ENGS 31 Final Project Report: The Calculator

Gavin Burns and Sarah Hutchinson

August 2021

Abstract

The goal of our project was to use digital electronic design to create a calculator that can add,
subtract, multiply, and divide numbers with results up to 3 digits. Our resulting design uses a computer-
connected universal asynchronous receiver-transmitter system (UART) to send signals to the FPGA,
where the calculations take place. The calculation process and results are outputted to the 7-segment
display on the FPGA, with additional features such as LEDs to indicate which step of the entry process
is occurring, and buttons to view past operand entries.

Contents
1 Introduction

2 Design Solution

2.1 Specifications e
2.2 Operating Instructions L
221 Setup . ..o e
2.2.2 Communicating e
2.2.3 Display e
2.3 Theory of Operation e
2.3.1 Top Level Design e
2.3.2 UART . . . e
2.3.3 ASCII Converter o i e e e
2.3.4 Main Controller e e
2.3.5 Main Datapath
2.3.6 Math Block e
2.3.7 Binary to BCD e
2.3.8 Display e
3 Evaluation
3.1 Functionality e e
3.2 Review o e

4 Conclusions
5 Acknowledgements

6 References

w

s s W W W W

N O O Oy UL Ut Ut

0 ~1

1 Introduction

For our final project in ENGS31 we were tasked with designing a hardware calculator in VHDL. Specifically,
we wanted a calculator that could represent integers between -999 to 999, carry the four main mathematical
operations(+ - * /), and be able to recursively apply answers to the next equation. Using processes and ideas
we’ve learned throughout the term we came up with a thorough design and began working. Over the course
of the project we practiced top-down circuit design and many different debugging techniques. Furthermore,
we added some ease of life capabilities and additive features to separate our design from a simple calculator.

2 Design Solution

2.1 Specifications

Our calculator takes inputs coming from a connected computer, manipulates entered values and operators
within the FPGA (calculator functions), and outputs values and results onto the FPGA seven-segment
display. Values come into the system through a universal asynchronous receiver-transmitter (UART) system.
This is a form of serial input. Using the Waveforms application on the computer, we enter numbers and
operators which are then sent to the FPGA, coded as an ASCII code in serial. Our calculator connected
to the computer via Analog Discovery 2 (transmits signal). Data is sent from the computer at a baud rate
of 115.2k. This rate refers to how many different signals occur per second. This is relevant because since
the UART is asynchronous, a clock signal is not sent to the FPGA and therefore it is necessary to use the
baud rate to determine how to read the incoming signal. Our system is clocked at 1MHz, which means that
a new signal is sent from the computer approximately every 8 clock cycles. Our calculator outputs to the
7-segment display on the FPGA, as well as to the LED lights. Depending on what part of the calculation
process is occurring, either the operands, a decimal point to indicate which operator is in use, or the answer
is displayed on the board. One of four LED lights illuminates at any given time to indicate which part of
the calculation is occurring and what the next entry should be from the user (waiting for operand, waiting
for operator, showing answer, or overflow). Additionally, there are input buttons on the FPGA which can
be pressed to view past operands on the 7-segment display.

2.2 Operating Instructions

2.2.1 Setup

— Connections to the computer|//

ground is connected to the
ground port of the FPGA

DIO 1 is connected to the
JA2 port. This is for testing
UART communication

Figure 1: AD2 and FPGA connections. DIO 0(pink) and 1(green) are used to send and receive signals from
the AD2 to FPGA respectively. Additional connections are made individually between the Ad2 and FPGA
to the computer. Signals are typed in via a keyboard, sent though the AD2 and finally delivered to the
FPGA vai serial data.

In order to operate our calculator it is important to understand how to set it up. Since we are using a FPGA
and AD2 converter we’ll need to connect the data ports together to communicate between them. According
to out constraints file in the Appendix, we will be using the DIO 0 and DIO 1 wires on the AD2 to control
the transmission and receiving of signals respectively. On our FPGA, the JA1 port is where our serial data
from the computer comes from, so we’ll connect the DIO 0(pink cable) wire to the JA1 port. Likewise, the
JA2 port is the transmission port of our FPGA back to the AD2 and computer moniter. Although we used
this port for checking UART capabilities and debugging you can connect the this port to the DIO 1 wire as
shown in the figure above. Do not forget to also connect the ground wire of the AD2 to the any ground port
on the FPGA. For ease of use we used the ground port closest to the AD2 (JA5).

Lastly, the micro USB ports for both the FPGA and AD2 are connected to the computer to provide
power and allow us to enter digits into the calculator via the keyboard.

2.2.2 Communicating

- (m)
W WaveForms (new workspace)
Workspace Control Settings Window Help a
e 115 2¢ Baud R 5
115.2k Baud Rate =
File Control View |Transmission and :E@
uart | s | 1¢ || Receiving wires
@Sem‘gs v |Rate: 115.2k A
w Text ©|pobrity: |Standard | V|Perity: |Nonc I = -]
[— L —_
Spy Send & Receive
”’//i Gl auto M Escape @
Sending terminal Auto Feed| = 4 B H ﬂ

)Rzmve |[DA Recewve to Fle| (] TxEcho

Figure 2: UART Protocol workspace for the Waveforms application. In it you can send data in the sending

terminal, set your baud rate, identify transmission and receiving wires, as well as view any receiving signals
in the Rx window.

In order to communicate with the calculator, we’ll be using the Waveforms app provided by the AD2 to send
serial signals to the FPGA. In the protocol workspace, we can send serial data to our system to be processed
and displayed on the seven segments displays.

As shown in the figure above it is important to set the baud rate to 115.2k to make sure serial commu-
nication is synchronized between the computer and the FPGA.

In the transmission terminal window you can type in inputs to be sent to the AD2 and subsequently the
FPGA. In our tests it was helpful to set the feed to auto send such that we wouldn’t need to press enter
after each input to successfully send it.

2.2.3 Display

Top and Bottom buttons
show the current A and B
operands respectively

De<:|ma| points are used to LEDs display the current state of the equation
dicat topeatlo -

Figure 3: FPGA Display for Calculator. The four seven segment displays show the negative and 3 digits of
the inputted and calculated numbers. Decimal points are used to indicate operators(+ - * /). LEDs in the

bottom right corner indicate current state of the equation. Starting with operand A and moving to operator,
operand B, and Answer.

When entering data from the keyboard it is important to receive some form of feedback to clarify your
entering the correct digits. When using our calculator digits will appear in the seven segment display on the
FPGA. Our calculator is reserved to only storing 3 digits so the fourth segment will be used to display the
negative sign of the number.

Additionally, valid operators will be displayed as specific decimal points found in the bottom right corner
of each segment. Only one decimal point will be lit up at any given time and moving left to right on the
FPGA, they represent the division, multiplication, subtraction, and addition.

The LEDs on the bottom right of the board are used to communicate to the user the current state of
the equation. In the figure above, the rightmost LED is on, indicating that the user will be inputting the
A operand. Moving leftward, the second LED represent entering an operator, the third LED is for the B
operand, and the fourth LED is on when an answer is being diplayed.

The last feature we have for the display is the control of the top and bottom buttons of the FPGA to
display the currently stored A and B operands. When the top button is pressed, the current display will be

overwritten to show the A operand used in the equation. The same goes for the B operand when you press
the bottom button.

2.3 Theory of Operation

The following steps indicate the typical flow of use for a person using our calculator: (See Figure 11 in
Appendix 1.)

Step 1: The user inputs an integer operand between -999 to 999 one digit at a time

Step 2: The user inputs their desired operation between addition, subtraction, multiplication, and division

Step 3: The user inputs their second integer operand between -999 to 999, which will enact their desired
operation on the previous operand

Step 4: The user receives an answer to their equation and can either chose to start a new equation(return to
step 1) or save this answer and chain it into another equation(move to step 2)

2.3.1 Top Level Design

Before diving into the details of each component, we first figured out what problems we’d come across and
describe how our deign plans to overcome them.

Starting to our problem with transmitting to the FPGA, we decided to use UART to process the serial
data inputted from our computer and turn it into a single code.

As shown in Figure 5 in Appendix 1, this code would then be fed through an ASCII Converter to interpret
the code as one of many keyboard inputs and output the necessary signals. Operators will receive a 2-bit
code to differentiate the 4 potential operators; digits will receive there associated 4-bit BCD code; and the
negative, enter, and delete keys will all get a single standard logic signal.

Signals sent from the ASCII Converter would then be read by the Controller; which in turn communicates
with the Datapath; to organize and store most of this data. The Datapath works to shuttle in digits and
operator in from the ASCII Converter and the Controller moderates when, where, and how many signals get
stored.

Once all necessary data is collected, the controller will signal the Math Block to preform the calculation.
Specifically, the Math Block converts the BCD numbers into signed binary which can then be used to
calculate the answer.

Lastly, we decided to use a Binary to BCD converter to take our binary answer (and any other variables)
and transform them into a BCD signal readable by the seven segment display. Likewise, other signals
outputted by the Controller are given to the seven segment displays to select what should be displayed at
each point in the calculation.

2.3.2 UART

The UART input component takes the serial input from the computer, which arrives at a rate of 115,200
signals per second, and compiles it into an 8-bit parallel signal which can be read by the ASCII converter to
determine which value it represents (ASCII codes are 8 bits long). In order to understand how the UART
reciever works, it is necessary to understand the components of a UART signal. A UART signal is 10 bits
long. The signal is at 1 when it is idle, and the first bit is always 0. This is called the start bit and
indicates that the next 8 bits will represent a value. The last bit is always 1, and is called the stop bit. The
synchronizer uses two flip-flops to ensure that the incoming signal is being fed to the circuit at the 1MHz
system clock speed. This is particularly important because the incoming UART signal is asynchronous. See
Figure 6 in Appendix 1 for UART Block Diagram reference. The synchronized signal is passed into the
deserializer shift register, which, in conjunction with the UART state machine, converts the serial signal to
a parallel signal. The state machine starts in the idle state. See Figure 12 in Appendix 2 for UART State
Diagram. When the first bit is detected to be a 0, the state machine moves into the count_baud_1 state. This
sends a signal to the counter that to start counting. Since the signal comes in at a rate of 115,200 signals per
second and the system is at 1IMHz, in general, the counter in general counts to 8 before it enables timeout,
which, causes the state machine to move to the shift_1 state, make shift_en high, and have the contents of
the shift register to be shifted. It is ideal to read the incoming signal in the middle of the signal to get a
steady value, so the count_baud_1 state enables timeout after 1 clock cycle, thus there is a different state
for the subsequent counting and shifting states. After each shift, the shift counter increments. While the
counter is counting, the shift counter holds its current value. Once there have been 10 shifts, the load state
is entered, during which load_en is high and the contents of the shift registers are loaded into the parallel
output.
See Figure 15 in Appendix 3 for the simulation image.

2.3.3 ASCII Converter

The goal of the ASCII converter is to take the 8-bit signal provided by the UART and decode it into specific
signals. Knowing that the 8-bit signal (labeled as par_output in block diagram) represents a single key stroke
from a keyboard, we deduced that it would be best to utilize a look-up-table to assign the input number to
a specific output signal. (See Figure 7 in Appendix 1 for ASCII Converter Block Diagram).

To do this we first had to decide which keys would be registered to which signals. This was fairly
straightforward and by using an ASCII look up table we were able to figure what the par_output code
would be for keys associated with the numbers 0-9, all necessary operators(+ - * /), and the enter key.
Consequently, both the backspace and delete key were not eligible inputs for the Waveform program that
we were using to communicate with the system. Instead, we chose to register the spacebar as our primary
delete key for the continuation of our project.

The actual hardware implementation of our ASCII Converter was just a look-up-table to check the input
signal and set the corresponding output signals. For example; when the par_output signal is recognized to
be some number, valid_int will go high and dig-code will parse the input into its BCD counterpart. The
same goes for valid_op and op_code for when an operator code is detected, valid_neg for when the -’ key is
detected, and entr/dlt for when the enter key or spacebar is detected.

For a more detailed analysis of the ASCII converter’s operation please review ASCII Converter testbenches
1 (Figure 16) and 2 (Figure 17 in Appendix 3.

2.3.4 Main Controller

The crux of our calculator is the main controller that signals to many of the other components when to do
each of their processes. (See 13 in Appendix 2 for Calculator State Diagram). Once data is decoded by the
ASCII Converter it is up to the Controller to read these signals and move though its states, commanding
the other components as it goes. The structure of the Controller’s state machine is such that we can break
down the flow of state into four individual sections(all of which are cycled through using the enter key).

The initial state of the machine begins in the first section that we’ll call the ”operands” section (colored
in blue in the above figure). In this section, user inputs are read to store and delete numbers to form the A
and B operands of the equation. Valid integers have the controller signal the datapath to store this number
while the spacebar has the controller signal to delete the least significant digit currently stored. Furthermore,
the minus symbol in this section is used to toggle the negativity of a number and other operator symbols
have no effect on the system. Another feature that is present while in this section is a counter that used to
make sure the user does not input more than 3 digits. Our calculator has a capacity to work with numbers
between -999 to 999, so it was important to us to keep the user within these bounds during number inputs.
Upon leaving this section the controller will signal to take whatever 3-digit number that has been created
and store it as the A or B operand as determined by the FLAG signal.

The FLAG signal is used to differentiate A operand from B operand storage. Upon storing a number
in operand A, the signal toggles high to signal that the next number stored will be operand B. It is then
toggled down when to calculation is complete and the Restart state is reached.

The next section of states is the ”operator” section(yellow). Similar to the operands section except user
inputs are read to store and delete operators. In this section numbers have no effect and the minus key is
registered as a minus symbol. Following this section, the Controller briefly enters the Clear state to make
sure all previous digits have been cleared before returning to the Operand section.

After operand A, B, and an operator have been stored the next section the Controller goes to is ”com-
putation”. This section signals the Math Block to compute an answer and waits to see if the user wishes to
chain the answer with another equation or start again from scratch. If the answer generated, overflows the
calculator’s capacity then the Controller will move to the Overload state which requires the user to begin a
new equation. Alternatively, any other numerical answer can be chained into a new equation by entering an
operator. This will move the Controller into a brief buffer state to store the answer as the A operand before
going to the final section.

The ”chain operator” state(Red) is nearly identical to the ”operator” section except for the signal_output
signal. This signal(along with LED_output) communicate with the seven segment display to tell them which
numbers to show. In order to show the answer and new operator at the same time, we needed to create this
additional section with a separate signal_output code.

For a waveform clarification on the controller’s operation, please see the Calculator Controller Testbench
(Figure 18) in the Appendix 3.

2.3.5 Main Datapath

According to the operating instructions of our system, the user will enter in a single digit at a time to
ultimately form a 3-digit number between -999 and 999. In order to take single digits and assemble them
into full numbers, we needed a way to preserve their order as multiple numbers are entered; this is done in
the calculator’s Datapath. (See Figure 8 in Appendix 1 for Datapath Block Diagram).

When the dig_en signal is sent from the Controller, each number register receives the previous registers
digit and numO receives the newest dig_code from the ASCII converter. Likewise, when dig_dlt is sent, each
number register is enabled to tak in a new digit, but the digit they receive is taken from the register ahead
of them.

As you can see in the diagram above the multiplexer determine where the data being stored comes from.
Tts select bit is the dig_dlt signal from the Controller; when low it sends the previous register’s digit, and
when its high it sends the following register. It should also be noted that the num2 register will always
be reset when the dig_dlt or dig_clr signals are passed to ensure that a zero is passed back to the previous
register when the delete signal is sent.

This Datapath also controls the current state of the the numbers negativity. Whenever the neg_en signal
is passed to the Datapath, the neg output will toggle between high and low with every press. We can also see
in the figure above that the dig_clr signal also resets the current state of the neg register because negativity
is very much tied to the actual number itself.

Lastly, the Datapath stores and outputs the current operator inputted into the system. When op_en is
sent, the op_code from the ASCII converter is stored in the register and an op_full signal is sent back to the
controller. This signal is to indicate that a operator has been stored and user can officially move on to the
next state.

A full waveform of the Datapath’s operations can viewed in Appendix 3 under Calculator Datapath
Testbench. (Figure 19.)

2.3.6 Math Block

Following up on the calculator’s Datapath, the Math Block takes in its digits(num0-2), negative, and operator
to form an equation for computation. (See Figure 9 in Appendix 1 for Math Block Diagram).

As a reminder, the num signals from the Datapath represent the 3 digits of a base 10 number. So
before computation num0, numl1, num2 are turned into a single binary number by multiplying the hundreds
digit(num?2) by 100, the tens digit(num0) by 10, and adding them all together. Additionally, if a negative is
present for this number then the system will preform a two’s compliment conversion to make the number a

negative. After this conversion, the new signed binary number is stored in operand A or B (as decided by
the controller) until it is needed for computation.

Speaking of which, the computation preformed is determined by the stored operator value also from
the datapath. This can be seen as the multiplexer that takes its select bit as the op signal. This value is
computed but not stored officially until the math_en signal is outputted high by the controller.

After an answer is calculated it is stored in the Answer_temp register and answer_full signal is fired
directly back to the Controller. The new answer is then immediately checked to see if it exceeds the
calculators maximum value; if so the overflow signal goes high.

Likewise, after the an answer is generated, it runs through binary conditioning to separate the negative
sign from the rest of the number. This is to make the outputting answer digestible for the binary to BCD
converter while preserving the negativity of the number. The specific process of the binary conditioning
block is as follows: the number is check to see if it less than 0; if so, two’s complement is preformed and
y-neg/A neg is set high. The same process is applied to the A operand which is also run through its own
binary to BCD converter so it can also be shown on the seven segment display.

One last feature of the Math block is its ability to store the computed answer back into the A operand.
When the controller sends the Answer_store signal it’ll loop the Answer_temp signal back to the operand A
register for storage. This allows the user to chain answers into new equations following a calculation.

Please refer to Computation Testbench (Figure 20) in Appendix 3 for an in-depth example of operation.

2.3.7 Binary to BCD

The binary to BCD block is necessary to convert the signed binary number, the calculation form, into
sets Binary Coded Decimal bytes, which are sent to the 7-segment display for output. (See Figure 10
in Appendix 1 for Binary to BCD Converter). This is done according to the Double Dabble algorithm.
(https://en.wikipedia.org/wiki/Double_dabble) The binary to BCD converter takes in a 10-bit unsigned
value. The output will be three 4-bit numbers that correspond to the three digits of the associated decimal
number. (0000 0000 0000, with the first group of four representing the 100s digit and the third group of four
representing the 1s digit). The most significant bit of the binary number gets shifted into the least significant
bit of the 12 BCD bits. Then the binary number is shifted over so there is a new msb. This occurs 12 times.
If at any point a group of 4 has a value greater than or equal to 5, 3 is added to it. This is implemented
with multiplexers and a state machine. (Intially loads all the digits in, then shifts and checks if anything is
greater than or equal to 5 each time). (See Figure 14 in Appendix 2 for the Binary to BCD State Diagram.)
Each time a shift occurs, a shift count is incremented. Once 10 shifts have occurred, the 3 BCD numbers
are outputted.
(See Figure 21 in Appendix 3 for the simulation of binary to BCD).

2.3.8 Display

(See Figure 11 in Appendix 1 for Display Block Diagram).

Although we now have all of our desired signals in the form that is transferable to the seven segment
display; we’ll need some sort of way to select which signal is displayed at any given time. And by focusing
on the keyword ”select” we immediately understood that we should use a multiplexer to do this job. There
are 4 seven segment displays that we have programmed to take a 5-bit input determining there output.
Including the decimal point to signify the current operator and we have a total of 5 inputs to shuttle to
the seven segments. Furthermore, we have four potential outputs to display at any given time: the digits
and operators being inputted by the user, the answer, the answer and the operator the user is inputting(for
chaining), and an overload sequence for when the answer is too big.

An RTL design of this block can be seen in the figure above, as you see, the first round of signal selection
is conducted by the signal output signal from the controller. This clarifies what section of the equation the
system is currently in and selects the appropriate output.

Two multiplexers follow this selection, each of which are for the additional button features that allow the
user to view each operand of the equation. Signals button_A and button_B represent the top and bottom
buttons on the FPGA board and when pressed will select the corresponding operand to be displayed on the
seven segments. It should also be noted that selection of operand A has priority over operand A as seen in
the figure above.

This same sort of selection process is used to determine which LED should light up in the calculator
sequence. As you progress through the calculator, the signal LED_output will count from 1 to 4 indicating
if the user needs to input operand A, an operator, operand B, or what to do with the answer.

3 Evaluation

3.1 Functionality

The goal of this project was to design and build a functioning calculator using what we’ve learned form
ENGS31. Specifically, we were tasked with creating calculator that could receive external keyboard inputs,
preform the basic mathematics operations, and display our answer on seven segment displays. With those
criteria (and some we created) we were very much successful in our endeavour.

Our calculator works almost exactly as we planned it to; it takes in numbers from a keyboard and actively
displays them on the seven segments. These numbers then form our operands and can be applied to the
main mathematical operations with the answer successfully being displayed.

Within the provided time frame for design we were also able to add additional feature to help users and
increase functionality. We made it so both positive and negative numbers can be processed. Added LED

sequencing to notify the user their current state within the equation. Allowed the user to check their A and
B operands after calculating their answer. Handle potential answer overflow scenarios. And gave the users
the option to chain answers into another equation for more options.

3.2 Review

Looking back on the construction of the calculator there were a lot of aspects that were really cool to work
on. Figuring out the seven segment displays and being able to control their output using the FPGA buttons
was really nice. We originally included this feature as a way to debug our code; such that we could check
each intermediate signal to see how out numbers changed as they flowed through the system. Button upon
completion we adapted it slightly to offer some useful information for our user. It was also interesting (and
a little bit challenging) to get the system to work with both positive and negative numbers. Casting the
variables into unsigned, doing the computation, and translating/resizing the back proved to be more of a
challenge than we expected but it was ultimately very cool to see working.

One functionality that we failed to implement was the ability to receive serial signals from the FPGA
and display them back on the computer monitor. We ran into many issues with converting the signals
back into ASCII codes and getting the timing working for the components to work together. In the end
we were unfortunately unsuccessful with this plan and were forced to redesign the display location to the
seven segments on the FPGA. But even with this setback, it was really amazing to design a project from
the ground up and get to use everything I've learned thus far into making it work.

4 Conclusions

The initial goal of our project was to create a calculator with computer numeric input and computer numeric
output that could handle addition, subtraction, multiplication, and division of positive and negative numbers
for results up to 3 digits. Our final product is a calculator that uses computer input to add, subtract, multiply,
and divide positive or negative numbers. The output is displayed instead on the 7-segment display of the
FPGA. We added usability features such as LED status lights and buttons to review inputs. Therefore,
the functionality of our design was exactly the same as in our proposal. We chose to output our results
differently because we found that sending data back to the computer was not working well. Using the FPGA
outputs allowed our design to look more like a calculator and to have the added LED and button features.
Future groups considering this project should work on testing the hardware/computer connection early, as
this is actually somewhat difficult. It also allows them to see what the system is outputting, which is helpful
for debugging. Additionally, connecting the 7-segment display for debugging purposes is very useful for
monitoring what is happening at every step of the calculation process. Overall, implementing ways to assess
what is happening within the design is essential. Wheres with computer coding it is possible to have the
computer print values, with digital design, it is necessary and important to implement a hardware equivalent.

5 Acknowledgements

In this project Sarah worked on the design and construction of the UART and serial communication of the
computer with the calculator. Likewise, she also designed the data conversion between Binary to BCD using
the double dabble algorithm. Gavin was tasked with the main controller and datapath of calculator and how
it would sort and process inputs from the user. He also designed the Math block and how to chain answers
into new equations. Both team members worked together to debug, testbench, and implement every aspect
of the program and worked together to design an intuitive display and additive features for the users.

We would also like to thank Ben Dobbins, Professor Eric Hansen, and our TA Yefri for their help and
guidance during the constructs of this calculator.

6 References

For the binary to BCD conversion process: https://en.wikipedia.org/wiki/Double_dabble

Appendix

The Calculator
Group 9 - Gavin Burns and Sarah Hutchinson

Appendix 1: Block Diagrams

System Flow

Enter

Enter Enter
Operand A Operator Operand B Answer
Operator
Enter OR Delete
Figure 4: Example Flow of Use
System Block Diagram
A2
o Aooutp BinarytoBCD | At
dig_code neg A pieg (A Operand) L
op_code Main Datapath "::T g:zg;{ ay'j:’
numo
»

BinarytoBCD [¥'
(Answer) o,

Gobp
4o

. it N par_output
| L (A valid_int Aen
ASCII valid_op Ben
Converter valid_neg math_en
Main Controller answer_store

enter
dit

Figure 5: The top level diagram for our project. Serial data is processed in the UART where it is turned
into an 8-bit signal. The ASCII Converter decodes this signal into codes denoting integers, operators, and
other valid inputs. These signals are read by the Controller which tells the Datapath to store or delete
these values. After two operands and an operator are entered, the Math Block computes the answer. The
generated answer is then converted into BCD which will be displayed on the seven segments

UART Block Diagram

UART Input

sarial i . . par_output
serial_lopat Dual-flop Deserializer shift L

synchronizer register 8

>

-

+

start Lhil'l en Wlueul en

UART state machine

[

count Pmld Phil‘t en

[timcuul lﬁr:\l bit \munl \
reset

Shift
counter

Baud counter

> >

Figure 6: UART converter Diagram. Serial input signal goes through a synchronizer and a deserializer and
is outputted as an 8-bit par_output signal, which is sent to the ASCII Converter

ASCII Converter Block Diagram

dig_code

par_output op_code
valid_int
ASCII valid_op
Converter valid_neg
enter
dit

Y YYYVYYY

Figure 7: ASCII converter Diagram. 8-bit par_output signal is fed in and decoded into a variety of signals
to be interpreted by the Datapath and Controller

Datapath Block Diagram

num2
numo
D a
dig_code
R EN
H ‘[Li _en
dig_dit dig_clr g num1i
numo0
[neg |
ortode 5 q o, D a neg ,
op_full

EN R EN

op_clr[Lp_en dig_clj Leg_en

Figure 8: Block diagram of the calculator’s datapath. dig.code and op_code are taken from the ASCII
converter and stored in their respective registers. As multiple digits are input, currently stored digits are
shifted through the registers to preserve their order. The reverse process occurs when digits our deleted. A
T flip-flop is used to toggle between the numbers negativity as neg_en is triggered.

10

Math Block Diagram

A output

Binary
Conditioning D a—>A output

Answer_store

D a——>A neg

Binary
Conditioning D a——>Answer

Operand B

Operator

D a——y neg

Figure 9: RTL design of the Math function block. num0, num1, num2, and neg are signals from the Datapath
that are converted into a signed binary number and stored in either operand A or B. At the command of
the Controller, the math block will compute an answer using the inputted operands and operator; and
before outputting the signal, will separate the answer into an unsigned binary number and its negativity.
Additionally, operand A can be converted in the same fashion for display on the seven segments and the
answer can be stored back into operand A for chaining equations.

shore<bin vi y2
g Y2 [3:0]
yi[3:0]

yo [3:0]

Figure 10: Block diagram for Binary to BCD Conversion. 10-bit binary converted to BCD via the Double
Dabble Algorithm, which involves shifting the 10-bit binary input into 3 sets of 4 bit numbers (BCD) and
adding 3 if the value of a 4 bit group is ever greater than or equal to 5.

Display Block Diagram

indino [eubis

neg
num2
num1

00

numo
ogevalm 3

y_neg
———

y2

—=—5 o1

g uonng

¥0 £
"00000" S
‘)
y_neg
Ly
y2 0 \
— >
i 10 >
Ty
yo 0 y_A £ >
operator B
P >| neg | 5*[) U U
] T -—
"10001" i 1 — O O
A_neg d|
oo)| g T = i o
—
*10001" —
— 10T) operator Al
10001 i L~ T 1
"00000" |
operator /
— >

Figure 11: Diagram for the seven segment display output. During the typical process of the calculator,
the controller will send signals to the first multiplex to determine what data to display. The user also has

the option to press the top and bottom button on the FPGA to display the current A and B operands
respectively.

11

Appendix 2. State Diagrams
UART State Diagram

timeout = "1'
Idle Count Baud 1 Shift Bits 1 Count Baud Shift Bits
count =1' . . .
e start = '0" N P, timeout = '1' shift_en ="1" count = 1" shift_en ="1"
TR sy first_bit ="1' hold =1 first_bit ="1'

Done Load hift_count = MAXSHIFT - 1

clr="1'

load_en ="1"

Figure 12: UART State Diagram

Calculator State Diagram

Store Digit

valid_int+ TC'

Delete Digit

signal_output ="00" dig—e“ = 1
LED_output = "00" dig_dIt ="1'
count_en ="1"
dir="0"

enter « FLAG,

Load B valid_ne Store Neg
B en ="1' neg_en="1"
enter’
Compute Load A
math_en ="1' A_en="1
FLAG_en="1'

answer_full answer_full « overflow

Store Operator
Overload

signal_output ="11" signal_output = "11"
LED_outtputt ="11" LED_outtputt = "11"

enter + dit signal_output = "00"

Restart LED_ourput = "01"

dig_clr="1"

valid_op Answer Buffer op_clr="1" Delete
L Operator
e count_reset ='1"
Answer Store answer_store = '1
Operator ‘:;ec'l‘{:: 11 enter « op_full op_clr="1"
op_en="1'

valid_op

Answer Delete
Operator

op_clr="1"

Answer
Operator

signal_output ="10"
LED_ourput = "01"

enter « op_full

Figure 13: State diagram of the main controller. The flow of the controller is split up into 4 main sections
with conditioning states in between. Each of the sections in state machine represent holding areas that
are waiting on user input to process data and move to the next sections. The blue represents inputting

operands, the yellow is inputting operators, the green is from answer computation, and the red is designated
for chaining equations together

12

Binary to BCD State Diagram

dle Load Bin Shift /\ Shift Check

shift_count_reset = '1" answer_full o shift_en ="1'
cr="1" === shift_count_en ='1'

all_shifted

all_shifted

Figure 14: Binary to BCD State Diagram

Appendix 3: Testbench Waveforms
UART Testbench

Figure 15: Simulation waveform of our UART converter. Serial signal is delivered in reverse to the UART
converter. 1)When the serial input goes low the block is trigger to begin shifting in numbers. 2)In between
shifts the values are held constant for the duration of the baud rate. Counter is active for this period and
the system is held in the Count_Baud state. 3)Signal is being fed in reverse order into the UART. 4) When
the maximum number of shifts is reached, the shifted values are sent out as a parallel signal. The parallel
out signal is taken from the shift_signal[8 downto 1].

ASCII Converter Testbench 1

Figure 16: Simulation waveform of the ASCII converter. 1)entr signal goes high when enter key is pressed.
2)dlt(spacebar) signal goes high when delete key is pressed

13

ASCII Converter Testbench 2

Figure 17: Simulation waveform for the ASCII converter. 1)Asterisks key ASCII code is recognized; valid_op
goes high and op code gains the signal for multiplication. 2)Plus key ASCII code; addition stored. 3)Sub-
traction key ASCII code; subtraction stored and valid_neg goes high. 4)Slash key ASCII code; division is
stored. 5)As digits are recognized, their binary form is stored in dig_code and valid_int goes high

Calculator Controller Testbench

Figure 18: Simulation waveform for the main calculator controller. 1)The "operand A” state; where the
user can input any 3 digit integer. la)When valid_dlt and valid_int signals are detected controller will
output dig_dlt and dig_en to add/remove stored digits. A max of 3 digits can ever be stored. 1b)Detection
of a valid_op signal has no effect in this state. 1lc)Progression to the next state is enacted with the entr
signal. 2)The ”operator” state. 2a)detecting a valid-int and valid_neg signals have no effect in this state.
2b)Detecting a valid_op will enable op storage and signal that an operator is full. 3)The ”operand B”
state, same as "operand A” state. 4)Answer state, inputs of previous states our processed and an answer is
calculated. 4a)When state is entered math_en goes high and an answer is generated. 4b)Upon leaving state,
all currently stored variables are cleared. 5)As the system progresses through different states, it signals to
the seven segment display what should be shown.

Calculator Datapath Testbench

Figure 19: Simulation waveform of the main calculator datapath. 1)When a dig_en signal is detected, current
dig_code is stored in the num0 register and currently stored dig_codes are shifted over in place. 2)dig_dlt
signals will delete the dig_code stored in num0 and shift other codes back. 3)neg_en will toggle the negativity
of a number. 4)dig_clr will wipe all number and negativity registers. 5)op-en and op_clr store and delete
operators respectively. op_full is only high if an operator is present and op_clr has not been pressed

14

Computation Testbench

Figure 20: Simulation waveform of computation block; where previous inputs are processed and an answer
is output. 1)A_en and B_en take the current BCD numbers, compute them into binary and store them in
the A and B operands respectively. 2)When math_en triggers, the system will take the current values of A
and B, along with the current operator and calculate and answer. 3)When answer_store is detected, previous
answer is stored in the A operand and can be used for recursion. 4)When an answer exceeds the bounds
(-999 to 999) the answer will be set to zero and the overflow signal will go high.

Binary to BCD Testbench

cnito hiten | shife / shifen | shife) shifeD | shift) shifeO | shifc | shifed | shift) shifel | shife) shifeD | shift [shifeO | idle | lead O | shifc | shifed | shifc

11100. 11 1 L 11

Figure 21: Simulation waveform of the BCD to binary converter. 1)When answer_full goes high converter
begins shifting in binary_signal. 2)Between each shift the current BCD variables are checked to see if they
are greater than 5. If so, the converter adds 3 to them an continues with the shifts. 3)Upon all shifts being
conducted each BCD bin is filled with their respective quantity. In this waveform, the number coming in
was 999 and the output was a 9, 9, and 9.

Appendix 4: VHDL Programs
UART Input Code

-- Company: Thayer School of Engineering
-- Engineer: Gavin Burns & Sarah Hutchinson

-- Create Date: 08/14/2021 12:37:03 AM

-- Design Name:

-- Module Name: ASCII_converter - behavior
-- Project Name: ENGS31 - [REDACTED]

-- Target Devices: Basys3 FPGA

-- Tool Versions:

-- Description:

-- Dependencies:
-- Revision:

-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;

> use IEEE.std_logic_1164.all;
; use ieee.numeric_std.all;

entity UART_input is

; port (

clk_port: in std_logic; -- 1 MHz serial clock

15

serial_input: in std_logic; --inupt from the keyboard
par_output: out std_logic_vector (7 downto 0); --output signal

par_output_check: out std_logic_vector (7 downto 0)); --for debugging

end UART_input
architecture behavior of UART_input is

constant MAXTIME: integer := 8; -- “1 MHz /115,200 baud
constant MAXSHIFT: integer := 10; --shift 10 times

signal time_count: unsigned (13 downto 0) := (others => ’0’); --keeps track of time
signal shift_count: unsigned (4 downto 0) := (others => ’0’); --keeps track of number
of shifts
signal shift_values: std_logic_vector (9 downto 0) := (others => ’0’); --currently

shifting values

signal hold: std_logic := ’0’; --passes the shifting process

signal shift_en: std_logic := ’0’; --enables shift_values to be shifted
signal load_en: std_logic := ’0’; --loads current values into par_out_temp
signal clr: std_logic := ’0’; --clears all currently held values
signal count: std_logic := ’0’; --keeps track of time between shifts
signal timeout: std_logic := ’0’; --signals when MAXTIME has been reached
signal count_reset: std_logic := ’0’; --resets the count

signal Dsync: std_logic := ’1’; --Synchronizes incoming signal

signal Dout: std_logic := ’1’; -—--"°°°foonossssnannnnnnnnnn”

signal Start: std_logic := ’1’; --signals the start of the reading
signal first_bit: std_logic := ’07;

signal par_out_temp: std_logic_vector (7 downto 0); --temporarily holds the parallel out
signal

type state_type is (idle, count_baud_1, shift_bits_1, count_baud, shift_bits, load,

); --7 state machine
signal curr_state: state_type := idle; --begin in Idle
signal next_state: state_type;
begin
synchronizer: process(clk_port) --syncronizes the incoming signal
begin

if rising_edge(clk_port) then
Dsync <= serial_input;
Dout <= Dsync;
end if;
end process synchronizer;

FSM_inc: process(clk_port) --moves through the state machine at the rising edge of the

clock
begin
if rising_edge(clk_port) then
curr_state <= next_state;
end if;
end process FSM_inc;

FSM_comb: process(curr_state, timeout, Start, shift_count)

begin
next_state <= curr_state; --default values
shift_en <= ’0’;
load_en <= ’0’;

hold <= ’07;

count <= ’0°;
count_reset <= ’07;
first_bit <= ’07;
clr <= ’0’;

case curr_state is
when idle =>

count_reset <= ’1’; --reset count
if Start = ’0’ then --if incoming signal goes 1low
next_state <= count_baud_1; --move to Count_Baud_1(start shifting in
bits)
end if;

when count_baud_1 =>

count <= ’1’; --begin counting(for baud rate)
first_bit <= ’17;
hold <= ’1’; --hold onto current value
if timeout = ’1’ then --when MAXCOUNT is reached
next_state <= shift_bits_1; --move to Shift_Bits_1
end if;

when shift_bits_1 =>
shift_en <= ’1’; --shift in new bit
first_bit <= ’1°’;

next_state <= count_baud; --else move to count Baud

16

when count_baud
count <= ’17;
hold <= ’1°;

if timeout =

next_state <=

=>
--begin counting(for baud rate)
--hold current values

’1’ then

end if;
when shift_bits =>
shift_en <= ’17;

if shift_count >=

MAXSHIFT - 1

next_state <=

else

next_state <=

end if;

when load =>
load_en <= ’17;

next_state <=
when done =>
clr <= ’17;
next_state <=

end case;
end process FSM_comb;

shift_counter:
begin

load;

shift_bits;

(MAXSHIFT-1) then

count_baud;

--when MAXCOUNT is reached
--move to Shift_Bits

--shift in new bit

--if shift_count is greater than
--move to Load state

--else move to count Baud

--load in currently shifted values

done;

idle;

process (clk_port,

shift_en,

--move to Done

--clear all currently held values(get ready for next set of values

--move to Idle

hold) --counts the number of shifts

if rising_edge(clk_port) then --on rising edge

if hold = ’1°

elsif shift_en =

shift_count <=

else

shift_count <=

end if;
end if;
end process;

timer:
begin

process (clk_port,

then
shift_count <=

1’ then

count_reset,

shift_count + 1;

(others

--if hold is high
shift_count;

--hold values
--if shift_en is high
--increment shift count

=> ’0’); --else, reset count

first_bit, time_count, count)

if rising_edge(clk_port) then --on rising edge

if count = ’1’ then
time_count <=
if first_bit = ’1°

then

--if count is high
time_count + 1;
--if this is the first bit

--increment time_count

if time_count >= (MAXTIME/2 - 3) then --set timeout a little sooner
timeout <= ’17;
time_count <= (others => ’0’); --reset count
else
timeout <= ’0’;
end if;
else --if not the first bit
if time_count = (MAXTIME - 2) then --timeout triggers at normal rate
timeout <= ’17;
time_count <= (others => ’07);
else
timeout <= ’0’;
end if;
end if;
else
time_count <= time_count; --defualt
end if;
if count_reset = ’1’ then --if count_reset is high
time_count <= (others => ’0’); --reset time_count
end if;
end if;

end process timer;

RTL: process(clk_port) --controls the shifting and loading of the bits
begin
if rising_edge(clk_port) then --on rising edge
if Dout = ’0’ then --if Dout gows low
Start <= ’0’; --Start mimics
else
Start <= ’1’; --else, Start also mimics
end if;
if shift_en =’1’ then --if shift_en is high
shift_values <= Dout & shift_values(9 downto 1); --take in new value and right
shift

else

shift_values <=

end if;

shift_values;

--else, hold current value

17

--counts for baud rate

215

if(clr = ’1°) then --if clear is high (priority)

par_out_temp <= (others => ’0’); --clear currently stored values
elsif load_en = ’1’ then --if load is high
par_out_temp <= shift_values (8 downto 1); --load bits into par_out_temp
par_output_check <= shift_values(8 downto 1); --just for debugging(lets us see
the values being input)
else
par_out_temp <= par_out_temp; --else, hold current values
end if;

par_output <= par_out_temp; --at the end of the cycle output the newly loaded
values
end if;
end process RTL;

end behavior;

18

ASCII_Converter Code

-- Company: Thayer School of Engineering
-- Engineer: Gavin Burns & Sarah Hutchinson

-- Create Date: 08/16/2021 09:33:50 AM

-- Design Name:

-- Module Name: ASCII_converter - behavior
-- Project Name: ENGS31 - [REDACTED]

-- Target Devices: Basys3 FPGA

-- Tool Versions:

-- Description:

-- Dependencies:
-- Revision:

-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;

; use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity ASCII_converter is

Port (clk: in STD_LOGIC; -- 1 MHz
ASCII_code : in STD_LOGIC_VECTOR(7 downto 0); --8bit ASCII code from serial
op_code : out STD_LOGIC_VECTOR(1 downto 0); --operator code for (+ - * /)
dig_code : out STD_LOGIC_VECTOR (3 downto 0); --digit code for (0-9)
valid_int : out STD_LOGIC;--signal valid integer
valid_op : out STD_LOGIC; --signals valid operator
valid_neg : out STD_LOGIC; --signals negative symbol
entr : out STD_LOGIC; --signals enter key
dlt : out STD_LOGIC); --signals delete key

end ASCII_converter;

architecture behavior of ASCII_converter is

; begin

ASCII_converter: process(clk)
begin

if rising_edge(clk) then
case ASCII_code is

when "00100000" => --delete key
dlt <= ’1’; --delete code

when "00001000" => --backspace key
dlt <= ’1’; --delete code

when "00001010" => --enter key
entr <= ’1’; --enter code

when "00101011" => --plus key

valid_op <= ’17;
op_code <= "00"; --addition code

when "00101101" => --minus key
valid_neg <= ’17;
valid_op <= ’17;
op_code <= "01"; --subtraction code

when "00101010" => --asterisks key
valid_op <= ’17;

op_code <= "10"; --multiplication code

when "00101111" => --slash key
valid_op <= ’17;
op_code <= "11"; --division code

when "00110000" => --0 key

valid_int <= ’17;

dig_code <= ASCII_code(3 downto 0);
when "00110001" => --1 key

valid_int <= ’17;

dig_code <= ASCII_code(3 downto 0);

when "00110010" => --2 key

19

--take the last 4 digits

--take the last 4 digits

end
end if;
end process;
end behavior;

valid_int <=
dig_code <=

when "00110011"
valid_int <=
dig_code <=

when "00110100"
valid_int <=
dig_code <=

when "00110101"
valid_int <=
dig_code <=

when "00110110"
valid_int <=
dig_code <=

when "00110111"
valid_int <=
dig_code <=

when "00111000"
valid_int <=
dig_code <=

when "00111001"
valid_int <=
dig_code <=

when others =>
--op_code <=

--dig_code <=

valid_int <=

valid_op <=

valid_neg <=

entr <= ’07;

dlt <= ’07;
case;

}1);
ASCII_code (3 digits
=> --3 key

)1);
ASCII_code (3 digits
=> --4 key

717;
ASCII_code (3 digits
=> --5 key

}17;
ASCII_code(3 digits
=> --6 key

}1);
ASCII_code (3 digits
=> --T7 key

)1};
ASCII_code (3 digits
=> --8 key

)17;
ASCII_code (3 digits
=> --9 key

}17;
ASCII_code(3 digits

(others =>

(others =>

’0?; --set them all off for all other cases
JO);

)0};

Num_Controller Code

-- Company: Thayer School of Engineering
-- Engineer: Gavin Burns & Sarah Hutchinson

-- Create Date: 08/11/2021 11:39:17 AM

-- Design Name:

-- Module Name: num_controller - behavior
-- Project Name: ENGS31 - [REDACTED]

-- Target Devices: Basys3 FPGA

-- Tool Versions:

-- Description:

-- Dependencies:
-- Revision:

-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity num_controller is
generic(

NUM_DIGITS: integer:= 3); --control the largest number of digits
Port (clk: in STD_LOGIC; --clock signal
valid_int : in STD_LOGIC; --signals valid integer
valid_op : in STD_LOGIC; --signals valid operator
valid_neg : in STD_LOGIC; --signals valid negative symbol
entr : in STD_LOGIC; --signals enter key
dlt : in STD_LOGIC; --signals delete key
op_full : in STD_LOGIC; --signals that an operator has been input
answer_full in STD_LOGIC; --signals that an answer has been computed
overflow : in STD_LOGIC; -- signals that the answer has overflown
dig_en : out STD_LOGIC; --enables digit storage
dig_dlt : out STD_LOGIC; --deletes least significant digit
dig_clr : out STD_LOGIC; --clears all digit registers
op_en : out STD_LOGIC; --enables operator storage
op_clr : out STD_LOGIC; --clears operator register
neg_en : out STD_LOGIC; --toggles number negativity
A_en : out STD_LOGIC; --enable storage into the A operand
B_en : out STD_LOGIC; --enables storage into the B operand
math_en : out STD_LOGIC; --enables computation
LED_output: out STD_LOGIC_VECTOR(1 downto 0); --determines what is output to the
computer
signal_output: out STD_LOGIC_VECTOR (1 downto 0); --determines what is output to
the computer
answer_store: out STD_LOGIC); --stores the operand in operand A

end entity;

architecture behavior of num_controller is

type state_type is (Empty, StoreDigit, StoreNeg, DeleteDigit, LoadA, LoadB, WaitOperator

, StoreOperator,

DeleteOperator, Clear, Restart, Compute, oops, Idle, AnswerBuffer,

AnswerWaitOperator , AnswerStoreOperator, AnswerDeleteOperator); --13 states

signal curr_state: state_type:= Empty; -- start in EMPTY state

signal next_state: state_type;

signal count: unsigned(2 downto 0):= (others => ’0’); --counts the number of times a

digit has been entered (MAX 3)

signal output_temp: std_logic_vector (1 downto 0):= (others => ’0’);
signal count_en: std_logic:= ’0’; --enables count increment
signal count_reset: std_logic:= ’0’; --signal to reset counter
signal dir: std_logic:= ’0’; --determine if count goes up or down
signal TC: std_logic:= ’0’; --output signal when max is reached
signal FLAG_en: std_logic:= ’0’; --enable FLAG toggle
signal FLAG: std_logic:= ’0’; --determines which operand

begin

Controller_Update:

begin

process (clk)

if rising_edge(clk) then

cycle

curr_state <=

end if;
end process;

next_state; --move to next state at the start of the next clock

21

84

90

159
160
161
162

163

165

Controller_Logic:

, answer_full, TC, FLAG, overflow,
begin
next_state <= curr_state;
dig_en <= ’07;

dig_dlt <= ’07;
dig_clr <= ’07;
op_en <= ’07;
op_clr <= ’07;
neg_en <= ’0’;
A_en <= ’0’;
B_en <= ’0’;
math_en <= ’0’;
answer_store <=
count_en <= ’0’;
count_reset <= ’07;
FLAG_en <= ’07;

dir <= ’07;
signal_output <= "00";
LED_output <= "00";

207 ;

case curr_state is
when Empty =>

process(curr_state,

valid_int,
output_temp)

valid_op, valid_neg, entr,

--default values

--begin in empty

signal_output <= "00";
if (FLAG = ’1’) then
LED_output <= "10";
else
LED_output <= "00";
end if;

if ((valid_int AND NOT(TC))

registers aren’t filled
next_state <=
end if;

if (valid_neg = ’1’) then

StoreDigit;

=’1’) then --if a number is recognized

--go to STORE_DIGIT

--if a negative symbol is recognized

next_state <= StoreNeg; --go to STORE_NEG
end if;
if (dlt = ’1’) then --if delete key is recognized

next_state <= DeleteDigit;

end if;

if (entr = ’1’) then
if (FLAG =
next_state <=
--if flag is
next_state <=
end if;
end if;

else

when StoreDigit =>

dig_en <= ’17;
count_en <= ’17;
dir <= ’1’; --have it

next_state <= Empty;

when DeleteDigit =>

dig_en <= ’17;
dig_dlt <= ’17;
count_en <= ’17;

dir <= ’0’; --have it

next_state <= Empty;

when StoreNeg =>
neg_en <= ’17;

next_state <= Empty;

when LoadA =>
A_en <= ’17;

FLAG_en <= ’17;

next_state <= WaitOperator;

when LoadB =>
)1) ;
next_state <=

B_en <=
Compute;

--raise flag;

--go to DELETE_DIGIT

--if enter key is recognized
’1’) then

--and the flag is raised

LoadB; --go to LOAD_B
down
LoadA; --go to LOAD_A

--STORE_DIGIT state
--enable digit storage

--enable counter

increment +1

--return to EMPTY

--DELETE_DIGIT state
--enble digit storage
--delete 1lsd and have the numbers shift back

--enable counter

increment -1

--return to EMPTY
--STORE_NEG state
--toggle negative sign
--return to EMPTY
--LOAD_A state

--load all current digits into operand A
indicates that next operand being stored is B

--move to WAIT_OPERATOR

--LOAD_B state
-—-load all current digits into operand A
carries out the math operations

--move to COMPUTE;

22

dlt,

op_full

and the

186

188
189
190
191
192

193

205
206
207
208
209

210

when WaitOperator => --WAIT_OPERATOR state
signal_output <= "00";
LED_output <= "01";

if (valid_op = ’1’) then --if an operator is recognized
next_state <= StorelOperator; --go to STORE_OPERATOR
end if;
if (dlt = ’1’) then --if delete key is recognized
next_state <= DeleteOperator; --go to DELETE_OPERATOR
end if;
if ((entr AND op_full) = ’1’) then --if enter key is recognized and there is

an operator present

next_state <= Clear; --move to CLEAR; clears previous digits and gets

ready to store operand B
end if;

when StoreOperator => --STORE_OPERATOR state
op_en <= ’1’; --store the inputed operator

next_state <= WaitOperator; --retrn to WAIT_OPERATOR; gives user option to

change operator later
when DeleteOperator => --DELETE_OPERATOR state
op_clr <= ’1’; --clear currently stored operator

next_state <= WaitOperator; --return to WAIT_OPERATOR

when Clear => --CLEAR state

dig_clr <= ’1’; --clear all current g=digits and reset negativity
count_reset <= ’1’; --reset count
next_state <= Empty; --move to EMPTY

when Compute => --COMPUTE state

math_en <= ’1’; --compute the ansewer
if (answer_full = ’1’) then --when an answer is ready

if (overflow = ’1’) then

next_state <= oops;

else

next_state <= Idle;

end if;
end if;

when oops =>
signal_output <= "11";
LED_output <= "11";

if ((entr OR dlt) = ’1’) then --if enter or delete is recognized

next_state <= Restart; --restart the entire process;
operand A
end if;

when Idle =>
signal_output <= "O01";
LED_output <= "11";

begining with

if (valid_op = ’1’) then --if operator recgnized
next_state <= AnswerBuffer; --move to STORE_OPERATOR; skips A operand
since the answer is stored in there
end if;
if ((entr OR dlt) = ’1’) then --if enter or delete is recognized
next_state <= Restart; --restart the entire process; begining with
operand A
end if;

when AnswerBuffer =>
answer_store <= ’1’; --enable storage of the answer

A_en <= ’1’; --store the answer in operand A; this lets the user connect

equations together
op_clr <= ’1’; --clear currently stored operator

next_state <= AnswerStoreOperator;
when AnswerWaitOperator => --WAIT_OPERATOR state

signal_output <= "10";
LED_output <= "01";

if (valid_op = ’1’) then --if an operator is recognized
next_state <= AnswerStoreOperator; --go to STORE_OPERATOR

end if;

if (dlt = ’1’) then --if delete key is recognized

23

next_state <= AnswerDeleteOperator; --go to DELETE_OPERATOR

end if;
if ((entr AND op_full) = ’1°) then --if enter key is recognized and there is
an operator present
next_state <= Clear; --move to CLEAR; clears previous digits and gets
ready to store operand B
end if;
when AnswerStoreOperator => --STORE_OPERATOR state
op_en <= ’1’; --store the inputed operator
next_state <= AnswerWaitOperator; --retrn to WAIT_OPERATOR; gives user
option to change operator later
when AnswerDeleteOperator => --DELETE_OPERATOR state
op_clr <= ’1’; --clear currently stored operator
next_state <= AnswerWaitOperator; --return to WAIT_OPERATOR
when Restart => --RESTART state
dig_clr <= ’1’; --clear currently stored digits
op_clr <= ’1’; --clear operator
FLAG_en <= ’1’; --lower flag; returning to A operand storage
count_reset <= ’1’; --reset count
next_state <= Empty; --move to EMPTY
end case;
end process;
Counter: process(clk, count) --controls the user from pushing out the msd
begin
if rising_edge(clk) then
if (count_reset = ’1’) then --if reset count is enabled; priority over count
enable
count <= (others => ’0’); --reset count
elsif (count_en = ’1’) then --else if count is enabled
if (dir = 0’ AND NOT(count = 0)) then --and direction is low and count isnt
already at O
count <= count - 1; --increment -1
elsif (dir = ’1’ AND count <= NUM_DIGITS) then -- or if direction is high
and count isnt already larger than NUM_DIGITS
count <= count + 1; --increment +1
end if;
end if;
end if;
TC <= ’0’; --default value

if (count >= NUM_DIGITS) then --if count is higher or equal to than the number of
permitted digits (3)
TC <= ’1’; --TC goes high
end if;
end process;

FlagPole: process(clk) --toggles the current state of the FLAG indicator

begin
if rising_edge(clk) then
if (FLAG_en = ’1’) then
FLAG <= NOT(FLAG); --toggle FLAG
end if;
end if;

end process;
end behavior;

24

Num_Datapath Code

-- Company: Thayer School of Engineering
-- Engineer: Gavin Burns & Sarah Hutchinson

-- Create Date: 08/11/2021 08:13:33 PM

-- Design Name:

-- Module Name: ASCII_converter_tb - testbench
-- Project Name: ENGS31 - [REDACTED]

-- Target Devices: Basys3 FPGA

-- Tool Versions:

-- Description:

-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.std_logic_1164.all;

entity num_datapath is
--generic(
--NUM_DIGITS: integer); --control the largest number of digits
port (
clk:in std_logic; --clock signal
dig_code: in std_logic_vector (3 downto 0); --BCD number between 0-9
op_code: in std_logic_vector (1 downto 0); --operator code: OO=addition, Ol=sub, 10=
mult, 11=div
dig_en: in std_logic; --enables digit storage
dig_dlt: in std_logic; --deletes least significant digit
dig_clr: in std_logic; --clears all digit registers
op_en: in std_logic; --enable operator storage
op_clr: in std_logic; --clears operator register
neg_en: in std_logic; --toggles number negativity

op: out std_logic_vector(l downto 0); --entered operator
numO: out std_logic_vector (3 downto 0); --one’s place
numl: out std_logic_vector (3 downto 0); --ten’s place
num2: out std_logic_vector (3 downto 0); --hundred’s place
neg: out std_logic; --current negativity

op_full: out std_logic); --whether an operator is present

end num_datapath;

architecture behavior of num_datapath is

signal temp_neg: std_logic:= ’0’; --for T Flip-Flop
signal dig0, digl, dig2: std_logic_vector (3 downto 0):= (others => ’0’); --tmeporary
digits
== signal numO_temp, numl_temp, num2_temp: std_logic_vector (3 downto 0):= (others => ’0’)
begin
operator: process(clk)
begin
if rising_edge(clk) then --on the rising edge
if (op_en = ’1’) then
op <= op_code; --store operator
op_full <= ’1’; --set operator to full (lets you move to next state
end if;
if (op_clr = ’1’) then
--op <= others => ’0’; --clear operator (default to addition)
op_full <= ’0’; --set operator to empty (cannot move on until operator is
input)
end if;
end if;

end process;

negative: process(clk, temp_neg)

begin
if rising_edge(clk) then --on rising edge
if (neg_en = ’1’) then
temp_neg <= NOT(temp_neg); --toggle negativity
end if;
if (dig_clr = ’1’) then
temp_neg <= ’0’; --reset negativity
end if;
end if;
neg <= temp_neg; --output current negativity

end process;

number: process (clk, dig0O, digl, dig2)
begin

25

if rising_edge(clk) then -- on rissing edge

if (dig_en =
dig0 <=

’1’) then

dig_code; --shift msd and store entered

digl <= dig0;
dig2 <= digil;

end if;
if (dig_dlt = ’1°’) then
dig0 <= digl; --delete 1sd and shift
digl <= dig2;
dig2 <= (others => ’0°’);
end if;
if (dig_clr = ’1’) then
dig0 <= (others => ’0’); --clear all digits
digl <= (others => ’0’);
dig2 <= (others => ’0’);
end if;
oo numO_temp <= numO_temp;

--if (busy_
num0 <= digO;

numl_temp <=
num2_temp

numl_temp;
<= num2_temp;

’0’) then

--output current digits

convert =

numl <= digl;
num2 <= dig2;

--end if;
num0 <=
numl <=
num2 <=

end if;

end process;

end behavior;

numO_temp;
numl_temp;
num2_temp;

26

digit

Math Code

-- Company: Thayer School of Engineering
-- Engineer: Gavin Burns & Sarah Hutchinson

-- Create Date: 08/16/2021 11:43:22 AM

-- Design Name:

-- Module Name: Math - Behavioral

-- Project Name: ENGS31 - Operation_[REDACTED]
-- Target Devices: Basys3 FPGA

-- Tool Versions:

-- Description:

-- Dependencies:
-- Revision:

-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;

; use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity Math is

Port (clk: in STD_LOGIC; --clock signal
numO: in std_logic_vector (3 downto 0); --one’s place
numl: in std_logic_vector (3 downto 0); --ten’s place
num2: in std_logic_vector (3 downto 0); --hundred’s place
neg: in std_logic; --current negativity
op: in STD_LOGIC_VECTOR (1 downto 0); --operator
A_en : in STD_LOGIC; --enables storage of number into A operand
B_en : in STD_LOGIC; --enables storage of number into B operand
math_en : in STD_LOGIC; --enables computation of A and B by op
answer_store : in STD_LOGIC; --stores the answer in the A operand
answer : out STD_LOGIC_VECTOR(9 downto 0); --outputted answer

A_output : out STD_LOGIC_VECTOR(9 downto 0);
A_neg : out STD_LOGIC;

overflow: out STD_LOGIC; --signals that the value is beyond -999 or 999
y_neg : out STD_LOGIC; --whether answer is negative our not
answer_full : out STD_LOGIC); --signals that an answer is ready to be presented

end Math;
architecture behavior of Math is

signal A: SIGNED (10 downto 0):= (others => ’0’); --Operand A; 11 bits to store numbers
between -999 to 999

signal B: SIGNED (10 downto 0):
between -999 to 999

signal answer_temp: SIGNED (20 downto 0):= (others => ’0’); --answer; 21 bits to store
numbers between -998001 to 998001

--signal numO_temp: UNSIGNED (10 downto O0):
--signal numl_temp: UNSIGNED (10 downto 0):= (others => ’0’);

--signal num2_temp: UNSIGNED (10 downto 0):= (others => ’0’);

--signal num3_temp: UNSIGNED (10 downto 0):= (others => ’0’);

constant I: unsigned(6 downto 0):= "1100100"; --needed for BCD conversion

(others => ’0’); --Operand A; 11 bits to store numbers

(others => ’07);

begin

Store: process(clk)
begin
if rising_edge(clk) then

--numO_temp (3 downto 0) <= unsigned(numO);

--numl_temp <= resize (10*unsigned(numl), numl_temp’length);
--num2_temp <= resize(I*unsigned(num2), num2_temp’length);
--num3_temp <= resize (10*unsigned (num2_temp), num3_temp’length);

if (A_en = ’1’) then
if (answer_store = ’1’) then
A <= answer_temp (10 downto 0); --store the answer into operand A(for
recursion)
else
if(neg = ’1’) then --if value is negative
A <= NOT(signed(resize(I*unsigned(num2) + 10*unsigned(numil) +
unsigned (num0O), A’length))) + 1; --two’s compliment of the digits
else
A <= signed(resize(I*unsigned(num2) + 10*unsigned(numl) + unsigned(
numO), A’length)); --store digits in operand A
end if;
end if;
elsif (B_en = ’1’) then

27

if (neg = ’17)

then --if value is negative

B <= NOT(signed(resize(I*unsigned(num2) + 10*unsigned(numil) +

unsigned (num0), B’length))) + 1;

else
B <=
num0), B’length));
end if;
end if;

if (A < 0) then
A_neg <=
A_output
value in answer
else
A_neg <=
A_output
end if;
end if;
end process;

Computation:
begin

process (clk,

--two’s compliment of the digits

signed(resize (I*unsigned (num2) + 10*unsigned(numl) + unsigned(

--store digits into operand B

’1’; --separate the negative

<= std_logic_vector ((NOT(A(9 downto 0)) + 1)); --store the

JO);

<= std_logic_vector (A(9 downto 0)); --store the value of answer

answer_temp)

if rising_edge(clk) then

answer_full <= ’0

if (math_en = ’1°

-—answer_temp

case op 1is
when "O0O0O"

answer_temp <=

when "O1"

answer_temp <=

when "10"

answer_temp <=

when "11"

answer_temp <=

when others
answer_temp <=

there’s an error
end case;

end if;

if (answer_temp >
bounds
answer <=
overvalued answer)
overflow

answer_full <=

else
if (answer

y_neg

.
) then

<= answer_temp;

=> --addition operator

resize(A + B, answer_temp’length); --add A and B

=> --subtraction operator

resize (A - B, answer_temp’length); --subtract B from

=> --multiplication operator

resize (A * B, answer_temp’length); --multiply A and B

=> --division operator

resize (A / B, answer_temp’length); --divide A by B

=>

(others => ’0’); --set to zero so we can easily see

999 OR answer_temp < -999) then --if the answer is out of

(others => ’0’); --store the value "10000000000" (indicates an
<= ’1’; --signal overflow(this value cannot be stored in A)
’1’; --signal that an answer has been generated
_temp < 0) then
<= ’1’; --separate the negative

answer <= std_logic_vector ((NOT (answer_temp (9 downto 0)) + 1));

in answer
else

y_neg

store the value

answer <= std_logic_vector (answer_temp (9 downto 0));

value of answer
end if;
overflow

answer_full <=

end if;

end if;
end process;

end behavior;

<= ’07;

--store the

<= 207;

’1’; --signal that an answer has been generated

28

Binary to BCD Code

-- Company: Thayer School of Engineering
-- Engineer: Gavin Burns & Sarah Hutchinson

-- Create Date: 08/17/2021 10:14:52 PM

-- Design Name:

-- Module Name: ASCII_converter - behavior
-- Project Name: ENGS31 - [REDACTED]

-- Target Devices: Basys3 FPGA

-- Tool Versions:

-- Description:

-- Dependencies:
-- Revision:

-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

entity binary_BCD is

port (clk: in std_logic; --clock signal
answer_full: in std_logic; --signals that an answer has been generated
binary_in: in std_logic_vector (9 downto 0); --binary answer
yoO: out std_logic_vector (3 downto 0); --BCD number (0-9) 1sd
yi: out std_logic_vector (3 downto 0); --BCD number (0-9) mid digit
y2: out std_logic_vector (3 downto 0)); --BCD number (0-9) msd

end binary_BCD;

architecture behavior of binary_BCD is

constant NSHIFT: integer := 10; --number of total shifts
signal store_bin: unsigned (9 downto 0) := (others => ’0°’);
signal temp_bcd: unsigned (11 downto 0) := (others => ’0’);
signal shift_count_en: std_logic := ’0’; --enables shift_cout to increment
signal shift_count_reset: std_logic := ’0’; --resets shift count
signal shift_count: unsigned (5 downto 0) := "000000"; --counts the number of
shifts
signal load_en: std_logic := ’0’; --loads the answer into the store_bin
signal clr: std_logic := ’0’; --clears store bin
signal shift_en: std_logic := ’0’; --right shifts the store_bin into the

BCD generator

signal all_shifted: std_logic := ’0’; --signals that all of the bits have
been shifted
signal check: std_logic := ’0’; --signals to check if each BCD bin is

greater than 5

type state_type is (idle, load_bin, shift, shift_check);

signal curr_state: state_type := idle;
signal next_state: state_type;
begin

RTL: process(clk)
begin
if rising_edge (clk) then

if(clr = ’1’) then
store_bin <= (others => ’0°’);
temp_bcd <= (others => ’0°’);

elsif load_en = ’1’ then
store_bin <= unsigned(binary_in); --load the answer into store_bin
else
store_bin <= store_bin;
end if;
if shift_en = 21’ then
temp_bcd <= temp_bcd (10 downto 0) & store_bin(9); --left shift bits into BCD
generator
store_bin <= store_bin(8 downto 0) & ’0’; --left shift store_bin
end if;
if (check = ’1’) then
if temp_bcd(3 downto 0) >= 5 then --check if the first BCD bin is >5
temp_bcd (3 downto 0) <= temp_bcd(3 downto 0) + 3; --if so; add 3
else
temp_bcd (3 downto 0) <= temp_bcd(3 downto 0); --else; no change
end if;

if temp_bcd(7 downto 4) >= 5 then --check if second BCD bin is >5
temp_bcd (7 downto 4) <= temp_bcd(7 downto 4) + 3; --if so; add 3
else

29

98

159
160
161
162
163
164

165

166
167
168

169

temp_bcd (7 downto 4) <= temp_bcd(7 downto 4); --else; no change
end if;

if temp_bcd (11 downto 8) >= 5 then --check if third BCD binis >5

temp_bcd (11 downto 8) <= temp_bcd(11l downto 8) + 3; --if so; add 3
else
temp_bcd (11 downto 8) <= temp_bcd (11 downto 8); --else; no change
end if;
end if;
if all_shifted = ’1’ then --once all bits have been shifted
yO <= std_logic_vector (temp_bcd(3 downto 0)); --store first BCD bin in numO (1lsd
)
yl1 <= std_logic_vector(temp_bcd(7 downto 4)); --store second BCD bin in numO (
mid digit)
y2 <= std_logic_vector (temp_bcd (11 downto 8)); --store third BCD bin in numO (
msd)
-—else

--num0 <= "0000";

--numl <= "0000";

--num2 <= "0000";
end if;

end if;

end process RTL;

FSM_comb: process(curr_state, answer_full, all_shifted)
begin
next_state <= curr_state;
shift_en <= ’0’;
load_en <= ’0’;
clr <= ’0°;
check <= ’0’;

shift_count_en <= ’07;
shift_count_reset <= ’0’;

case curr_state is
when idle =>
shift_count_reset <= ’1’;
clr <= ’1°;

if answer_full = 1’ then
next_state <= load_bin;
end if;

when load_bin =>
load_en <= ’17;

next_state <= shift;
when shift =>

shift_en <= ’17;
shift_count_en <= ’1°’;

if all_shifted = 1’ then
next_state <= idle;
else

next_state <= shift_check;
end if;

when shift_check =>
check <= ’1’;

if all_shifted = ’1° then
next_state <= idle;
else

next_state <= shift;
end if;

end case;
end process FSM_comb;

counter: process(clk, shift_count, shift_count_reset)

begin
if rising_edge (clk) then
if (shift_count_en = ’1’) then --else if shift_count is enabled
shift_count <= shift_count + 1; --increment shift_count by 1;

end if;

end if;

if (shift_count_reset = ’1’) then --if reset shift_count is enabled; priority over

count enable
shift_count <= (others => ’0’); --reset shift_count
end if;
all_shifted <= ’0’; --default value

if (shift_count >= NSHIFT) then --if shiftcount is greater than number of required
shifts

30

all_shifted <= ’1’; --all_shifted goes
--shift_count <= (others => ’0’);
end if;
end process;

FSM_update: process(clk)
begin
if rising_edge(clk) then
curr_state <= next_state;
end if;
end process FSM_update;

end behavior;

31

high

Appendix 5: Residual Warnings

~ % Vivado Commands (2 criical warmings

™ s General Messages (2 citical warnings
> © [Project 1-19] Could notfind the file /21summerlengs031/group_SYUART_outputvhd. (1 more like this

~ 7 Synthesis (1 waring,

[Constraints 18-5210] No constraints selected for write
Resolution: This message can indicate thatthere are no constraints forthe design, or it can indicate that the used_in flags are set such thatthe constraints are ignored. This later case is used when running synih_design to not write synthesis constraints to the resulting checkpoint Instead,
project constraints are read when the synthesized design is opened

~ 7 Implementation (2 warnings)

7 Write Bitstream (2 warnings)

v [DRC (2 wanings}

~ f Netlist (2 warmings

74 Instance (2 wamings.

. Pipeline (2

. DSPABET (2

arnings;

arnings)

[DRC DROP-1] PREG Output pipelining: DSP Computation/ARG output Computation/ARG/P[47-0]is not pipelined (PREG=0). Pipelining the DSP48 output will improve performance and often saves power so it is suggested whenever possible to fully pipeline this
function. ifthis DSP48 function was inferred, itis suggested to descrive an additional register stage after this function. fthe DSP48 was instantiated in the design, itis suggested to set the PREG attribute to 1

[DRC DPOP-2] HREG Dsp mutiplier stage JARGIPI47:0] is not pipelined (MREG=0). Pipelining the multplier function will improve performance and will save significant power so itis suggested whenever possible to
fully pipeline this function. Ifthis multplier was inferred, itis suggested to descrive an additional register stage after this function. I there is no registered adder/accumulator following the multply function, two pipeline stages are suggestedto allow both the MREG
and PREG registers to be used. ffthe DSP48 was instantiated in the design, itis suggestedto set both the MREG and PREG attributes to 1 when performing multiply functions.

“ [u Vivado Commands (2

Figure 22: Residual error messages

~ 5 General Messages (2 critical warnings)
> [Project 1-19] Could not find the file ‘P2 1summer/engs031/group_9/UART_outputvhd'. (1 more like this)

w Synthesis (1 warning)

[Constraints 18-5210] Mo constraints selected for write.
Resolution: This message can indicate that there are no constraints for the design, orit can indicate that the used_in flags are set such that the constraints ar
project constraints are read when the synthesized design is opened.

w Implementation (2 warni

w Write Bitstream (2 w

w DRC (2
v Metlist (2

b Instance |

hd Pipeline (2

W

DSP48E1 (2
[DRC DPOP-1] PREG Qutput pipelining: DSP Computation/ARG output Computation/ARG/IP[47:0] is not pipelined (PREG=0). Pipelinin
function. Ifthis DSP48 function was inferred, it is suggested to describe an additional register stage after this function. If the DSP48 wi
[DRC DPOP-2] MREG Qutput pipelining: DSP Computation/ARG multiplier stage Computation/ARG/P[47:07is not pipelined (MREG=0)
fully pipeline this function. If this multiplier was inferred, itis suggested to describe an additional register stage after this function. If the
and PREG registers to be used. Ifthe DSP48 was instantiated in the design, itis suggested to set both the MREG and PREG attribute

[arnings)

Figure 23: Zoomed in Residual error messages

We had four residual error messages. The first error message is due to the fact that an earlier version of our
project also used a UART _out block to reformat the signals to be outputted back to the computer. However,
we ultimately decided to use the 7-segment display for the output instead. Since the UART_is no longer
part of our project but various testbenches and debugging shells reference the block, an error was produced.
There is also a constraints error, however, this is not relevant because we did have constraints selected.
Our final two errors are about pipelining. Vivado is suggesting that due to some of the time delays associ-
ated with computation, additional registers should be added in the middle of the computation so that the
computation delays do not slow down the rest of the system. However, we were not experiencing any errors
resulting from this, so we left our design as it was.

32

Appendix 7: Resource Utilization

Summary
Resource Utilization Available Utilization %
LUT 461 20800 222
FF 288 41600 0.69
DsP 1 90 1.11
10 20 106 18.87
LuT 2%
FF 1%
DSPH 1%
10 19%
0 25 a0 75 100

Litilization (%)

Figure 24: Resource Utilization

Our design used 2.22% of the look-up tables, 0.69% of the flip-flops, 1.11% of the digital signal processors,
and 18.87% of the input/output buffers.

33

	Introduction
	Design Solution
	Specifications
	Operating Instructions
	Setup
	Communicating
	Display

	Theory of Operation
	Top Level Design
	UART
	ASCII Converter
	Main Controller
	Main Datapath
	Math Block
	Binary to BCD
	Display

	Evaluation
	Functionality
	Review

	Conclusions
	Acknowledgements
	References

