinkly organic mat or stromatolite and grains of underlying sediment
(Walter 1976, Hagadorn and Bottjer 1999, Schieber 1999). In
microbial earths, however, cyanobacteria and other organisms take
refuge from desiccation and hard radiation within a matrix of silicate
grains, often to depths of many meters (Belnap 2003). The distance of
tens of centimeters between densely colonized uppermost layers of the
soil and underlying sparsely populated soil horizons is transitional.

These differences are most pronounced where microbial mats and

earths are eroded or disturbed by wildlife or humans. Microbial mats
are redeposited as sheets, foldovers, and rollups (Schieber 1999,
Simonson and Carney 1999, Noffke 2010), whereas microbial earths
fall apart as individual organisms redeposited singly (Lazaro et al.
2008). This is especially clear at the edges of microbial mats, which are
stepped down to the substrate (Fig. 1C), whereas the edges of microbial
earths show a gradational profile of diminished erosion resistance from
the organically bound surface to the less organic granular subsurface
(Fig. 1B). The profile of dissected microbial mats is a vertical wall,
perhaps with skeins of frayed filaments (Schieber 1999, Noffke et al.
2001a), whereas eroded microbial earths show a sinuous erosional
profile, often overhanging because of the greater binding effect of
organisms near the surface than in the subsurface (Belnap et al. 2003).

Subsurface Alteration

Modern microbial mats accrete like sedimentary layers above
preexisting layers, which remain saturated and unbioturbated, and so
preserve clear primary sedimentary structures. Cemented layers of
living stromatolites, once considered subsurface diagenetic features,
are now known to be form at the surface (Reid et al. 2000). Microbial
earths on the other hand are the uppermost part of soil profiles, which
develop a variety of subsurface bioturbation and weathering features,
often at the expense of sedimentary structures. For example,
desiccation cracks covered by microbial mats after flooding of a dry
playa are passively filled with layered organic matter or clay. In
contrast, desiccation cracks within microbial earths show multiple
episodes of cracking and sealing with wetting and drying, as reflected
in layered clay skins (argillans) or zoned weathering rinds (sesquans in
soil terminology; Retallack 1997a, 2001). Chemical alteration beneath
microbial mats may include cementation with salts and chemical
reduction, but chemical alteration beneath microbial earths is more or
less marked by hydrolysis (incongruent solution of aluminosilicates to
produce clay and cations). These processes can be revealed by
chemical analyses and calculation of molar proportions of common
cations (Ca, Mg, K, and Na), which are depleted compared with
refractory elements (Al, Ti, Zr) in soils but stable or enriched in
sediments (Retallack 1986, 2008, 2011; Beraldi-Campesi et al. 2009).
Microbial earths of desert regions also are cemented by salts, including
gypsum and calcite, but these form replacive nodules, with circum-
granular cracks and micritic fabrics (Retallack 2005b, Retallack and
Huang 2010), distinct from displacive salt crystals of euhedral forms
found in supratidal and playa microbial mats (Pflüger 1999). Pedogenic
carbonate of microbial earths is also fractionated from biologically
respired soil carbon dioxide and so has a light carbon isotopic value
(d13C of carbonate ,�2ø vs. Peedee belemnite [PDB]), whereas
marine carbonate is isotopically heavier (d13C of carbonate .�2ø vs.
PDB; Sheldon and Tabor 2009).

Growth Series

Much of the variation within microbial mats and earths can be
attributed to the different time for development of these communities,
which reveal distinct modes of growth. Modern microbial earths
develop like soils to a characteristic attenuation depth of biological
activity adjusted to the supply of light, water, and nutrients available
(Finlayson et al. 1987, Belnap 2003). Microbial earth organisms, like
pioneering grasses of woodland ecosystems, are at first patchy and
sparse, with minimal modification of preexisting sedimentary
structures (Fig. 3A, B; transparent MISS of Noffke et al. 2001a), but
then they thicken and fill in intervening spaces to completely rework
the substrate to a characteristic depth, obscuring or destroying
preexisting sedimentary structures (Fig. 3C, D; nontransparent MISS).
Microbial mats can also appear transparent when first initiated and
thin, but they continue to build upward in laminated layers through
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time, propagating basal irregularities or developing new domed or
tufted irregularities in the case of stromatolites (Grotzinger and Knoll
1999, Schieber 1999, Noffke 2010).

Associated Organisms

Neither microbial mats nor microbial earths form such expansive
areas today that all other organisms are excluded. The turquoise saline
waters of Hamelin Pool stromatolites in Western Australia (Fig. 2C, D)
are visited by few sea snakes, fish, and small marine snails and clams
compared with Ningaloo coral reefs of the nearby open Indian Ocean.
Microbial mats are excluded from most wave-protected seashores and
lake margins by grazing of herbivorous mollusks and growth of
seaweeds, glassworts, mangroves, salt marsh, and spike grass (Fig.
2B). A critical environmental variable fueling such biological
competition is nutrient levels: Western Australian stromatolites are
found with varied associated organisms and in varied salinities and
temperatures, but always in oligotrophic waters (McNamara 1992).

Similarly, true microbial earths are limited in their distribution by
widespread lichens, mosses, lycopsids, and desert shrubs, which may
appear desiccated and dead, but which revive rapidly after rain
(Rosentreter et al. 2008). Within dry woodlands, microbial earths on
mineral soil between trees support common subterranean button
lichens, but delicate large surface lichens are only found in sparsely
grazed areas (Fig. 3B, C). In mesic woodlands and rain forest, a litter of
bark and leaves, or ground cover of grass or spring ephemerals
excludes most taxa of microbial earths (Belnap et al. 2003). In alpine
and polar regions, microbial earths are limited by paucity of soil, with
comparable lichens and cyanobacteria forming microbial rocklands,

often endolithic (Retallack 1992). Like microbial mats, microbial
earths currently are found with other creatures capable of withstanding
shortages of water, nutrients, and warmth.

Environmental Setting

Modern microbial mats are best known from aquatic sedimentary
environments such as floodplains, lakes, and oceans (Noffke 2010).
Microbial earths, like other soil communities of well-drained land,
form during episodes of nondeposition, in both terrestrial sedimentary
environments and on the kinds of erosional landscapes that will
become major geological unconformities in the rock record (Belnap
2003). Thus, geological context can be important to their recognition in
the fossil record. Microbial mats are to be expected in gray sandy,
shaley, or calcareous marine, or pyritic intertidal facies (Boggs 1987,
Schieber 1999), whereas microbial earths are found in evaporitic
supratidal or playa, fluvial, red bed, or calcrete facies (Retallack 1997a,
2008, 2011). Sedimentary structures expected in association with
microbial mats include current ripples, rills, and normally graded beds
(Potter and Pettijohn 1963). Sedimentary structures expected in
association with microbial earths are wind-dissected current ripples
(‘‘setulfs’’ of Hocking 1991), climbing-translatent wind ripples (Hunter
1977), and polygonal desiccation cracks (Weinberger 2001).

CONCLUSIONS

Limits to productivity of modern biological soil crusts in deserts
include lack of water, heat, and essential nutrients, but soil crusts may
have thrived also in warm–wet regions until displaced by more recently

TABLE 1.—Comparison of microbial mats and microbial earths.

Microbial mats Microbial earths

Also known as pond scum, periphyton, algal lamination,

biofilm, stromatolite

Also known as biological soil crust, cryptogamic earth, ‘‘old

elephant skin’’
Modern: Otematata, New Zealand; Black Rock Desert,

Nevada; Everglades, Florida

Modern: Balranald, New South Wales, Australia; Canyonlands

National Park, Utah; Kalbarri, Western Australia

Ancient: Fisher Formation (30 Ma), Oregon; Brockman Iron

Formation (2470 Ma), Western Australia; Strelley Pool

Formation (3350 Ma), Western Australia

Ancient: Tumblagooda Sandstone (460 Ma), Western Australia;

Grindstone Range (484 Ma) and Rawnsley (555 Ma)

Formations, South Australia; Stirling Range Formation (1900

Ma), Western Australia

Parataxonomic names: Kinneyia, Eoclathrus, etc. Parataxonomic names: Rivularites, Neantia, etc.

Nonadhesive to substrate Intimately mixed with substrate

Redeposited as sheets and rollups Individual organisms redeposited singly

No hydrolytic weathering of substrate Hydrolytic weathering of substrate

Abrupt mineral-texture contrast with substrate Gradational mineral-texture contrast with substrate

Substrate cracks passively filled or absent Substrate cracks with clayskins or oxidized (cutans)

d13C of carbonate .�2ø d13C of carbonate ,�2ø
Salt crystals or nodules displacive Salt crystals or nodules replacive

Stromatolitic and tufted when thick Subdued relief and unlayered when thick

Smoothing over desiccation cracks Enabling desiccation cracks in sand

Syneresis cracks (deep U-section) Desiccation cracks (deep V-section)

Domed or tufted growth centers Peripherally sutured growth centers

Mounded and dimpled with expansion Pressure ridges with expansion

Accretionary laminar growth Characteristic profile development

Associated with ostracods, molluscs, marsh plants, mangroves Associated with desert shrubs, lichen polsters

Lake or marine gray shale or limestone facies Pyritic intertidal, red bed, or calcrete facies

Associated current ripples, rills, normal grading Associated wind-dissected ripples, climbing translatent wind

ripples

Aquatic-marine, submerged when alive Intertidal, perilacustrine, soil
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evolved plant communities (Belnap et al. 2003), such as liverwort
polsterlands dating back to the Middle Cambrian (510 Ma; Strother et
al. 2004; Retallack 2008, 2009b), rhyniophyte brakelands dating back
to the Early Silurian or latest Ordovician (440–450 Ma; Nohr-Hansen
and Koppelhus 1988, Beck and Strother 2008, Retallack 2008,
Tomescu et al. 2009), and progymnosperm woodlands dating back to
the Middle Devonian (390 Ma; Retallack and Huang 2011). Lichen
polsterlands with large lichens comparable to those in dry woodlands
today (Fig. 3C) may have been widespread during the Ediacaran (635
Ma; Retallack 1994, 2007, 2011). Lichen polsterlands with small
lichens comparable with modern biological soil crusts of deserts (Figs.
1D, 3D) may extend well back into the Archean (2760 Ma; Hallbauer
and van Warmelo 1974, Hallbauer et al. 1977, MacRae 1999, Kositcin
and Krapež 2004, Minter 2006, Mossman et al. 2008). Microbial earths
extend back to 2760 Ma in the Mount Roe paleosol of the Hamersley
Group near Whim Creek, Western Australia (Rye and Holland 2000).
Tantalizing possible evidence of older microbial earths comes from
microborings within pyrite grains in sandstones that include redepos-
ited blocks of the immediately overlying pre-Strelley paleosol, Pilbara
region of Western Australia (3430 Ma; van Kranendonk et al. 2006,
Wacey et al. 2008, Wacey 2009). Such evidence needs to be sought
also in the paleosol itself. The antiquity of microbial mats is
comparable, from stromatolites in the 3430 Ma Strelley Pool
Formation (Allwood et al. 2007) and permineralized microfossils in
the 3458 Ma Apex Chert, both in the Pilbara region of Western
Australia (Schopf and Packer 1987, Schopf et al. 2007, despite qualms
about variation in preservation quality by Brasier et al. 2002).

The record outlined here is tantalizing and scarce because it is
dependent on rare permineralizations and compressions, many of
which were first discovered in the 1970s, when a deliberate worldwide
search was made for black chert in sedimentary rocks. Such records of
Precambrian life can be supplemented for other times and preserva-
tional environments by TOS (Gehling and Droser 2009), MISS (Noffke
et al. 2006), and sedimentary petrography (Schieber 1999, Heubeck
2010). This paper seeks to expand the record of microbial ecosystems
to clastic sedimentary environments on land by outlining a variety of
criteria for distinguishing aquatic microbial mats from microbial earths
(Table 1; Fig. 7). Such records of microbial earths and polster lands
promise to be much more voluminous than records from permineral-
ization and compression. The study of modern biological soil crusts

(Figs. 1, 3) and some ancient examples (Figs. 5, 6) will now provide
new search images for additional evidence of early life on land.
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