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1 Background of the Study

In recent years, the search for exoplanets has witnessed remarkable progress,
fueled by advancements in observational techniques and data analysis method-
ologies. Among these techniques, transit photometry stands out as a pow-
erful method for detecting exoplanets by measuring the periodic dimming
of a star’s light as a planet passes in front of it.[4] However, the sheer vol-
ume of data generated by transit photometry missions, such as the Tran-
siting Exoplanet Survey Satellite (TESS), presents a significant challenge
for efficient analysis and identification of exoplanet candidates. In response
to this challenge, the paper titled ”Identifying Exoplanet Candidates Using
WaveCeptionNet” proposes an innovative approach that combines wavelet-
transform-based preprocessing with a convolutional neural network (CNN)
model based on Inception-v3 for fast and accurate classification of light curves
[2]. In this review, we will summarize the key findings and contributions of
the paper, highlighting its significance in the field of exoplanet research and
its implications for future studies.

1.1 Object of the Study

An exoplanet, short for "extrasolar planet,” refers to any planet located
outside of our solar system that orbits a star other than the Sun. These
planets vary greatly in size, composition, and orbit, and their discovery has
revolutionized our understanding of planetary systems and the universe. Ex-
oplanets are detected through various methods, including the transit method



(observing the slight dimming of a star as a planet passes in front of it), the
radial velocity method (measuring the gravitational influence of a planet on
its parent star), and direct imaging (capturing the light emitted or reflected
by the planet itself). Studying exoplanets provides valuable insights into
planetary formation, evolution, and the potential for habitability beyond our
own solar system.

The paper attempted to classify different types of exoplanet candidates
based on light curve data obtained from the Transiting Exoplanet Survey
Satellite (TESS) using the transit method.[2] Specifically, the exoplanet can-
didates they aimed to classify include:

e Confirmed planets (CPs)
e Known planets (KPs)

e Planet candidates (PCs)

These categories were based on the TESS objects of interest (TOI) cata-
log, which assigned targets to various categories including confirmed planets,
known planets, and planet candidates. The paper grouped CP, KP, and PC
targets together as planet candidates (PC).

In addition to exoplanet candidates, the paper also aimed to classify
other types of celestial objects and phenomena present in the light curve
data, such as eclipsing binaries (EBs), stellar variability (V), and instrument
noise/systematic (IS).

1.2 Awuthors of the Study

The authors are Huiping Liao, Guangyue Ren, Xinghao Chen, and Yuxiang
Li, affiliated to the Key Laboratory of In-Fiber Integrated Optics of Min-
istry of Education College of Physics and Optoelectronic Engineering, Harbin
Engineering University, as well as Guangwei Li from the Key laboratory of
Space Astronomy and Technology National Astronomical Observatories, Chi-
nese Academy of Sciences. Guangwei Li’s research focus includes galactic
substructure, massive stars, flare stars, and astronomical Image Processing.
Some of his recent papers include ”Discovery of Two Different Full Disk Evo-
lutionary Patterns of M-type T Tauri Stars with LAMOST DR8”,” A Meteor
Detection Algorithm for GWAC System”, and ”Magnetic Activity and Pa-
rameters of 43 Flare Stars in the GWAC Archive.” (https://orcid.org/0000-
0001-7515-6307)



The paper was received on May 21, 2023, revised on February 12, 2024
and accepted the following day. It was published on March 27, 2024.

1.3 Goal of the Study

The subject of this study is the classification of light curves obtained through
transit photometry, particularly focusing on identifying exoplanet candidates.
Transit photometry involves observing the periodic dimming of a star’s light
as a planet passes in front of it, providing valuable information about the
size, orbit, and characteristics of exoplanetary systems. The study utilizes
data from the Transiting Exoplanet Survey Satellite (TESS), which collects
vast amounts of light curve data in its search for exoplanets. The light
curves obtained from TESS observations are subject to various sources of
noise, including instrument noise, background light, and interference from
celestial objects such as eclipsing binaries and variable stars. Efficiently and
accurately classifying these light curves is crucial for identifying potential
exoplanet candidates and planning follow-up observations.

1.4 Wavelet Transform

The paper employs wavelet transform as a mathematical method for prepro-
cessing light curve data to enhance the performance of their machine learn-
ing model, WaveCeptionNet, in classifying potential exoplanet candidates.
Wavelet transform is a multiresolution analysis method in both the time and
frequency domains, decomposing signals into different frequency components
while extracting periodicities and separating noise. Specifically, the authors
use the discrete wavelet transform (DWT) with a chosen basis function and
threshold selection method to decompose the original light curve data into
low-frequency and high-frequency components. They then employ wavelet
packet decomposition tree to further decompose the signal recursively into
constituent parts at different levels of resolution. The lengths of the re-
sulting low-frequency (CA6) and high-frequency (CD6) components after six
levels of decomposition are expressed mathematically in terms of the length
of the original signal and the length of the wavelet used (Figure [1)). After
preprocessing, the authors conduct Min-Max normalization on the CA6 and
CD6 components and resample them using cubic spline interpolation method
to achieve consistent dimensions for input data required by neural networks.
The high- dimensional data from multiple observations of exoplanet research,
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Figure 1: Wavelet packet decomposition tree [2]

after being processed by their method, has been reduced in length by a fac-
tor of 32 compared to the original data. This preprocessing pipeline aims
to reduce noise, enhance signal resolution, and ensure consistent input data
dimensions for training the machine learning model.

The wavelet transform preprocessing method that does not require fold-
ing the light curves or period parameters, which is the traditional approach
of using machine learning to classify exoplanets. Applying wavelet trans-
form to the data significantly reduces the noise and anomalies present in the
raw light curve data, thereby enhancing the neural network’s efficiency and
dependability.

1.5 Neural Network Architecture
1.5.1 CNN

Inception-v3 is a deep learning model architecture primarily used for image
classification tasks. It was developed by Google researchers as part of the
Inception project, which aimed to explore and improve the efficiency and
performance of convolutional neural networks (CNNs) [5]. The Inception-
v3 model is characterized by its deep architecture with multiple layers of
convolutional, pooling, and fully connected layers. It incorporates several
key design features to enhance its effectiveness.

1.5.2 spatial dropout layer

Spatial dropout is applied during training by randomly setting some neuron
outputs to zero, which helps the network learn more robust features, reduces
overfitting, and improves generalization. Spacial dropout sets some channels
to zero for each time step, not only considering individual time steps but also



taking into account the correlation between time steps.

1.5.3 optimization

The paper uses the softmax function for nonlinearity and the cross entropy
loss function with L1 regularization minimized by the ADAM optimizer.

1.5.4 evaluation

The paper evaluates the performance of their machine learning model, Wave-
CeptionNet, for classifying light curves of potential exoplanet candidates
(PCs) along with other celestial phenomena such as eclipsing binaries (EBs),
variable stars (V), and instrument noise/systematic (IS). They employ stan-
dard evaluation practices by randomly dividing the labeled data into train-
ing, validation, and test sets, achieving an overall accuracy rate of 95.0368%
across the four classes. Performance metrics such as accuracy, precision, re-
call, and F1-score are computed for each class, along with macroaverage and
weighted average metrics to account for class imbalance. The model exhibits
high precision rates exceeding 92% for all classes and recall rates exceeding
95% for PCs, EBs, and V. However, a relatively lower recall rate of 83.58% is
observed for IS, indicating challenges in accurately classifying noise. The pa-
per also assesses the model’s sensitivity to various parameters such as signal-
to-noise ratio (S/N), orbital period, transit duration, stellar radius, planet
radius, and transit depth, demonstrating the model’s effectiveness in identi-
fying PCs across different system configurations. Additionally, comparisons
with previous studies suggest that WaveCeptionNet outperforms other meth-
ods in terms of recall for PC classification. Overall, the evaluation showcases
the robustness and effectiveness of WaveCeptionNet in automatically clas-
sifying light curves to identify potential exoplanet candidates amidst noisy
astronomical data.



2 Results of the Study

2.1 Physical Principles
2.1.1 Transit Photometry

Understanding transit photometry is crucial for comprehending the signif-
icance of the proposed method for identifying exoplanet candidates using
WaveCeptionNet. Transit photometry is a technique used to detect exoplan-
ets by observing the periodic dimming of a star’s light as a planet passes
in front of it. This dimming, or transit, occurs when the planet crosses be-
tween the observer and the star, causing a temporary decrease in the star’s
brightness (Figure . By carefully monitoring these dips in brightness over
time, astronomers can infer the presence of an exoplanet and gather valuable
information about its size, orbit, and characteristics. [4]

Transit photometry also provides valuable data about exoplanetary sys-
tems, including the size and orbital period of the planets. The depth and
duration of the transit signal can reveal information about the size of the
planet relative to its host star and the inclination of its orbit. By analyzing
these characteristics, astronomers can infer the nature of the exoplanet, such
as whether it is a gas giant, a rocky planet, or a potentially habitable world.

2.1.2 Confounding Targets

When classifying the targets, the authors identified four categories of interest:
Planet Candidates, Eclipsing Binaries, Stellar Variability, and Instrument
Noise and Systematic Effects (IS). The objective is to correctly distinguish
the Planet Candidates, but it is important to understand the other three
categories and why they might produce results similar to those of transiting
planets. We have covered Eclipsing Binaries in class, so I will focus on what
Stellar Variability and IS are.

Stellar variability refers to the changes in brightness or other observ-
able properties of a star over time. These variations can occur on various
timescales, ranging from milliseconds to years, and can be caused by a variety
of physical processes happening within the star itself. Understanding stellar
variability is crucial in astronomy because it can provide valuable insights
into the internal structure, evolution, and behavior of stars.[3]

Here are some of the main types of stellar variability and the underlying
mechanisms responsible for them:
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Figure 2: Transit Explanation. Source: Adapted from [4].

e Pulsations: Some stars undergo periodic expansions and contractions,
causing changes in their brightness over time.

e Activity Cycles: Stars with magnetic fields, like the Sun, can exhibit
cyclic variations in activity levels, including the number and size of
sunspots, as well as the occurrence of solar flares (Figure [3). These
activity cycles typically last for several years and are driven by the
dynamo processes operating within the star’s convective zone.

e Stellar Spots: Similar to sunspots on the Sun, starspots are regions of
cooler temperature on the surface of a star caused by magnetic activity.
As a star rotates, these spots can come into and out of view, leading to
periodic variations in brightness. This type of variability is particularly
common in young, rapidly rotating stars.

e Flares: Stellar flares are sudden, transient increases in brightness caused
by the release of magnetic energy in a star’s atmosphere. Flares can
occur in stars with strong magnetic fields, such as young, active stars
or certain types of binary systems. The energy released during a flare
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Figure 3: Solar Cycle. Source: Adapted from [IJ.

can be orders of magnitude higher than the total energy output of the
star under normal conditions.

Instrument noise and systematic effects (IS) refer to unwanted variations
or biases introduced into observational data by the instruments or methods
used to collect the data. These effects are not astrophysical in nature but
rather arise from limitations or imperfections in the instrumentation, data
acquisition process, or data analysis techniques.

2.2 Significance

The study demonstrates the effectiveness of the wavelet processing method
in reducing the dimensionality of the data by approximately 32-fold while
largely removing noise. This reduction in dimensionality allows for more effi-
cient and streamlined data analysis, enabling astronomers to sift through
massive datasets from instruments like the Transiting Exoplanet Survey
Satellite (TESS) more effectively. The demonstrated effectiveness of the pro-
posed method in achieving about a 32-fold dimension reduction in light curve
data is particularly noteworthy.

The integration of a convolutional neural network (CNN) model based on
Inception-v3 represents a significant integration of deep learning techniques
into the field of exoplanet research. Deep learning has emerged as a transfor-



mative technology in various fields, including astronomy, due to its ability to
learn intricate patterns and representations from large datasets. By adapt-
ing a state-of-the-art CNN architecture to process wavelet-transformed light
curve data, the study demonstrates the potential of deep learning for auto-
mated classification and detection of exoplanets. The CNN model achieves
impressive accuracy and precision rates for classifying different types of light
curves, including eclipsing binaries, planet candidates, variable stars, and
instrument noise. With Fl-scores ranging from 89.60% to 95.93% and pre-
cision rates exceeding 96%, the method demonstrates robust performance in
identifying exoplanet candidates and minimizing false positives. the recall
for (Yu et al. 2019) and Rao et al. (2021) are 61% and 74.3%, respectively,
comparing to WaveCeptionNet’s 95.38% in the PC, which also demonstrates
the paper’s significance.

The proposed method has practical applications for exoplanet research
and the broader field of astrophysics. By automating the process of identify-
ing exoplanet candidates and screening massive datasets, the method enables
astronomers to efficiently analyze transit photometry data and prioritize tar-
gets for follow-up observations. This capability is crucial for accelerating the
discovery and characterization of exoplanetary systems and advancing our
understanding of planetary formation and evolution.
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