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The early twentieth century gave rise to the idea of quantized energy governing the behavior of
radiation. This along with the exciting new theory of mass-energy equivalence led some physicists
to question whether matter might also derive characteristic behaviors from quantized energy. This
paper follows some of the earliest evidence that led to the birth of a more complete Quantum

Mechanical Theory.

Early hints of Quantum Theory began in 1905 when
Einstein proposed that photons carry a characteristic
”quanta” of energy related to their frequency. This idea
stems from his Photoelectric Effect Theory published in
that same year. Einstein’s bold statement was that pho-
tons can only be absorbed or produced entirely, hence
the energy and wavelength of radiation are quantized.
Other physicists like Max Planck had considered quanti-
zation mathematically, but Einstein was the first to ac-
cept quantization as a fundamental component of reality.

Once the idea of quantized energy entered the subject,
physicists began to rewrite classical theory to encompass
new experimental evidence, and the theory of quantized
radiation was extremely successful in its predictions. The
photon model was not without its own quirks, however.
The model requires a photon to be a traveling yet local-
ized phenomenon, part wave part particle. Though at
first skeptical, the theorists began to accept that radi-
ation was somehow both a wave and particle-like phe-
nomenon. But there is far more to the universe than just
radiation.

In 1924, Louis de Broglie boldly proposed that mat-
ter is also characterized by a quantized wavelength [1].
Many experimentalists began testing this new theory,
which would eventually win de Broglie his Nobel Prize in
1929. In 1927, G. P. Thompson confirmed the de Broglie
relationship by diffracting high-energy electrons. This
experiment was one of the first examples of a matter
particle being observed to diffract like a wave. Just like
radiation, matter has wave-particle duality. Thompson’s
method produces a beautiful ring diffraction pattern with
very sharp clarity [2]. This paper outlines the method of
the G. P. Thompson experiment, its conformation of de
Broglie’s theory, and the implications of the experiment’s
results.

G.P Thompson’s experiment is by no means a localized
event, at least in a historical context that is. The lead-
up to the experiment begins with Einstein. Not long
after publishing, Einstein used his photon theory com-
bined with Planck’s law of black-body radiation to show
that photons have momentum [2]:

p=E/c (1)

Using this fact along with Einstein’s original proposed
theory that relates a photon’s energy with a quantized
wavelength one finds the following;:
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Einstein suggests that the massless photon has a mo-
mentum related to its wavelength via Planck’s constant.
Classically momentum is only associated with massive
objects, but radiation was already known not to behave
in a classical manner, so this concept was not too much
of a stretch. Then came 1924. Louis de Broglie hypoth-
esized that if massless particles have momentum then
maybe massive particles have a wavelength. By trading
one non-intuitive result for another, de Broglie proposed
his now-famous relationship that all matter has a char-
acteristic wavelength associated with its momentum:

Amatter = h/p (3)

G. P. Thompson’s experiment seeks to provide exper-
imental evidence for the de Broglie relationship. The
experiment draws inspiration from x-ray diffraction ex-
periments. After all, if matter is governed by a simi-
lar equation to radiation then it should act in similar
ways. In an x-ray powder diffraction experiment, a beam
of x-ray photons is cast upon a powder sample of crys-
talline material. Under certain conditions, the photons
will diffract in the powder, and form a constructive inter-
ference pattern. This pattern depends on the wavelength
of the incident photons and the structure of the crystals
in the powder. Thompson’s experiment casts a beam of
high-energy electrons through a thin foil of randomly ori-
ented crystals which functionally behaves like a powder.
If electrons are wave-particle dualistic as de Broglie pro-
posed, then Thompson should expect to see a diffraction
pattern similar to a photon experiment. FIG 1 shows a
schematic of the experimental setup.

The experiment is conducted in a vacuum to avoid dis-
turbances in the electron beam due to the air. Electrons
are introduced into the test chamber via a cathode at
the end of the tube depicted to the right of region A in
FIG 1. An induction coil accelerates the electrons to the
left at a known measurable voltage. Knowing the volt-
age allows one to calculate the momentum of each elec-
tron. Using the known momentum of the electrons and
Planck’s constant, one can use equation 3 to calculate
the expected wavelength of the electrons in the beam.



FIG. 1. Image taken from [3]. This original diagram was
drawn by G.P. Thompson. The entire apparatus is inside a
vacuum chamber to eliminate the effects of air on the beam of
electrons. Region A contains an induction coil that produces
high-energy electrons. The electrons are collimated into a
beam by passing through the thin tube region B. B is shielded
from magnetic effects due to an iron casing that surrounds
it. The electron beam collides with the film/foil sample at
position C where the diffraction will take place. D is the plate
on which the diffraction pattern will appear. The voltage of
the electron beam can be carefully measured using a spark
gap which is not depicted here.

This wavelength will determine the diffraction pattern
observed on the photographic plate similar to the way
an x-ray wavelength determines the pattern for a powder
diffraction experiment. For this reason, it is necessary to
understand how a powder diffraction process works. The
process is detailed, but the results are what make this ex-
periment in particular so useful in testing the existence
of matter waves.

Powder diffraction is the result of many randomly ori-
ented single-crystal diffraction events combining to form
a cumulative interference pattern [2]. For a single-crystal
diffraction event to occur, the inter-atomic spacing be-
tween atomic planes in the crystal must be of comparable
size to the wavelength of incident radiation. But there
are a number of ways in which atomic planes can be con-
structed from a single crystal lattice, and each one will
produce a different diffraction effect. To see that this is
true, imagine a simple two-dimensional rectangular lat-
tice as depicted in FIG 2.

It is clear to see from FIG 2 that the incident angle
between different lattice plane families is unique unless
the second family is described by an integer multiple of
the first. The green arrows represent a perpendicular
angle of incidence for the two families depicted. Notice
how this coincides with the direction of the d-spacing
vector. The two green arrows are obviously not parallel,
which suggests geometrically that there is a difference in
angle between one family of planes and another. It is also
easy to see that the length of the d-spacing of each family
is unique. To examine how this will affect diffraction, one
must consider a reciprocal space.

A reciprocal lattice is constructed by inverting a lattice
in real space. First, the d-spacing of a basis or primitive
lattice plane family in a real space lattice is inverted into
reciprocal space [5]. For example, the inverse of a vector
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FIG. 2. Real space depiction of a rectangular two-dimensional
lattice. Each intersection of a perpendicular black line repre-
sents the location of a lattice point or atom. The blue lines
represent the [1x1] family and the orange lines represent the
[1x2] family of lattice planes. The red arrows depict the inter-
atomic spacing or d-spacing for that family of planes. The
green arrows represent a vector perpendicular to the orienta-
tion of the plane families to highlight the difference in incident
angle.

that represents the d-spacing of the [0x1] family in real
space is the vector that describes the location of the [0x1]
family in reciprocal space with respect to an origin point.
That is, plotting a point in reciprocal space at the head
of a vector originating from the origin with magnitude
one over the real space d-spacing describes that family’s
location in reciprocal space. The planes will always be
perpendicular to this vector. Linear combinations of that
vector can be used to construct planes of an integer mul-
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FIG. 3. Reciprocal space depiction of the lattice in FIG 2.
Notice the spacing between the black points is now one over
the original spacing. This is consistent with the inverse me-
ter unit description below the image. Each point itself now
represents the location of a family of lattice planes with re-
spect to an origin point. The lines in the image are colored to
match their respective lattice plane families from FIG 2. The
red lines represent the reciprocal d-spacing of their respective
plane families, which are still perpendicular to the direction
of the planes. Notice that the blue [1x1] family d-spacing is
longer than the orange [1x2] d-spacing in FIG 2, but here the
inverse is true.



tiple value [5]. The process is repeated for each primitive
family vector to form the reciprocal lattice as a whole.
FIG 3 represents the result of performing this operation
on FIG 2. It should come as no surprise that the recipro-
cal of a rectangular lattice is also rectangular, although
the long and short sides of each cell now appear swapped.
This example is relatively simple, but the method of its
construction is the same for any lattice that has regular
planes.

A reciprocal lattice can also be constructed on a lat-
tice point by lattice point basis. Mathematically, this can
be described using a Fourier transform whose periodic-
ity coincides with the location of lattice points in a real
space lattice. Fourier analysis selects reciprocal lattice
vectors that preserve the geometry of the crystal dur-
ing the transformation from real to reciprocal space [4].
For the purposes of this paper, it is only important to
understand the following: For a real space crystal, any
linear translation or rotation does not affect the phys-
ical properties of the crystal, and the same is true for
the reciprocal lattice [4]. This fact will be important in
a later argument. For now, a reciprocal space will aid
in understanding how an interference pattern is formed
from incident waves. This key concept is what makes the
results of this experiment so versatile to work with. For
a single crystal one can imagine a reciprocal lattice with
an incident beam of constant wavelength as in FIG 4:
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FIG. 4. Left: Two-dimensional crystal oriented along x and y.
A beam of constant wavelength is incident upon the crystal.
Right: Orientation preserving reciprocal lattice of crystal seen
on the left. An Ewald sphere (circle) of diameter 2 is drawn
on the reciprocal lattice. This sphere intersects a [4x1] family
point. Inside the sphere is a right triangle which demonstrates
the Bragg diffraction equation for constructive interference.
The intersection of the reciprocal point and the triangle sug-
gests that diffracted waves at angle theta will cause construc-
tive interference.

The Bragg equation for constructive interference states
that for lattice planes with d-spacing d, constructive in-
terference will occur at nA = 2dsin6 [2]. The design of
the triangle in FIG 4 is such that the hypotenuse is equal
to 2/X and the leg opposite the angle 6 is 1/d-spacing for
the [4x1] family of planes. The adjacent leg lies in the
lattice plane [4x1], which is (as always) perpendicular to
the d-spacing leg. Simple trigonometry reveals the Bragg
equation:

1/ds
27\

sinf = = A =2dy,5sinf (4)

The circle in FIG 4 represents an Ewald Sphere in two
dimensions. Any point on the sphere can be described
by a triangle like the one depicted. But as equation 4
suggests, whenever the leg opposite the angle 6 lands on
a reciprocal point the conditions are met for constructive
interference. If one were to fix the Ewald sphere and in-
cident beam while rotating the reciprocal lattice about
the origin, reciprocal points would occasionally intersect
the sphere and therefore satisfy the conditions for con-
structive interference. FIG 5 shows this effect.

The triangle and subsequent angle # used to describe
the location on the sphere is unique for each primitive
reciprocal point. The diffracted constructive interference
wave will point along the vector exactly 20 degrees away
from the incident beam. A powder of many randomly ori-
ented crystals can be thought of as a collection of many
single crystals all at slightly different orientations. In or-
der to represent a single crystal in every possible orien-
tation in the x-y-plane one can rotate a crystal that lies
in the plane through all angles. As mentioned earlier,
this will not affect the physical properties of the crystal
other than its orientation in relation to the beam. For a
single crystal rotated about the origin as in FIG 5, one
would expect an array of diffraction spots spaced along
a horizontal line like in FIG 6.

A powder of crystals will contain single crystals of all
orientations in the x-y-plane, but these crystals will also
have random orientations with respect to the z-axis. To
understand how this affects the interference pattern one
can consider a crystal that is orientated level with the
x-y-plane, and rotate the plane through all angles with
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FIG. 5. As the crystal is rotated reciprocal points will some-
times intersect the Ewald sphere. The construction of the
sphere always satisfies the constructive interference condition,
so whenever a reciprocal point intersects the sphere the unique
angle 0 represents the angle of incidence for the incoming
beam. The leg adjacent to the angle 6 lies in the lattice plane
that is responsible for the reflection. This means that a re-
flected beam will leave at an angle of exactly 6 degrees in the
opposite direction or 20 degrees from the incident beam in
the depicted orientation. The thinner green arrow shows this
direction.
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FIG. 6. The basic diffraction pattern. Left: A reciprocal lat-
tice of a crystal oriented such that the [0x1] family of planes
satisfies the constructive interference condition. The incident
beam is diffracted in the crystal, and the outgoing construc-
tive interference ray is shown creating a diffraction spot on
the detector/photographic plate. Right: The crystal has now
been rotated so that the [4x1] family of planes satisfy the
constructive interference condition. Again the outgoing ray
points in the direction of the reflected wave. Notice this ray
does not intersect the detector plate. This suggests only small
angles of reflection will produce a visible pattern on the plate.
Also notice that between the two cases presented other diffrac-
tion spots are formed as the crystal is rotated and the Ewald
sphere aligns itself with planar families.

respect to the z-axis. FIG 7 represents this operation for
a single diffraction spot. As the figure demonstrates, a
single spot is drawn into a ring as the crystal is rotated
around that particular planar axis. One can imagine then
the array of diffraction spots would simply trace a collec-
tion of concentric rings whose radial spacing is equal to
the linear spacing of the original horizontal array. These
rings are known as Debye-Scherrer Rings [2]. This ar-
gument assumes a two-dimensional crystal, but a similar
argument in three dimensions leads to an identical result.

Debye-Scherrer rings are the constructive interference
pattern for powder diffraction. A detailed understanding
of the inner workings of powder diffraction highlights the
genius of G.P. Thompson’s experimental design. Thomp-
son’s foils and respective diffraction patterns are formed
in the same manner as powder diffraction. The foils are
collections of randomly oriented crystals whose combined
constructive interference patterns form rings. The exper-
iment relies on the known atomic crystal structure and
inter-atomic spacing of several foil materials as well as
equation 3 to calculate the expected diffraction pattern
of electrons with known momentum [3]. Performing all of
these calculations before revealing the big results makes
the interpretation of the data a simple and rewarding
process.

One begins by calculating the momentum of an elec-
tron accelerated through the potential difference in the
tube. Equation 5 describes how to calculate the mo-
mentum of an electron accelerated through a potential
difference.

1
K:imUQ :}p:m

K=eV = p=+2m,-eV

The kinetic energy of an electron in the beam is equal
to the charge of the electron times the value of the poten-
tial difference that supplied its motion. Substituting this
value into the non-relativistic momentum equation for ki-
netic energy yields equation 5. This momentum is used
to calculate the de Broglie wavelength of the electron by
applying equation 3 from earlier.

(5)
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The de Broglie wavelength along with the known d-
spacings of the atomic plane families can be used to cal-
culate the angle of each diffraction cone like the ones
shown in FIG 7. This angle will satisfy the Bragg equa-
tion for constructive interference 4. The detector plate
intersects these cones at a known distance away from the
sample creating a cross-section. The cross-section of the
cones will appear as rings. Finally, simple trigonometry
can be used to calculate the expected diameter of each
ring. FIG 8 shows the basic orientation of two diffrac-
tion cones. The radius of their respective rings on the
detector can be described as the far-side leg of a right
triangle. That makes their diameters Dy = 2tan ()L
and Dy = 2tan (¢)L respectively. Finally, the results
are simply a manner of measuring these diameters and
comparing the values with expected results.

FIG. 7. A crystal that satisfies the constructive interference
condition for the [0x1] planar family is oriented level with the
x-y-plane. Left: The entire plane is then rotated about the
axis of the incident beam. The diffraction spot becomes a
ring as the constructive interference ray vector traces itself
on the detector through the rotation. Right: The reciprocal
lattice representation of the same operation. This time a cone
is drawn to represent the path of the constructive interference
ray. The red line in the cone represents a side-on view of the
Ewald sphere, which maps the point on its surface to the rim
of the cone as it rotates.
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FIG. 8. Two-Dimensional side view of the space between the
sample and the detector plate. (Space between region C and
region D in FIG 1) The distance between the sample and the
detector is L. One diffraction cone makes an angle 6 with
the horizontal plane, while another diffraction cone makes an
angle ¢. Each angle produces a different diameter ring on the
detector plate: 6 makes diameter one and ¢ makes diameter
two. These diameters depend on the angles and distance from
the sample.

What makes this experiment stand out amongst oth-
ers is its design. The concepts of many detailed fields
of study combine to form simple and immediately at-
tainable results. First, G.P Thompson used x-rays of a
known wavelength to determine the d-spacing of the crys-
tals in his foils. Then he could send electrons through the
same foil and perform the opposite calculation to find
their wavelengths. But that is not all. He could also
use the de Broglie relationship to calculate the electrons’
wavelength before sending them through and predict the
diffraction pattern he expected to see. The design is so
accomplished that the data of the experiment requires no
refinement. There is simply no need to manipulate data
to produce a curve or plot when the ring patterns speak
for themselves. Measuring the diameter of the rings tells
one everything about the wavelength that created them.
Or conversely, calculating the wavelength tells one ex-
actly what diameter of rings to expect.

Just as de Broglie had predicted, the momentum of the
electrons and Planck’s constant determines their wave-
length. Matter is governed by quantization. FIG 9 shows
a side-by-side comparison of x-ray and electron diffrac-
tion patterns. The existence of these patterns stands as

simple visual proof that radiation and matter both ex-
hibit quantized wave-like behavior.

The results of Thompson’s experiment speak to some-
thing deeply fundamental about the universe. Again, ra-
diation and matter both demonstrate quantized behav-
ior. Beneath the seamless appearance of the universe on
a human scale lies a quantized picture. Thompson’s ex-
periment only cemented the need for a complete theory
of radiation and matter at this scale. Inevitably this new
understanding led physicists to draft a complete quan-
tum model of matter and radiation. Quantum Mechan-
ical Theory is necessary for operating in the realm of
subatomic particles.

Max Planck’s early inception of the idea of quantizing
energy as a mathematical trick has grown into a modern
theory that describes a fundamental reality of the uni-
verse. The lesson behind this narrative in time is that
experiment and theory are inseparable. Experimenta-
tion necessitates theory to cement its findings, and theory
necessitates experiment to cement its concepts. Thomp-
son’s experiment combines a complex piece of Solid-State
Physics and a small piece of early Quantum Theory into
one simple measurement of distance. These small mea-
surements simultaneously confirmed de Broglie’s theory,
and in part ushered in the beginning of the modern Quan-
tum Mechanical Theory that exists today.

FIG. 9. Image taken form [2]. Left: Debye-Scherrer pattern
for x-ray diffraction. Right: Debye-Scherrer pattern for elec-
tron diffraction. Notice the clarity of the electron diffraction
image. G.P. Thompson’s use of high-energy electrons (below
relativist speeds, however) all them to penetrate deep into the
crystals. In this way, hundreds of atomic planes are contribut-
ing to the diffraction pattern, which is what gives it such a
sharp and defined appearance. The blur of the x-ray image is
a result of having less energy than the electron image.
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