
ENGS 31 Final Project Report: The Calculator

Gavin Burns and Sarah Hutchinson

August 2021

Abstract

The goal of our project was to use digital electronic design to create a calculator that can add,
subtract, multiply, and divide numbers with results up to 3 digits. Our resulting design uses a computer-
connected universal asynchronous receiver-transmitter system (UART) to send signals to the FPGA,
where the calculations take place. The calculation process and results are outputted to the 7-segment
display on the FPGA, with additional features such as LEDs to indicate which step of the entry process
is occurring, and buttons to view past operand entries.

1

Contents

1 Introduction 3

2 Design Solution 3
2.1 Specifications . 3
2.2 Operating Instructions . 3

2.2.1 Setup . 3
2.2.2 Communicating . 4
2.2.3 Display . 4

2.3 Theory of Operation . 4
2.3.1 Top Level Design . 5
2.3.2 UART . 5
2.3.3 ASCII Converter . 5
2.3.4 Main Controller . 6
2.3.5 Main Datapath . 6
2.3.6 Math Block . 6
2.3.7 Binary to BCD . 7
2.3.8 Display . 7

3 Evaluation 7
3.1 Functionality . 7
3.2 Review . 8

4 Conclusions 8

5 Acknowledgements 8

6 References 8

2

1 Introduction

For our final project in ENGS31 we were tasked with designing a hardware calculator in VHDL. Specifically,
we wanted a calculator that could represent integers between -999 to 999, carry the four main mathematical
operations(+ - * /), and be able to recursively apply answers to the next equation. Using processes and ideas
we’ve learned throughout the term we came up with a thorough design and began working. Over the course
of the project we practiced top-down circuit design and many different debugging techniques. Furthermore,
we added some ease of life capabilities and additive features to separate our design from a simple calculator.

2 Design Solution

2.1 Specifications

Our calculator takes inputs coming from a connected computer, manipulates entered values and operators
within the FPGA (calculator functions), and outputs values and results onto the FPGA seven-segment
display. Values come into the system through a universal asynchronous receiver-transmitter (UART) system.
This is a form of serial input. Using the Waveforms application on the computer, we enter numbers and
operators which are then sent to the FPGA, coded as an ASCII code in serial. Our calculator connected
to the computer via Analog Discovery 2 (transmits signal). Data is sent from the computer at a baud rate
of 115.2k. This rate refers to how many different signals occur per second. This is relevant because since
the UART is asynchronous, a clock signal is not sent to the FPGA and therefore it is necessary to use the
baud rate to determine how to read the incoming signal. Our system is clocked at 1MHz, which means that
a new signal is sent from the computer approximately every 8 clock cycles. Our calculator outputs to the
7-segment display on the FPGA, as well as to the LED lights. Depending on what part of the calculation
process is occurring, either the operands, a decimal point to indicate which operator is in use, or the answer
is displayed on the board. One of four LED lights illuminates at any given time to indicate which part of
the calculation is occurring and what the next entry should be from the user (waiting for operand, waiting
for operator, showing answer, or overflow). Additionally, there are input buttons on the FPGA which can
be pressed to view past operands on the 7-segment display.

2.2 Operating Instructions

2.2.1 Setup

Figure 1: AD2 and FPGA connections. DIO 0(pink) and 1(green) are used to send and receive signals from
the AD2 to FPGA respectively. Additional connections are made individually between the Ad2 and FPGA
to the computer. Signals are typed in via a keyboard, sent though the AD2 and finally delivered to the
FPGA vai serial data.

In order to operate our calculator it is important to understand how to set it up. Since we are using a FPGA
and AD2 converter we’ll need to connect the data ports together to communicate between them. According
to out constraints file in the Appendix, we will be using the DIO 0 and DIO 1 wires on the AD2 to control
the transmission and receiving of signals respectively. On our FPGA, the JA1 port is where our serial data
from the computer comes from, so we’ll connect the DIO 0(pink cable) wire to the JA1 port. Likewise, the
JA2 port is the transmission port of our FPGA back to the AD2 and computer moniter. Although we used
this port for checking UART capabilities and debugging you can connect the this port to the DIO 1 wire as
shown in the figure above. Do not forget to also connect the ground wire of the AD2 to the any ground port
on the FPGA. For ease of use we used the ground port closest to the AD2 (JA5).

Lastly, the micro USB ports for both the FPGA and AD2 are connected to the computer to provide
power and allow us to enter digits into the calculator via the keyboard.

3

2.2.2 Communicating

Figure 2: UART Protocol workspace for the Waveforms application. In it you can send data in the sending
terminal, set your baud rate, identify transmission and receiving wires, as well as view any receiving signals
in the Rx window.

In order to communicate with the calculator, we’ll be using the Waveforms app provided by the AD2 to send
serial signals to the FPGA. In the protocol workspace, we can send serial data to our system to be processed
and displayed on the seven segments displays.

As shown in the figure above it is important to set the baud rate to 115.2k to make sure serial commu-
nication is synchronized between the computer and the FPGA.

In the transmission terminal window you can type in inputs to be sent to the AD2 and subsequently the
FPGA. In our tests it was helpful to set the feed to auto send such that we wouldn’t need to press enter
after each input to successfully send it.

2.2.3 Display

Figure 3: FPGA Display for Calculator. The four seven segment displays show the negative and 3 digits of
the inputted and calculated numbers. Decimal points are used to indicate operators(+ - * /). LEDs in the
bottom right corner indicate current state of the equation. Starting with operand A and moving to operator,
operand B, and Answer.

When entering data from the keyboard it is important to receive some form of feedback to clarify your
entering the correct digits. When using our calculator digits will appear in the seven segment display on the
FPGA. Our calculator is reserved to only storing 3 digits so the fourth segment will be used to display the
negative sign of the number.

Additionally, valid operators will be displayed as specific decimal points found in the bottom right corner
of each segment. Only one decimal point will be lit up at any given time and moving left to right on the
FPGA, they represent the division, multiplication, subtraction, and addition.

The LEDs on the bottom right of the board are used to communicate to the user the current state of
the equation. In the figure above, the rightmost LED is on, indicating that the user will be inputting the
A operand. Moving leftward, the second LED represent entering an operator, the third LED is for the B
operand, and the fourth LED is on when an answer is being diplayed.

The last feature we have for the display is the control of the top and bottom buttons of the FPGA to
display the currently stored A and B operands. When the top button is pressed, the current display will be
overwritten to show the A operand used in the equation. The same goes for the B operand when you press
the bottom button.

2.3 Theory of Operation

The following steps indicate the typical flow of use for a person using our calculator: (See Figure 11 in
Appendix 1.)

Step 1: The user inputs an integer operand between -999 to 999 one digit at a time

4

Step 2: The user inputs their desired operation between addition, subtraction, multiplication, and division

Step 3: The user inputs their second integer operand between -999 to 999, which will enact their desired
operation on the previous operand

Step 4: The user receives an answer to their equation and can either chose to start a new equation(return to
step 1) or save this answer and chain it into another equation(move to step 2)

2.3.1 Top Level Design

Before diving into the details of each component, we first figured out what problems we’d come across and
describe how our deign plans to overcome them.

Starting to our problem with transmitting to the FPGA, we decided to use UART to process the serial
data inputted from our computer and turn it into a single code.

As shown in Figure 5 in Appendix 1, this code would then be fed through an ASCII Converter to interpret
the code as one of many keyboard inputs and output the necessary signals. Operators will receive a 2-bit
code to differentiate the 4 potential operators; digits will receive there associated 4-bit BCD code; and the
negative, enter, and delete keys will all get a single standard logic signal.

Signals sent from the ASCII Converter would then be read by the Controller; which in turn communicates
with the Datapath; to organize and store most of this data. The Datapath works to shuttle in digits and
operator in from the ASCII Converter and the Controller moderates when, where, and how many signals get
stored.

Once all necessary data is collected, the controller will signal the Math Block to preform the calculation.
Specifically, the Math Block converts the BCD numbers into signed binary which can then be used to
calculate the answer.

Lastly, we decided to use a Binary to BCD converter to take our binary answer (and any other variables)
and transform them into a BCD signal readable by the seven segment display. Likewise, other signals
outputted by the Controller are given to the seven segment displays to select what should be displayed at
each point in the calculation.

2.3.2 UART

The UART input component takes the serial input from the computer, which arrives at a rate of 115,200
signals per second, and compiles it into an 8-bit parallel signal which can be read by the ASCII converter to
determine which value it represents (ASCII codes are 8 bits long). In order to understand how the UART
reciever works, it is necessary to understand the components of a UART signal. A UART signal is 10 bits
long. The signal is at 1 when it is idle, and the first bit is always 0. This is called the start bit and
indicates that the next 8 bits will represent a value. The last bit is always 1, and is called the stop bit. The
synchronizer uses two flip-flops to ensure that the incoming signal is being fed to the circuit at the 1MHz
system clock speed. This is particularly important because the incoming UART signal is asynchronous. See
Figure 6 in Appendix 1 for UART Block Diagram reference. The synchronized signal is passed into the
deserializer shift register, which, in conjunction with the UART state machine, converts the serial signal to
a parallel signal. The state machine starts in the idle state. See Figure 12 in Appendix 2 for UART State
Diagram. When the first bit is detected to be a 0, the state machine moves into the count baud 1 state. This
sends a signal to the counter that to start counting. Since the signal comes in at a rate of 115,200 signals per
second and the system is at 1MHz, in general, the counter in general counts to 8 before it enables timeout,
which, causes the state machine to move to the shift 1 state, make shift en high, and have the contents of
the shift register to be shifted. It is ideal to read the incoming signal in the middle of the signal to get a
steady value, so the count baud 1 state enables timeout after 1 clock cycle, thus there is a different state
for the subsequent counting and shifting states. After each shift, the shift counter increments. While the
counter is counting, the shift counter holds its current value. Once there have been 10 shifts, the load state
is entered, during which load en is high and the contents of the shift registers are loaded into the parallel
output.

See Figure 15 in Appendix 3 for the simulation image.

2.3.3 ASCII Converter

The goal of the ASCII converter is to take the 8-bit signal provided by the UART and decode it into specific
signals. Knowing that the 8-bit signal (labeled as par output in block diagram) represents a single key stroke
from a keyboard, we deduced that it would be best to utilize a look-up-table to assign the input number to
a specific output signal. (See Figure 7 in Appendix 1 for ASCII Converter Block Diagram).

To do this we first had to decide which keys would be registered to which signals. This was fairly
straightforward and by using an ASCII look up table we were able to figure what the par output code
would be for keys associated with the numbers 0-9, all necessary operators(+ - * /), and the enter key.
Consequently, both the backspace and delete key were not eligible inputs for the Waveform program that
we were using to communicate with the system. Instead, we chose to register the spacebar as our primary
delete key for the continuation of our project.

The actual hardware implementation of our ASCII Converter was just a look-up-table to check the input
signal and set the corresponding output signals. For example; when the par output signal is recognized to
be some number, valid int will go high and dig code will parse the input into its BCD counterpart. The
same goes for valid op and op code for when an operator code is detected, valid neg for when the ’-’ key is
detected, and entr/dlt for when the enter key or spacebar is detected.

For a more detailed analysis of the ASCII converter’s operation please review ASCII Converter testbenches
1 (Figure 16) and 2 (Figure 17 in Appendix 3.

5

2.3.4 Main Controller

The crux of our calculator is the main controller that signals to many of the other components when to do
each of their processes. (See 13 in Appendix 2 for Calculator State Diagram). Once data is decoded by the
ASCII Converter it is up to the Controller to read these signals and move though its states, commanding
the other components as it goes. The structure of the Controller’s state machine is such that we can break
down the flow of state into four individual sections(all of which are cycled through using the enter key).

The initial state of the machine begins in the first section that we’ll call the ”operands” section (colored
in blue in the above figure). In this section, user inputs are read to store and delete numbers to form the A
and B operands of the equation. Valid integers have the controller signal the datapath to store this number
while the spacebar has the controller signal to delete the least significant digit currently stored. Furthermore,
the minus symbol in this section is used to toggle the negativity of a number and other operator symbols
have no effect on the system. Another feature that is present while in this section is a counter that used to
make sure the user does not input more than 3 digits. Our calculator has a capacity to work with numbers
between -999 to 999, so it was important to us to keep the user within these bounds during number inputs.
Upon leaving this section the controller will signal to take whatever 3-digit number that has been created
and store it as the A or B operand as determined by the FLAG signal.

The FLAG signal is used to differentiate A operand from B operand storage. Upon storing a number
in operand A, the signal toggles high to signal that the next number stored will be operand B. It is then
toggled down when to calculation is complete and the Restart state is reached.

The next section of states is the ”operator” section(yellow). Similar to the operands section except user
inputs are read to store and delete operators. In this section numbers have no effect and the minus key is
registered as a minus symbol. Following this section, the Controller briefly enters the Clear state to make
sure all previous digits have been cleared before returning to the Operand section.

After operand A, B, and an operator have been stored the next section the Controller goes to is ”com-
putation”. This section signals the Math Block to compute an answer and waits to see if the user wishes to
chain the answer with another equation or start again from scratch. If the answer generated, overflows the
calculator’s capacity then the Controller will move to the Overload state which requires the user to begin a
new equation. Alternatively, any other numerical answer can be chained into a new equation by entering an
operator. This will move the Controller into a brief buffer state to store the answer as the A operand before
going to the final section.

The ”chain operator” state(Red) is nearly identical to the ”operator” section except for the signal output
signal. This signal(along with LED output) communicate with the seven segment display to tell them which
numbers to show. In order to show the answer and new operator at the same time, we needed to create this
additional section with a separate signal output code.

For a waveform clarification on the controller’s operation, please see the Calculator Controller Testbench
(Figure 18) in the Appendix 3.

2.3.5 Main Datapath

According to the operating instructions of our system, the user will enter in a single digit at a time to
ultimately form a 3-digit number between -999 and 999. In order to take single digits and assemble them
into full numbers, we needed a way to preserve their order as multiple numbers are entered; this is done in
the calculator’s Datapath. (See Figure 8 in Appendix 1 for Datapath Block Diagram).

When the dig en signal is sent from the Controller, each number register receives the previous registers
digit and num0 receives the newest dig code from the ASCII converter. Likewise, when dig dlt is sent, each
number register is enabled to tak in a new digit, but the digit they receive is taken from the register ahead
of them.

As you can see in the diagram above the multiplexer determine where the data being stored comes from.
Its select bit is the dig dlt signal from the Controller; when low it sends the previous register’s digit, and
when its high it sends the following register. It should also be noted that the num2 register will always
be reset when the dig dlt or dig clr signals are passed to ensure that a zero is passed back to the previous
register when the delete signal is sent.

This Datapath also controls the current state of the the numbers negativity. Whenever the neg en signal
is passed to the Datapath, the neg output will toggle between high and low with every press. We can also see
in the figure above that the dig clr signal also resets the current state of the neg register because negativity
is very much tied to the actual number itself.

Lastly, the Datapath stores and outputs the current operator inputted into the system. When op en is
sent, the op code from the ASCII converter is stored in the register and an op full signal is sent back to the
controller. This signal is to indicate that a operator has been stored and user can officially move on to the
next state.

A full waveform of the Datapath’s operations can viewed in Appendix 3 under Calculator Datapath
Testbench. (Figure 19.)

2.3.6 Math Block

Following up on the calculator’s Datapath, the Math Block takes in its digits(num0-2), negative, and operator
to form an equation for computation. (See Figure 9 in Appendix 1 for Math Block Diagram).

As a reminder, the num signals from the Datapath represent the 3 digits of a base 10 number. So
before computation num0, num1, num2 are turned into a single binary number by multiplying the hundreds
digit(num2) by 100, the tens digit(num0) by 10, and adding them all together. Additionally, if a negative is
present for this number then the system will preform a two’s compliment conversion to make the number a

6

negative. After this conversion, the new signed binary number is stored in operand A or B (as decided by
the controller) until it is needed for computation.

Speaking of which, the computation preformed is determined by the stored operator value also from
the datapath. This can be seen as the multiplexer that takes its select bit as the op signal. This value is
computed but not stored officially until the math en signal is outputted high by the controller.

After an answer is calculated it is stored in the Answer temp register and answer full signal is fired
directly back to the Controller. The new answer is then immediately checked to see if it exceeds the
calculators maximum value; if so the overflow signal goes high.

Likewise, after the an answer is generated, it runs through binary conditioning to separate the negative
sign from the rest of the number. This is to make the outputting answer digestible for the binary to BCD
converter while preserving the negativity of the number. The specific process of the binary conditioning
block is as follows: the number is check to see if it less than 0; if so, two’s complement is preformed and
y neg/A neg is set high. The same process is applied to the A operand which is also run through its own
binary to BCD converter so it can also be shown on the seven segment display.

One last feature of the Math block is its ability to store the computed answer back into the A operand.
When the controller sends the Answer store signal it’ll loop the Answer temp signal back to the operand A
register for storage. This allows the user to chain answers into new equations following a calculation.

Please refer to Computation Testbench (Figure 20) in Appendix 3 for an in-depth example of operation.

2.3.7 Binary to BCD

The binary to BCD block is necessary to convert the signed binary number, the calculation form, into
sets Binary Coded Decimal bytes, which are sent to the 7-segment display for output. (See Figure 10
in Appendix 1 for Binary to BCD Converter). This is done according to the Double Dabble algorithm.
(https://en.wikipedia.org/wiki/Double dabble) The binary to BCD converter takes in a 10-bit unsigned
value. The output will be three 4-bit numbers that correspond to the three digits of the associated decimal
number. (0000 0000 0000, with the first group of four representing the 100s digit and the third group of four
representing the 1s digit). The most significant bit of the binary number gets shifted into the least significant
bit of the 12 BCD bits. Then the binary number is shifted over so there is a new msb. This occurs 12 times.
If at any point a group of 4 has a value greater than or equal to 5, 3 is added to it. This is implemented
with multiplexers and a state machine. (Intially loads all the digits in, then shifts and checks if anything is
greater than or equal to 5 each time). (See Figure 14 in Appendix 2 for the Binary to BCD State Diagram.)
Each time a shift occurs, a shift count is incremented. Once 10 shifts have occurred, the 3 BCD numbers
are outputted.

(See Figure 21 in Appendix 3 for the simulation of binary to BCD).

2.3.8 Display

(See Figure 11 in Appendix 1 for Display Block Diagram).
Although we now have all of our desired signals in the form that is transferable to the seven segment

display; we’ll need some sort of way to select which signal is displayed at any given time. And by focusing
on the keyword ”select” we immediately understood that we should use a multiplexer to do this job. There
are 4 seven segment displays that we have programmed to take a 5-bit input determining there output.
Including the decimal point to signify the current operator and we have a total of 5 inputs to shuttle to
the seven segments. Furthermore, we have four potential outputs to display at any given time: the digits
and operators being inputted by the user, the answer, the answer and the operator the user is inputting(for
chaining), and an overload sequence for when the answer is too big.

An RTL design of this block can be seen in the figure above, as you see, the first round of signal selection
is conducted by the signal output signal from the controller. This clarifies what section of the equation the
system is currently in and selects the appropriate output.

Two multiplexers follow this selection, each of which are for the additional button features that allow the
user to view each operand of the equation. Signals button A and button B represent the top and bottom
buttons on the FPGA board and when pressed will select the corresponding operand to be displayed on the
seven segments. It should also be noted that selection of operand A has priority over operand A as seen in
the figure above.

This same sort of selection process is used to determine which LED should light up in the calculator
sequence. As you progress through the calculator, the signal LED output will count from 1 to 4 indicating
if the user needs to input operand A, an operator, operand B, or what to do with the answer.

3 Evaluation

3.1 Functionality

The goal of this project was to design and build a functioning calculator using what we’ve learned form
ENGS31. Specifically, we were tasked with creating calculator that could receive external keyboard inputs,
preform the basic mathematics operations, and display our answer on seven segment displays. With those
criteria (and some we created) we were very much successful in our endeavour.

Our calculator works almost exactly as we planned it to; it takes in numbers from a keyboard and actively
displays them on the seven segments. These numbers then form our operands and can be applied to the
main mathematical operations with the answer successfully being displayed.

Within the provided time frame for design we were also able to add additional feature to help users and
increase functionality. We made it so both positive and negative numbers can be processed. Added LED

7

sequencing to notify the user their current state within the equation. Allowed the user to check their A and
B operands after calculating their answer. Handle potential answer overflow scenarios. And gave the users
the option to chain answers into another equation for more options.

3.2 Review

Looking back on the construction of the calculator there were a lot of aspects that were really cool to work
on. Figuring out the seven segment displays and being able to control their output using the FPGA buttons
was really nice. We originally included this feature as a way to debug our code; such that we could check
each intermediate signal to see how out numbers changed as they flowed through the system. Button upon
completion we adapted it slightly to offer some useful information for our user. It was also interesting (and
a little bit challenging) to get the system to work with both positive and negative numbers. Casting the
variables into unsigned, doing the computation, and translating/resizing the back proved to be more of a
challenge than we expected but it was ultimately very cool to see working.

One functionality that we failed to implement was the ability to receive serial signals from the FPGA
and display them back on the computer monitor. We ran into many issues with converting the signals
back into ASCII codes and getting the timing working for the components to work together. In the end
we were unfortunately unsuccessful with this plan and were forced to redesign the display location to the
seven segments on the FPGA. But even with this setback, it was really amazing to design a project from
the ground up and get to use everything I’ve learned thus far into making it work.

4 Conclusions

The initial goal of our project was to create a calculator with computer numeric input and computer numeric
output that could handle addition, subtraction, multiplication, and division of positive and negative numbers
for results up to 3 digits. Our final product is a calculator that uses computer input to add, subtract, multiply,
and divide positive or negative numbers. The output is displayed instead on the 7-segment display of the
FPGA. We added usability features such as LED status lights and buttons to review inputs. Therefore,
the functionality of our design was exactly the same as in our proposal. We chose to output our results
differently because we found that sending data back to the computer was not working well. Using the FPGA
outputs allowed our design to look more like a calculator and to have the added LED and button features.
Future groups considering this project should work on testing the hardware/computer connection early, as
this is actually somewhat difficult. It also allows them to see what the system is outputting, which is helpful
for debugging. Additionally, connecting the 7-segment display for debugging purposes is very useful for
monitoring what is happening at every step of the calculation process. Overall, implementing ways to assess
what is happening within the design is essential. Wheres with computer coding it is possible to have the
computer print values, with digital design, it is necessary and important to implement a hardware equivalent.

5 Acknowledgements

In this project Sarah worked on the design and construction of the UART and serial communication of the
computer with the calculator. Likewise, she also designed the data conversion between Binary to BCD using
the double dabble algorithm. Gavin was tasked with the main controller and datapath of calculator and how
it would sort and process inputs from the user. He also designed the Math block and how to chain answers
into new equations. Both team members worked together to debug, testbench, and implement every aspect
of the program and worked together to design an intuitive display and additive features for the users.

We would also like to thank Ben Dobbins, Professor Eric Hansen, and our TA Yefri for their help and
guidance during the constructs of this calculator.

6 References

For the binary to BCD conversion process: https://en.wikipedia.org/wiki/Double dabble

8

Appendix

The Calculator
Group 9 - Gavin Burns and Sarah Hutchinson

Appendix 1: Block Diagrams

System Flow

Figure 4: Example Flow of Use

System Block Diagram

Figure 5: The top level diagram for our project. Serial data is processed in the UART where it is turned
into an 8-bit signal. The ASCII Converter decodes this signal into codes denoting integers, operators, and
other valid inputs. These signals are read by the Controller which tells the Datapath to store or delete
these values. After two operands and an operator are entered, the Math Block computes the answer. The
generated answer is then converted into BCD which will be displayed on the seven segments

9

UART Block Diagram

Figure 6: UART converter Diagram. Serial input signal goes through a synchronizer and a deserializer and
is outputted as an 8-bit par output signal, which is sent to the ASCII Converter

ASCII Converter Block Diagram

Figure 7: ASCII converter Diagram. 8-bit par output signal is fed in and decoded into a variety of signals
to be interpreted by the Datapath and Controller

Datapath Block Diagram

Figure 8: Block diagram of the calculator’s datapath. dig code and op code are taken from the ASCII
converter and stored in their respective registers. As multiple digits are input, currently stored digits are
shifted through the registers to preserve their order. The reverse process occurs when digits our deleted. A
T flip-flop is used to toggle between the numbers negativity as neg en is triggered.

10

Math Block Diagram

Figure 9: RTL design of the Math function block. num0, num1, num2, and neg are signals from the Datapath
that are converted into a signed binary number and stored in either operand A or B. At the command of
the Controller, the math block will compute an answer using the inputted operands and operator; and
before outputting the signal, will separate the answer into an unsigned binary number and its negativity.
Additionally, operand A can be converted in the same fashion for display on the seven segments and the
answer can be stored back into operand A for chaining equations.

Figure 10: Block diagram for Binary to BCD Conversion. 10-bit binary converted to BCD via the Double
Dabble Algorithm, which involves shifting the 10-bit binary input into 3 sets of 4 bit numbers (BCD) and
adding 3 if the value of a 4 bit group is ever greater than or equal to 5.

Display Block Diagram

Figure 11: Diagram for the seven segment display output. During the typical process of the calculator,
the controller will send signals to the first multiplex to determine what data to display. The user also has
the option to press the top and bottom button on the FPGA to display the current A and B operands
respectively.

11

Appendix 2. State Diagrams

UART State Diagram

Figure 12: UART State Diagram

Calculator State Diagram

Figure 13: State diagram of the main controller. The flow of the controller is split up into 4 main sections
with conditioning states in between. Each of the sections in state machine represent holding areas that
are waiting on user input to process data and move to the next sections. The blue represents inputting
operands, the yellow is inputting operators, the green is from answer computation, and the red is designated
for chaining equations together

12

Binary to BCD State Diagram

Figure 14: Binary to BCD State Diagram

Appendix 3: Testbench Waveforms

UART Testbench

Figure 15: Simulation waveform of our UART converter. Serial signal is delivered in reverse to the UART
converter. 1)When the serial input goes low the block is trigger to begin shifting in numbers. 2)In between
shifts the values are held constant for the duration of the baud rate. Counter is active for this period and
the system is held in the Count Baud state. 3)Signal is being fed in reverse order into the UART. 4) When
the maximum number of shifts is reached, the shifted values are sent out as a parallel signal. The parallel
out signal is taken from the shift signal[8 downto 1].

ASCII Converter Testbench 1

Figure 16: Simulation waveform of the ASCII converter. 1)entr signal goes high when enter key is pressed.
2)dlt(spacebar) signal goes high when delete key is pressed

13

ASCII Converter Testbench 2

Figure 17: Simulation waveform for the ASCII converter. 1)Asterisks key ASCII code is recognized; valid op
goes high and op code gains the signal for multiplication. 2)Plus key ASCII code; addition stored. 3)Sub-
traction key ASCII code; subtraction stored and valid neg goes high. 4)Slash key ASCII code; division is
stored. 5)As digits are recognized, their binary form is stored in dig code and valid int goes high

Calculator Controller Testbench

Figure 18: Simulation waveform for the main calculator controller. 1)The ”operand A” state; where the
user can input any 3 digit integer. 1a)When valid dlt and valid int signals are detected controller will
output dig dlt and dig en to add/remove stored digits. A max of 3 digits can ever be stored. 1b)Detection
of a valid op signal has no effect in this state. 1c)Progression to the next state is enacted with the entr
signal. 2)The ”operator” state. 2a)detecting a valid int and valid neg signals have no effect in this state.
2b)Detecting a valid op will enable op storage and signal that an operator is full. 3)The ”operand B”
state, same as ”operand A” state. 4)Answer state, inputs of previous states our processed and an answer is
calculated. 4a)When state is entered math en goes high and an answer is generated. 4b)Upon leaving state,
all currently stored variables are cleared. 5)As the system progresses through different states, it signals to
the seven segment display what should be shown.

Calculator Datapath Testbench

Figure 19: Simulation waveform of the main calculator datapath. 1)When a dig en signal is detected, current
dig code is stored in the num0 register and currently stored dig codes are shifted over in place. 2)dig dlt
signals will delete the dig code stored in num0 and shift other codes back. 3)neg en will toggle the negativity
of a number. 4)dig clr will wipe all number and negativity registers. 5)op en and op clr store and delete
operators respectively. op full is only high if an operator is present and op clr has not been pressed

14

Computation Testbench

Figure 20: Simulation waveform of computation block; where previous inputs are processed and an answer
is output. 1)A en and B en take the current BCD numbers, compute them into binary and store them in
the A and B operands respectively. 2)When math en triggers, the system will take the current values of A
and B, along with the current operator and calculate and answer. 3)When answer store is detected, previous
answer is stored in the A operand and can be used for recursion. 4)When an answer exceeds the bounds
(-999 to 999) the answer will be set to zero and the overflow signal will go high.

Binary to BCD Testbench

Figure 21: Simulation waveform of the BCD to binary converter. 1)When answer full goes high converter
begins shifting in binary signal. 2)Between each shift the current BCD variables are checked to see if they
are greater than 5. If so, the converter adds 3 to them an continues with the shifts. 3)Upon all shifts being
conducted each BCD bin is filled with their respective quantity. In this waveform, the number coming in
was 999 and the output was a 9, 9, and 9.

Appendix 4: VHDL Programs

UART Input Code

1 --

2 -- Company: Thayer School of Engineering

3 -- Engineer: Gavin Burns & Sarah Hutchinson

4 --

5 -- Create Date: 08/14/2021 12:37:03 AM

6 -- Design Name:

7 -- Module Name: ASCII_converter - behavior

8 -- Project Name: ENGS31 - [REDACTED]

9 -- Target Devices: Basys3 FPGA

10 -- Tool Versions:

11 -- Description:

12 --

13 -- Dependencies:

14 --

15 -- Revision:

16 -- Revision 0.01 - File Created

17 -- Additional Comments:

18 --

19 --

20

21 library IEEE;

22 use IEEE.std_logic_1164.all;

23 use ieee.numeric_std.all;

24

25 entity UART_input is

26 port(

27 clk_port: in std_logic; -- 1 MHz serial clock

15

28 serial_input: in std_logic; --inupt from the keyboard

29 par_output: out std_logic_vector (7 downto 0); --output signal

30

31 par_output_check: out std_logic_vector (7 downto 0)); --for debugging

32

33 end UART_input

34 architecture behavior of UART_input is

35 constant MAXTIME: integer := 8; -- ~1 MHz /115 ,200 baud

36 constant MAXSHIFT: integer := 10; --shift 10 times

37 signal time_count: unsigned (13 downto 0) := (others => ’0’); --keeps track of time

38 signal shift_count: unsigned (4 downto 0) := (others => ’0’); --keeps track of number

of shifts

39 signal shift_values: std_logic_vector (9 downto 0) := (others => ’0’); --currently

shifting values

40

41 signal hold: std_logic := ’0’; --passes the shifting process

42 signal shift_en: std_logic := ’0’; --enables shift_values to be shifted

43 signal load_en: std_logic := ’0’; --loads current values into par_out_temp

44 signal clr: std_logic := ’0’; --clears all currently held values

45

46 signal count: std_logic := ’0’; --keeps track of time between shifts

47 signal timeout: std_logic := ’0’; --signals when MAXTIME has been reached

48 signal count_reset: std_logic := ’0’; --resets the count

49

50 signal Dsync: std_logic := ’1’; --Synchronizes incoming signal

51 signal Dout: std_logic := ’1’; - -^^^^^^^^^^^^^^^^^^^^^^^^^^

52 signal Start: std_logic := ’1’; --signals the start of the reading

53

54 signal first_bit: std_logic := ’0’;

55 signal par_out_temp: std_logic_vector (7 downto 0); --temporarily holds the parallel out

signal

56

57 type state_type is (idle , count_baud_1 , shift_bits_1 , count_baud , shift_bits , load , done

); --7 state machine

58 signal curr_state: state_type := idle; --begin in Idle

59 signal next_state: state_type;

60

61

62 begin

63

64 synchronizer: process(clk_port) --syncronizes the incoming signal

65 begin

66 if rising_edge(clk_port) then

67 Dsync <= serial_input;

68 Dout <= Dsync;

69 end if;

70 end process synchronizer;

71

72 FSM_inc: process(clk_port) --moves through the state machine at the rising edge of the

clock

73 begin

74 if rising_edge(clk_port) then

75 curr_state <= next_state;

76 end if;

77 end process FSM_inc;

78

79

80 FSM_comb: process(curr_state , timeout , Start , shift_count)

81 begin

82 next_state <= curr_state; --default values

83 shift_en <= ’0’;

84 load_en <= ’0’;

85 hold <= ’0’;

86 count <= ’0’;

87 count_reset <= ’0’;

88 first_bit <= ’0’;

89 clr <= ’0’;

90

91 case curr_state is

92 when idle =>

93 count_reset <= ’1’; --reset count

94

95 if Start = ’0’ then --if incoming signal goes low

96 next_state <= count_baud_1; --move to Count_Baud_1(start shifting in

bits)

97 end if;

98

99 when count_baud_1 =>

100 count <= ’1’; --begin counting(for baud rate)

101 first_bit <= ’1’;

102 hold <= ’1’; --hold onto current value

103

104 if timeout = ’1’ then --when MAXCOUNT is reached

105 next_state <= shift_bits_1; --move to Shift_Bits_1

106 end if;

107

108 when shift_bits_1 =>

109 shift_en <= ’1’; --shift in new bit

110 first_bit <= ’1’;

111

112 next_state <= count_baud; --else move to count Baud

16

113

114 when count_baud =>

115 count <= ’1’; --begin counting(for baud rate)

116 hold <= ’1’; --hold current values

117

118 if timeout = ’1’ then --when MAXCOUNT is reached

119 next_state <= shift_bits; --move to Shift_Bits

120 end if;

121

122 when shift_bits =>

123 shift_en <= ’1’; --shift in new bit

124

125 if shift_count >= (MAXSHIFT -1) then --if shift_count is greater than

MAXSHIFT - 1

126 next_state <= load; --move to Load state

127 else

128 next_state <= count_baud; --else move to count Baud

129 end if;

130

131 when load =>

132 load_en <= ’1’; --load in currently shifted values

133

134 next_state <= done; --move to Done

135

136 when done =>

137 clr <= ’1’; --clear all currently held values(get ready for next set of values

)

138

139 next_state <= idle; --move to Idle

140

141 end case;

142 end process FSM_comb;

143

144 shift_counter: process(clk_port , shift_en , hold) --counts the number of shifts

145 begin

146 if rising_edge(clk_port) then --on rising edge

147 if hold = ’1’ then --if hold is high

148 shift_count <= shift_count; --hold values

149 elsif shift_en = ’1’ then --if shift_en is high

150 shift_count <= shift_count + 1; --increment shift count

151 else

152 shift_count <= (others => ’0’); --else , reset count

153 end if;

154 end if;

155 end process;

156

157 timer: process(clk_port , count_reset , first_bit , time_count , count) --counts for baud rate

158 begin

159 if rising_edge(clk_port) then --on rising edge

160 if count = ’1’ then --if count is high

161 time_count <= time_count + 1; --increment time_count

162 if first_bit = ’1’ then --if this is the first bit

163 if time_count >= (MAXTIME /2 - 3) then --set timeout a little sooner

164 timeout <= ’1’;

165 time_count <= (others => ’0’); --reset count

166 else

167 timeout <= ’0’;

168 end if;

169 else --if not the first bit

170 if time_count = (MAXTIME - 2) then --timeout triggers at normal rate

171 timeout <= ’1’;

172 time_count <= (others => ’0’);

173 else

174 timeout <= ’0’;

175 end if;

176 end if;

177 else

178 time_count <= time_count; --defualt

179 end if;

180

181 if count_reset = ’1’ then --if count_reset is high

182 time_count <= (others => ’0’); --reset time_count

183 end if;

184 end if;

185 end process timer;

186

187 RTL: process(clk_port) --controls the shifting and loading of the bits

188 begin

189 if rising_edge(clk_port) then --on rising edge

190 if Dout = ’0’ then --if Dout gows low

191 Start <= ’0’; --Start mimics

192 else

193 Start <= ’1’; --else , Start also mimics

194 end if;

195

196 if shift_en =’1’ then --if shift_en is high

197 shift_values <= Dout & shift_values (9 downto 1); --take in new value and right

shift

198 else

199 shift_values <= shift_values; --else , hold current value

200 end if;

17

201

202 if(clr = ’1’) then --if clear is high (priority)

203 par_out_temp <= (others => ’0’); --clear currently stored values

204 elsif load_en = ’1’ then --if load is high

205 par_out_temp <= shift_values (8 downto 1); --load bits into par_out_temp

206 par_output_check <= shift_values (8 downto 1); --just for debugging(lets us see

the values being input)

207 else

208 par_out_temp <= par_out_temp; --else , hold current values

209 end if;

210

211 par_output <= par_out_temp; --at the end of the cycle output the newly loaded

values

212 end if;

213 end process RTL;

214

215 end behavior;

18

ASCII Converter Code

1 --

2 -- Company: Thayer School of Engineering

3 -- Engineer: Gavin Burns & Sarah Hutchinson

4 --

5 -- Create Date: 08/16/2021 09:33:50 AM

6 -- Design Name:

7 -- Module Name: ASCII_converter - behavior

8 -- Project Name: ENGS31 - [REDACTED]

9 -- Target Devices: Basys3 FPGA

10 -- Tool Versions:

11 -- Description:

12 --

13 -- Dependencies:

14 --

15 -- Revision:

16 -- Revision 0.01 - File Created

17 -- Additional Comments:

18 --

19 --

20

21

22 library IEEE;

23 use IEEE.STD_LOGIC_1164.ALL;

24 use IEEE.NUMERIC_STD.ALL;

25

26 -- Uncomment the following library declaration if instantiating

27 -- any Xilinx leaf cells in this code.

28 --library UNISIM;

29 --use UNISIM.VComponents.all;

30

31 entity ASCII_converter is

32 Port (clk: in STD_LOGIC; -- 1 MHz

33 ASCII_code : in STD_LOGIC_VECTOR (7 downto 0); --8bit ASCII code from serial

34

35 op_code : out STD_LOGIC_VECTOR (1 downto 0); --operator code for (+ - * /)

36 dig_code : out STD_LOGIC_VECTOR (3 downto 0); --digit code for (0-9)

37 valid_int : out STD_LOGIC;--signal valid integer

38 valid_op : out STD_LOGIC; --signals valid operator

39 valid_neg : out STD_LOGIC; --signals negative symbol

40 entr : out STD_LOGIC; --signals enter key

41 dlt : out STD_LOGIC); --signals delete key

42 end ASCII_converter;

43

44 architecture behavior of ASCII_converter is

45

46 begin

47

48 ASCII_converter: process(clk)

49 begin

50

51 if rising_edge(clk) then

52 case ASCII_code is

53

54 when "00100000" => --delete key

55 dlt <= ’1’; --delete code

56

57 when "00001000" => --backspace key

58 dlt <= ’1’; --delete code

59

60 when "00001010" => --enter key

61 entr <= ’1’; --enter code

62

63 when "00101011" => --plus key

64

65 valid_op <= ’1’;

66 op_code <= "00"; --addition code

67

68 when "00101101" => --minus key

69 valid_neg <= ’1’;

70 valid_op <= ’1’;

71 op_code <= "01"; --subtraction code

72

73 when "00101010" => --asterisks key

74 valid_op <= ’1’;

75 op_code <= "10"; --multiplication code

76

77 when "00101111" => --slash key

78 valid_op <= ’1’;

79 op_code <= "11"; --division code

80

81 when "00110000" => --0 key

82 valid_int <= ’1’;

83 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

84

85 when "00110001" => --1 key

86 valid_int <= ’1’;

87 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

88

89 when "00110010" => --2 key

19

90 valid_int <= ’1’;

91 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

92

93 when "00110011" => --3 key

94 valid_int <= ’1’;

95 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

96

97 when "00110100" => --4 key

98 valid_int <= ’1’;

99 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

100

101 when "00110101" => --5 key

102 valid_int <= ’1’;

103 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

104

105 when "00110110" => --6 key

106 valid_int <= ’1’;

107 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

108

109 when "00110111" => --7 key

110 valid_int <= ’1’;

111 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

112

113 when "00111000" => --8 key

114 valid_int <= ’1’;

115 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

116

117 when "00111001" => --9 key

118 valid_int <= ’1’;

119 dig_code <= ASCII_code (3 downto 0); --take the last 4 digits

120

121 when others =>

122 --op_code <= (others => ’0’);

123 --dig_code <= (others => ’0’);

124 valid_int <= ’0’; --set them all off for all other cases

125 valid_op <= ’0’;

126 valid_neg <= ’0’;

127 entr <= ’0’;

128 dlt <= ’0’;

129 end case;

130 end if;

131 end process;

132 end behavior;

20

Num Controller Code

1 --

2 -- Company: Thayer School of Engineering

3 -- Engineer: Gavin Burns & Sarah Hutchinson

4 --

5 -- Create Date: 08/11/2021 11:39:17 AM

6 -- Design Name:

7 -- Module Name: num_controller - behavior

8 -- Project Name: ENGS31 - [REDACTED]

9 -- Target Devices: Basys3 FPGA

10 -- Tool Versions:

11 -- Description:

12 --

13 -- Dependencies:

14 --

15 -- Revision:

16 -- Revision 0.01 - File Created

17 -- Additional Comments:

18 --

19 --

20

21

22 library IEEE;

23 use IEEE.STD_LOGIC_1164.ALL;

24 use IEEE.NUMERIC_STD.ALL;

25

26 -- Uncomment the following library declaration if instantiating

27 -- any Xilinx leaf cells in this code.

28 --library UNISIM;

29 --use UNISIM.VComponents.all;

30

31 entity num_controller is

32 generic(

33 NUM_DIGITS: integer := 3); --control the largest number of digits

34 Port (clk: in STD_LOGIC; --clock signal

35 valid_int : in STD_LOGIC; --signals valid integer

36 valid_op : in STD_LOGIC; --signals valid operator

37 valid_neg : in STD_LOGIC; --signals valid negative symbol

38 entr : in STD_LOGIC; --signals enter key

39 dlt : in STD_LOGIC; --signals delete key

40 op_full : in STD_LOGIC; --signals that an operator has been input

41 answer_full : in STD_LOGIC; --signals that an answer has been computed

42 overflow : in STD_LOGIC; -- signals that the answer has overflown

43

44 dig_en : out STD_LOGIC; --enables digit storage

45 dig_dlt : out STD_LOGIC; --deletes least significant digit

46 dig_clr : out STD_LOGIC; --clears all digit registers

47 op_en : out STD_LOGIC; --enables operator storage

48 op_clr : out STD_LOGIC; --clears operator register

49 neg_en : out STD_LOGIC; --toggles number negativity

50 A_en : out STD_LOGIC; --enable storage into the A operand

51 B_en : out STD_LOGIC; --enables storage into the B operand

52 math_en : out STD_LOGIC; --enables computation

53 LED_output: out STD_LOGIC_VECTOR (1 downto 0); --determines what is output to the

computer

54 signal_output: out STD_LOGIC_VECTOR (1 downto 0); --determines what is output to

the computer

55 answer_store: out STD_LOGIC); --stores the operand in operand A

56

57 end entity;

58

59 architecture behavior of num_controller is

60

61 type state_type is (Empty , StoreDigit , StoreNeg , DeleteDigit , LoadA , LoadB , WaitOperator

, StoreOperator , DeleteOperator , Clear , Restart , Compute , oops , Idle , AnswerBuffer ,

AnswerWaitOperator , AnswerStoreOperator , AnswerDeleteOperator); --13 states

62 signal curr_state: state_type := Empty; -- start in EMPTY state

63 signal next_state: state_type;

64

65 signal count: unsigned (2 downto 0):= (others => ’0’); --counts the number of times a

digit has been entered (MAX 3)

66 signal output_temp: std_logic_vector (1 downto 0):= (others => ’0’);

67 signal count_en: std_logic := ’0’; --enables count increment

68 signal count_reset: std_logic := ’0’; --signal to reset counter

69 signal dir: std_logic := ’0’; --determine if count goes up or down

70 signal TC: std_logic := ’0’; --output signal when max is reached

71

72 signal FLAG_en: std_logic := ’0’; --enable FLAG toggle

73 signal FLAG: std_logic := ’0’; --determines which operand

74

75 begin

76

77 Controller_Update: process(clk)

78 begin

79 if rising_edge(clk) then

80 curr_state <= next_state; --move to next state at the start of the next clock

cycle

81 end if;

82 end process;

83

21

84 Controller_Logic: process(curr_state , valid_int , valid_op , valid_neg , entr , dlt , op_full

, answer_full , TC, FLAG , overflow , output_temp)

85 begin

86 next_state <= curr_state; --default values

87 dig_en <= ’0’;

88 dig_dlt <= ’0’;

89 dig_clr <= ’0’;

90 op_en <= ’0’;

91 op_clr <= ’0’;

92 neg_en <= ’0’;

93 A_en <= ’0’;

94 B_en <= ’0’;

95 math_en <= ’0’;

96 answer_store <= ’0’;

97 count_en <= ’0’;

98 count_reset <= ’0’;

99 FLAG_en <= ’0’;

100 dir <= ’0’;

101 signal_output <= "00";

102 LED_output <= "00";

103

104 case curr_state is

105 when Empty => --begin in empty

106 signal_output <= "00";

107

108 if(FLAG = ’1’) then

109 LED_output <= "10";

110 else

111 LED_output <= "00";

112 end if;

113

114

115 if ((valid_int AND NOT(TC)) =’1’) then --if a number is recognized and the

registers aren ’t filled

116 next_state <= StoreDigit; --go to STORE_DIGIT

117 end if;

118

119 if (valid_neg = ’1’) then --if a negative symbol is recognized

120 next_state <= StoreNeg; --go to STORE_NEG

121 end if;

122

123 if (dlt = ’1’) then --if delete key is recognized

124 next_state <= DeleteDigit; --go to DELETE_DIGIT

125 end if;

126

127 if (entr = ’1’) then --if enter key is recognized

128 if (FLAG = ’1’) then --and the flag is raised

129 next_state <= LoadB; --go to LOAD_B

130 else --if flag is down

131 next_state <= LoadA; --go to LOAD_A

132 end if;

133 end if;

134

135

136 when StoreDigit => --STORE_DIGIT state

137 dig_en <= ’1’; --enable digit storage

138

139 count_en <= ’1’; --enable counter

140 dir <= ’1’; --have it increment +1

141

142 next_state <= Empty; --return to EMPTY

143

144

145 when DeleteDigit => --DELETE_DIGIT state

146 dig_en <= ’1’; --enble digit storage

147 dig_dlt <= ’1’; --delete lsd and have the numbers shift back

148

149 count_en <= ’1’; --enable counter

150 dir <= ’0’; --have it increment -1

151

152 next_state <= Empty; --return to EMPTY

153

154

155 when StoreNeg => --STORE_NEG state

156 neg_en <= ’1’; --toggle negative sign

157

158 next_state <= Empty; --return to EMPTY

159

160

161 when LoadA => --LOAD_A state

162 A_en <= ’1’; --load all current digits into operand A

163 FLAG_en <= ’1’; --raise flag; indicates that next operand being stored is B

164

165 next_state <= WaitOperator; --move to WAIT_OPERATOR

166

167

168 when LoadB => --LOAD_B state

169 B_en <= ’1’; --load all current digits into operand A

170 next_state <= Compute; --move to COMPUTE; carries out the math operations

171

172

22

173 when WaitOperator => --WAIT_OPERATOR state

174 signal_output <= "00";

175 LED_output <= "01";

176

177 if (valid_op = ’1’) then --if an operator is recognized

178 next_state <= StoreOperator; --go to STORE_OPERATOR

179 end if;

180

181 if (dlt = ’1’) then --if delete key is recognized

182 next_state <= DeleteOperator; --go to DELETE_OPERATOR

183 end if;

184

185 if ((entr AND op_full) = ’1’) then --if enter key is recognized and there is

an operator present

186 next_state <= Clear; --move to CLEAR; clears previous digits and gets

ready to store operand B

187 end if;

188

189

190 when StoreOperator => --STORE_OPERATOR state

191 op_en <= ’1’; --store the inputed operator

192

193 next_state <= WaitOperator; --retrn to WAIT_OPERATOR; gives user option to

change operator later

194

195

196 when DeleteOperator => --DELETE_OPERATOR state

197 op_clr <= ’1’; --clear currently stored operator

198

199 next_state <= WaitOperator; --return to WAIT_OPERATOR

200

201

202 when Clear => --CLEAR state

203 dig_clr <= ’1’; --clear all current g=digits and reset negativity

204

205 count_reset <= ’1’; --reset count

206

207 next_state <= Empty; --move to EMPTY

208

209

210 when Compute => --COMPUTE state

211 math_en <= ’1’; --compute the ansewer

212

213 if (answer_full = ’1’) then --when an answer is ready

214 if(overflow = ’1’) then

215 next_state <= oops;

216 else

217 next_state <= Idle;

218 end if;

219 end if;

220

221 when oops =>

222 signal_output <= "11";

223 LED_output <= "11";

224

225 if ((entr OR dlt) = ’1’) then --if enter or delete is recognized

226 next_state <= Restart; --restart the entire process; begining with

operand A

227 end if;

228

229 when Idle =>

230 signal_output <= "01";

231 LED_output <= "11";

232

233 if (valid_op = ’1’) then --if operator recgnized

234 next_state <= AnswerBuffer; --move to STORE_OPERATOR; skips A operand

since the answer is stored in there

235 end if;

236

237 if ((entr OR dlt) = ’1’) then --if enter or delete is recognized

238 next_state <= Restart; --restart the entire process; begining with

operand A

239 end if;

240

241 when AnswerBuffer =>

242 answer_store <= ’1’; --enable storage of the answer

243 A_en <= ’1’; --store the answer in operand A; this lets the user connect

equations together

244 op_clr <= ’1’; --clear currently stored operator

245

246 next_state <= AnswerStoreOperator;

247

248 when AnswerWaitOperator => --WAIT_OPERATOR state

249 signal_output <= "10";

250 LED_output <= "01";

251

252 if (valid_op = ’1’) then --if an operator is recognized

253 next_state <= AnswerStoreOperator; --go to STORE_OPERATOR

254 end if;

255

256 if (dlt = ’1’) then --if delete key is recognized

23

257 next_state <= AnswerDeleteOperator; --go to DELETE_OPERATOR

258 end if;

259

260 if ((entr AND op_full) = ’1’) then --if enter key is recognized and there is

an operator present

261 next_state <= Clear; --move to CLEAR; clears previous digits and gets

ready to store operand B

262 end if;

263

264

265 when AnswerStoreOperator => --STORE_OPERATOR state

266 op_en <= ’1’; --store the inputed operator

267

268 next_state <= AnswerWaitOperator; --retrn to WAIT_OPERATOR; gives user

option to change operator later

269

270

271 when AnswerDeleteOperator => --DELETE_OPERATOR state

272 op_clr <= ’1’; --clear currently stored operator

273

274 next_state <= AnswerWaitOperator; --return to WAIT_OPERATOR

275

276 when Restart => --RESTART state

277 dig_clr <= ’1’; --clear currently stored digits

278 op_clr <= ’1’; --clear operator

279 FLAG_en <= ’1’; --lower flag; returning to A operand storage

280

281 count_reset <= ’1’; --reset count

282

283 next_state <= Empty; --move to EMPTY

284 end case;

285 end process;

286

287 Counter: process(clk , count) --controls the user from pushing out the msd

288 begin

289 if rising_edge(clk) then

290 if(count_reset = ’1’) then --if reset count is enabled; priority over count

enable

291 count <= (others => ’0’); --reset count

292 elsif(count_en = ’1’) then --else if count is enabled

293 if(dir = ’0’ AND NOT(count = 0)) then --and direction is low and count isnt

already at 0

294 count <= count - 1; --increment -1

295 elsif (dir = ’1’ AND count <= NUM_DIGITS) then -- or if direction is high

and count isnt already larger than NUM_DIGITS

296 count <= count + 1; --increment +1

297 end if;

298 end if;

299 end if;

300

301 TC <= ’0’; --default value

302 if(count >= NUM_DIGITS) then --if count is higher or equal to than the number of

permitted digits (3)

303 TC <= ’1’; --TC goes high

304 end if;

305 end process;

306

307 FlagPole: process(clk) --toggles the current state of the FLAG indicator

308 begin

309 if rising_edge(clk) then

310 if (FLAG_en = ’1’) then

311 FLAG <= NOT(FLAG); --toggle FLAG

312 end if;

313 end if;

314 end process;

315 end behavior;

24

Num Datapath Code

1 --

2 -- Company: Thayer School of Engineering

3 -- Engineer: Gavin Burns & Sarah Hutchinson

4 --

5 -- Create Date: 08/11/2021 08:13:33 PM

6 -- Design Name:

7 -- Module Name: ASCII_converter_tb - testbench

8 -- Project Name: ENGS31 - [REDACTED]

9 -- Target Devices: Basys3 FPGA

10 -- Tool Versions:

11 -- Description:

12 --

13 -- Dependencies:

14 --

15 -- Revision:

16 -- Revision 0.01 - File Created

17 -- Additional Comments:

18 --

19 --

20

21 library IEEE;

22 use IEEE.std_logic_1164.all;

23

24 entity num_datapath is

25 --generic(

26 --NUM_DIGITS: integer); --control the largest number of digits

27 port(

28 clk:in std_logic; --clock signal

29 dig_code: in std_logic_vector (3 downto 0); --BCD number between 0-9

30 op_code: in std_logic_vector (1 downto 0); --operator code: 00= addition , 01=sub , 10=

mult , 11=div

31 dig_en: in std_logic; --enables digit storage

32 dig_dlt: in std_logic; --deletes least significant digit

33 dig_clr: in std_logic; --clears all digit registers

34 op_en: in std_logic; --enable operator storage

35 op_clr: in std_logic; --clears operator register

36 neg_en: in std_logic; --toggles number negativity

37

38 op: out std_logic_vector (1 downto 0); --entered operator

39 num0: out std_logic_vector (3 downto 0); --one ’s place

40 num1: out std_logic_vector (3 downto 0); --ten ’s place

41 num2: out std_logic_vector (3 downto 0); --hundred ’s place

42 neg: out std_logic; --current negativity

43 op_full: out std_logic); --whether an operator is present

44

45 end num_datapath;

46

47 architecture behavior of num_datapath is

48

49 signal temp_neg: std_logic := ’0’; --for T Flip -Flop

50 signal dig0 , dig1 , dig2: std_logic_vector (3 downto 0):= (others => ’0’); --tmeporary

digits

51 -- signal num0_temp , num1_temp , num2_temp: std_logic_vector (3 downto 0):= (others => ’0’)

;

52

53 begin

54 operator: process(clk)

55 begin

56 if rising_edge(clk) then --on the rising edge

57 if(op_en = ’1’) then

58 op <= op_code; --store operator

59 op_full <= ’1’; --set operator to full (lets you move to next state

60 end if;

61

62 if(op_clr = ’1’) then

63 --op <= others => ’0’; --clear operator (default to addition)

64 op_full <= ’0’; --set operator to empty (cannot move on until operator is

input)

65 end if;

66 end if;

67 end process;

68

69 negative: process(clk , temp_neg)

70 begin

71 if rising_edge(clk) then --on rising edge

72 if(neg_en = ’1’) then

73 temp_neg <= NOT(temp_neg); --toggle negativity

74 end if;

75

76 if(dig_clr = ’1’) then

77 temp_neg <= ’0’; --reset negativity

78 end if;

79 end if;

80

81 neg <= temp_neg; --output current negativity

82 end process;

83

84 number: process (clk , dig0 , dig1 , dig2)

85 begin

25

86 if rising_edge(clk) then -- on rissing edge

87 if(dig_en = ’1’) then

88 dig0 <= dig_code; --shift msd and store entered digit

89 dig1 <= dig0;

90 dig2 <= dig1;

91 end if;

92

93 if(dig_dlt = ’1’) then

94 dig0 <= dig1; --delete lsd and shift

95 dig1 <= dig2;

96 dig2 <= (others => ’0’);

97 end if;

98

99 if(dig_clr = ’1’) then

100 dig0 <= (others => ’0’); --clear all digits

101 dig1 <= (others => ’0’);

102 dig2 <= (others => ’0’);

103 end if;

104

105

106 -- num0_temp <= num0_temp;

107 -- num1_temp <= num1_temp;

108 -- num2_temp <= num2_temp;

109

110 --if(busy_convert = ’0’) then

111 num0 <= dig0; --output current digits

112 num1 <= dig1;

113 num2 <= dig2;

114 --end if;

115

116 -- num0 <= num0_temp;

117 -- num1 <= num1_temp;

118 -- num2 <= num2_temp;

119 end if;

120

121 end process;

122

123 end behavior;

26

Math Code

1 --

2 -- Company: Thayer School of Engineering

3 -- Engineer: Gavin Burns & Sarah Hutchinson

4 --

5 -- Create Date: 08/16/2021 11:43:22 AM

6 -- Design Name:

7 -- Module Name: Math - Behavioral

8 -- Project Name: ENGS31 - Operation_[REDACTED]

9 -- Target Devices: Basys3 FPGA

10 -- Tool Versions:

11 -- Description:

12 --

13 -- Dependencies:

14 --

15 -- Revision:

16 -- Revision 0.01 - File Created

17 -- Additional Comments:

18 --

19 --

20

21

22 library IEEE;

23 use IEEE.STD_LOGIC_1164.ALL;

24 use IEEE.NUMERIC_STD.ALL;

25

26 -- Uncomment the following library declaration if instantiating

27 -- any Xilinx leaf cells in this code.

28 --library UNISIM;

29 --use UNISIM.VComponents.all;

30

31 entity Math is

32 Port (clk: in STD_LOGIC; --clock signal

33 num0: in std_logic_vector (3 downto 0); --one ’s place

34 num1: in std_logic_vector (3 downto 0); --ten ’s place

35 num2: in std_logic_vector (3 downto 0); --hundred ’s place

36 neg: in std_logic; --current negativity

37 op: in STD_LOGIC_VECTOR (1 downto 0); --operator

38 A_en : in STD_LOGIC; --enables storage of number into A operand

39 B_en : in STD_LOGIC; --enables storage of number into B operand

40 math_en : in STD_LOGIC; --enables computation of A and B by op

41 answer_store : in STD_LOGIC; --stores the answer in the A operand

42

43 answer : out STD_LOGIC_VECTOR (9 downto 0); --outputted answer

44 A_output : out STD_LOGIC_VECTOR (9 downto 0);

45 A_neg : out STD_LOGIC;

46 overflow: out STD_LOGIC; --signals that the value is beyond -999 or 999

47 y_neg : out STD_LOGIC; --whether answer is negative our not

48 answer_full : out STD_LOGIC); --signals that an answer is ready to be presented

49 end Math;

50

51 architecture behavior of Math is

52

53 signal A: SIGNED (10 downto 0):= (others => ’0’); --Operand A; 11 bits to store numbers

between -999 to 999

54 signal B: SIGNED (10 downto 0):= (others => ’0’); --Operand A; 11 bits to store numbers

between -999 to 999

55 signal answer_temp: SIGNED (20 downto 0):= (others => ’0’); --answer; 21 bits to store

numbers between -998001 to 998001

56 --signal num0_temp: UNSIGNED (10 downto 0):= (others => ’0’);

57 --signal num1_temp: UNSIGNED (10 downto 0):= (others => ’0’);

58 --signal num2_temp: UNSIGNED (10 downto 0):= (others => ’0’);

59 --signal num3_temp: UNSIGNED (10 downto 0):= (others => ’0’);

60 constant I: unsigned (6 downto 0):= "1100100"; --needed for BCD conversion

61

62 begin

63

64 Store: process(clk)

65 begin

66 if rising_edge(clk) then

67

68 --num0_temp (3 downto 0) <= unsigned(num0);

69 --num1_temp <= resize (10* unsigned(num1), num1_temp ’length);

70 --num2_temp <= resize(I*unsigned(num2), num2_temp ’length);

71 --num3_temp <= resize (10* unsigned(num2_temp), num3_temp ’length);

72

73 if (A_en = ’1’) then

74 if (answer_store = ’1’) then

75 A <= answer_temp (10 downto 0); --store the answer into operand A(for

recursion)

76 else

77 if(neg = ’1’) then --if value is negative

78 A <= NOT(signed(resize(I*unsigned(num2) + 10* unsigned(num1) +

unsigned(num0), A’length))) + 1; --two ’s compliment of the digits

79 else

80 A <= signed(resize(I*unsigned(num2) + 10* unsigned(num1) + unsigned(

num0), A’length)); --store digits in operand A

81 end if;

82 end if;

83 elsif (B_en = ’1’) then

27

84 if(neg = ’1’) then --if value is negative

85 B <= NOT(signed(resize(I*unsigned(num2) + 10* unsigned(num1) +

unsigned(num0), B’length))) + 1; --two ’s compliment of the digits

86 else

87 B <= signed(resize(I*unsigned(num2) + 10* unsigned(num1) + unsigned(

num0), B’length)); --store digits into operand B

88 end if;

89 end if;

90

91 if(A < 0) then

92 A_neg <= ’1’; --separate the negative

93 A_output <= std_logic_vector ((NOT(A(9 downto 0)) + 1)); --store the

value in answer

94 else

95 A_neg <= ’0’;

96 A_output <= std_logic_vector(A(9 downto 0)); --store the value of answer

97 end if;

98 end if;

99 end process;

100

101 Computation: process(clk , answer_temp)

102 begin

103

104 if rising_edge(clk) then

105

106 answer_full <= ’0’;

107

108 if (math_en = ’1’) then

109

110 --answer_temp <= answer_temp;

111

112 case op is

113 when "00" => --addition operator

114 answer_temp <= resize(A + B, answer_temp ’length); --add A and B

115

116 when "01" => --subtraction operator

117 answer_temp <= resize(A - B, answer_temp ’length); --subtract B from

A

118

119 when "10" => --multiplication operator

120 answer_temp <= resize(A * B, answer_temp ’length); --multiply A and B

121

122 when "11" => --division operator

123 answer_temp <= resize(A / B, answer_temp ’length); --divide A by B

124

125 when others =>

126 answer_temp <= (others => ’0’); --set to zero so we can easily see

there ’s an error

127 end case;

128

129 end if;

130

131 if(answer_temp > 999 OR answer_temp < -999) then --if the answer is out of

bounds

132 answer <= (others => ’0’); --store the value "10000000000" (indicates an

overvalued answer)

133 overflow <= ’1’; --signal overflow(this value cannot be stored in A)

134 answer_full <= ’1’; --signal that an answer has been generated

135 else

136 if(answer_temp < 0) then

137 y_neg <= ’1’; --separate the negative

138 answer <= std_logic_vector ((NOT(answer_temp (9 downto 0)) + 1)); --

store the value in answer

139 else

140 y_neg <= ’0’;

141 answer <= std_logic_vector(answer_temp (9 downto 0)); --store the

value of answer

142 end if;

143 overflow <= ’0’;

144 answer_full <= ’1’; --signal that an answer has been generated

145 end if;

146

147 end if;

148 end process;

149

150 end behavior;

28

Binary to BCD Code

1 --

2 -- Company: Thayer School of Engineering

3 -- Engineer: Gavin Burns & Sarah Hutchinson

4 --

5 -- Create Date: 08/17/2021 10:14:52 PM

6 -- Design Name:

7 -- Module Name: ASCII_converter - behavior

8 -- Project Name: ENGS31 - [REDACTED]

9 -- Target Devices: Basys3 FPGA

10 -- Tool Versions:

11 -- Description:

12 --

13 -- Dependencies:

14 --

15 -- Revision:

16 -- Revision 0.01 - File Created

17 -- Additional Comments:

18 --

19 --

20

21

22 library IEEE;

23 use IEEE.std_logic_1164.all;

24 use ieee.numeric_std.all;

25

26 entity binary_BCD is

27 port(clk: in std_logic; --clock signal

28 answer_full: in std_logic; --signals that an answer has been generated

29 binary_in: in std_logic_vector (9 downto 0); --binary answer

30

31 y0: out std_logic_vector (3 downto 0); --BCD number (0-9) lsd

32 y1: out std_logic_vector (3 downto 0); --BCD number (0-9) mid digit

33 y2: out std_logic_vector (3 downto 0)); --BCD number (0-9) msd

34

35 end binary_BCD;

36

37 architecture behavior of binary_BCD is

38 constant NSHIFT: integer := 10; --number of total shifts

39 signal store_bin: unsigned (9 downto 0) := (others => ’0’);

40 signal temp_bcd: unsigned (11 downto 0) := (others => ’0’);

41 signal shift_count_en: std_logic := ’0’; --enables shift_cout to increment

42 signal shift_count_reset: std_logic := ’0’; --resets shift count

43 signal shift_count: unsigned (5 downto 0) := "000000"; --counts the number of

shifts

44 signal load_en: std_logic := ’0’; --loads the answer into the store_bin

45 signal clr: std_logic := ’0’; --clears store bin

46 signal shift_en: std_logic := ’0’; --right shifts the store_bin into the

BCD generator

47 signal all_shifted: std_logic := ’0’; --signals that all of the bits have

been shifted

48 signal check: std_logic := ’0’; --signals to check if each BCD bin is

greater than 5

49

50 type state_type is (idle , load_bin , shift , shift_check);

51 signal curr_state: state_type := idle;

52 signal next_state: state_type;

53

54 begin

55

56 RTL: process(clk)

57 begin

58 if rising_edge(clk) then

59

60 if(clr = ’1’) then

61 store_bin <= (others => ’0’);

62 temp_bcd <= (others => ’0’);

63 elsif load_en = ’1’ then

64 store_bin <= unsigned(binary_in); --load the answer into store_bin

65 else

66 store_bin <= store_bin;

67 end if;

68

69

70 if shift_en = ’1’ then

71 temp_bcd <= temp_bcd (10 downto 0) & store_bin (9); --left shift bits into BCD

generator

72 store_bin <= store_bin (8 downto 0) & ’0’; --left shift store_bin

73 end if;

74

75 if(check = ’1’) then

76 if temp_bcd (3 downto 0) >= 5 then --check if the first BCD bin is >5

77 temp_bcd (3 downto 0) <= temp_bcd (3 downto 0) + 3; --if so; add 3

78 else

79 temp_bcd (3 downto 0) <= temp_bcd (3 downto 0); --else; no change

80 end if;

81

82 if temp_bcd (7 downto 4) >= 5 then --check if second BCD bin is >5

83 temp_bcd (7 downto 4) <= temp_bcd (7 downto 4) + 3; --if so; add 3

84 else

29

85 temp_bcd (7 downto 4) <= temp_bcd (7 downto 4); --else; no change

86 end if;

87

88 if temp_bcd (11 downto 8) >= 5 then --check if third BCD binis >5

89 temp_bcd (11 downto 8) <= temp_bcd (11 downto 8) + 3; --if so; add 3

90 else

91 temp_bcd (11 downto 8) <= temp_bcd (11 downto 8); --else; no change

92 end if;

93 end if;

94

95 if all_shifted = ’1’ then --once all bits have been shifted

96 y0 <= std_logic_vector(temp_bcd (3 downto 0)); --store first BCD bin in num0 (lsd

)

97 y1 <= std_logic_vector(temp_bcd (7 downto 4)); --store second BCD bin in num0 (

mid digit)

98 y2 <= std_logic_vector(temp_bcd (11 downto 8)); --store third BCD bin in num0 (

msd)

99 --else

100 --num0 <= "0000";

101 --num1 <= "0000";

102 --num2 <= "0000";

103 end if;

104

105 end if;

106

107 end process RTL;

108

109

110 FSM_comb: process(curr_state , answer_full , all_shifted)

111 begin

112 next_state <= curr_state;

113 shift_en <= ’0’;

114 load_en <= ’0’;

115 clr <= ’0’;

116 check <= ’0’;

117

118 shift_count_en <= ’0’;

119 shift_count_reset <= ’0’;

120

121 case curr_state is

122 when idle =>

123 shift_count_reset <= ’1’;

124 clr <= ’1’;

125

126 if answer_full = ’1’ then

127 next_state <= load_bin;

128 end if;

129

130 when load_bin =>

131 load_en <= ’1’;

132

133 next_state <= shift;

134

135 when shift =>

136 shift_en <= ’1’;

137 shift_count_en <= ’1’;

138

139 if all_shifted = ’1’ then

140 next_state <= idle;

141 else

142 next_state <= shift_check;

143 end if;

144

145 when shift_check =>

146 check <= ’1’;

147

148 if all_shifted = ’1’ then

149 next_state <= idle;

150 else

151 next_state <= shift;

152 end if;

153

154 end case;

155 end process FSM_comb;

156

157 counter: process(clk , shift_count , shift_count_reset)

158 begin

159 if rising_edge(clk) then

160 if(shift_count_en = ’1’) then --else if shift_count is enabled

161 shift_count <= shift_count + 1; --increment shift_count by 1;

162 end if;

163 end if;

164

165 if(shift_count_reset = ’1’) then --if reset shift_count is enabled; priority over

count enable

166 shift_count <= (others => ’0’); --reset shift_count

167 end if;

168

169 all_shifted <= ’0’; --default value

170 if(shift_count >= NSHIFT) then --if shiftcount is greater than number of required

shifts

30

171 all_shifted <= ’1’; --all_shifted goes high

172 --shift_count <= (others => ’0’);

173 end if;

174 end process;

175

176 FSM_update: process(clk)

177 begin

178 if rising_edge(clk) then

179 curr_state <= next_state;

180 end if;

181 end process FSM_update;

182

183

184 end behavior;

31

Appendix 5: Residual Warnings

Figure 22: Residual error messages

Figure 23: Zoomed in Residual error messages

We had four residual error messages. The first error message is due to the fact that an earlier version of our
project also used a UART out block to reformat the signals to be outputted back to the computer. However,
we ultimately decided to use the 7-segment display for the output instead. Since the UART is no longer
part of our project but various testbenches and debugging shells reference the block, an error was produced.
There is also a constraints error, however, this is not relevant because we did have constraints selected.
Our final two errors are about pipelining. Vivado is suggesting that due to some of the time delays associ-
ated with computation, additional registers should be added in the middle of the computation so that the
computation delays do not slow down the rest of the system. However, we were not experiencing any errors
resulting from this, so we left our design as it was.

32

Appendix 7: Resource Utilization

Figure 24: Resource Utilization

Our design used 2.22% of the look-up tables, 0.69% of the flip-flops, 1.11% of the digital signal processors,
and 18.87% of the input/output buffers.

33

	Introduction
	Design Solution
	Specifications
	Operating Instructions
	Setup
	Communicating
	Display

	Theory of Operation
	Top Level Design
	UART
	ASCII Converter
	Main Controller
	Main Datapath
	Math Block
	Binary to BCD
	Display

	Evaluation
	Functionality
	Review

	Conclusions
	Acknowledgements
	References

