Analyzing Pre-Existing Knowledge and Performance
in a Programming MOOC

Hannah Burd
Dartmouth College
Hanover, NH
hannah.j.burd.22 @dartmouth.edu

Ana Bell
MIT
Cambridge, MA
anabell @mit.edu

ABSTRACT

Massive Open Online Courses (MOOCS) are accessible to
anyone with a device that can connect to the internet. MOOCs
aim to increase the accessibility of higher-level knowledge
and skills, such as programming. To understand how students
are performing and struggling in the course, we investigate a
popular MITx MOOC that teaches introductory programming.
We look at problem set questions and examine students with
different levels of pre-existing knowledge. Specifically, we
study the number of attempts of each group per question and
the mean final accuracy of each group per question. We find
that for nearly all questions, students with no programming
experience struggle more than students with prior program-
ming experience. Moreover, we observe a potential turning
point in the course where students of all experience levels
begin to struggle. Our findings both show that two groups
of MOOC students perform differently and inform question
design in MOOCs by demonstrating which question types are
particularly arduous.

Author Keywords

Student background; problem sets; question design; learning
analytics; edX; MOOQOC:s.

CCS Concepts

*Applied computing — E-learning; <Human-centered
computing — User studies; *Social and professional top-
ics — Computational thinking;

INTRODUCTION

Massive Open Online Courses (MOOCs) make higher-level
knowledge accessible to those outside of traditional class-
rooms; however, they also face several new challenges that are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S °20, August 1214, 2020, Virtual Event, USA.

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7951-9/20/08 ...$15.00.
http://dx.doi.org/10.1145/3386527.3406728

Erik Hemberg
MIT CSAIL
Cambridge, MA
hembergerik @csail.mit.edu

Una-May O’Reilly
MIT CSAIL
Cambridge, MA
unamay @csail.mit.edu

seldom present in a traditional setting. For example, MOOCs
typically experience extremely high drop out rates [5], lack
the physical presence of a professor, and are composed of a
heterogeneous group of students with varying language pro-
ficiency, study time, pre-existing programming experience,
goals, etc.[3]. The COVID-19 pandemic and the global shift
to online classrooms has further demonstrated the need for and
potential of effective remote learning environments. Therefore,
it is vital that we continue to study existing e-learning courses,
like MOOC:s, to improve remote learning for all.

It is intuitive that the group of students who take the course
and have some level of programming experience will generally
perform better in the course than the group with no experience.
However, this difference becomes concerning when one group
significantly and consistently outperforms the other, as this
may suggest a group of learners is not being supported.

By observing how each group (with/without programming
experience) performs on tasks such as problem sets, we can
analyze the success patterns of each group outside of a single
grade. Moreover, if the discrepancy between groups only
exists for certain questions on that problem set, analysis may
indicate a correctable flaw in question design that is causing
divergence among groups.

Related Work

Linear regression models have shown that number of distinct
attempts per question is correlated with problem difficulty
[2]. Previous work that examined student programming back-
ground suggests that the importance of practice in positive
learning outcomes is influenced by question topic and stu-
dent pre-existing knowledge [4].Furthermore, no models have
definitively shown that pre-existing knowledge effects the
method one uses to answer a question [1].

Research Questions

Do students with no pre-existing knowledge about program-
ming struggle significantly more than students that have any
level of pre-existing knowledge? Furthermore, are there iden-
tifiable points in the course where one or both groups begin

Experience Count Percentage of Total

No Response 7,882 11.66
Absolutely None 16,374 2421
Other Language 30,552 45.18
Know Python 11,336 16.76
Veteran 1,483 2.19
Total 67,627 100.00

Table 1. Number of submission histories in 6.00.1x with each type of
pre-existing experience. We also show the per-category percentage of
all submission histories. Numbers shown are for all 21 questions and
therefore include duplicate users.

Experience Count Percentage of Total
No Response 408 11.72
Absolutely None 853 24.50
Other Language 1,568 45.04
Know Python 577 16.58
Veteran 75 2.16
Total 3,481 100.00

Table 2. Number of unique users in 6.00.1x with each type of pre-existing
experience. We also show the per-category percentage of all users.

to struggle more? We hypothesize that students with no pre-
existing knowledge about programming do struggle more than
students with experience. We quantify student performance
through their distinct attempts and final accuracy for analysis.

COURSE CONTEXT AND DATASET

Our data comes from 2016 Term 2 and 2017 Term 1 of
MIT’s 6.00.1x Introduction to Computer Science and Pro-
gramming Using Python on edX. In this course, students learn
to code through video lectures, short finger exercises, discus-
sion threads, exams, and open-ended problem set questions
at the end of each unit. In this session of 6.00.1x, there are
21 distinct problem set questions, described in this paper with
unit and problem number (i.e. 1-1 is Unit 1 Problem 1).

We use data from a pre-course survey in which students self-
identify experience level as well as student submission history
data collected by the edX platform (Table 1 and Table 2). The
pre-existing experience categories are No Response, Abso-
lutely None, Other Language, Know Python or Veteran. We
proceed with a data analysis that omits the No Response group
and joins the Other Language, Know Python, and Veteran
groups into a single Know Programming category. After apply-
ing these changes, there are 59,745 total question submission
histories and 3,073 unique students in the data set.

METHODS

Distinct Attempts

We examine the number of distinct attempts per question per
student with a pre-existing experience type. We run a one-
sided Mann-Whitney U test for each question to check if stu-
dents with Know Programming experience use fewer attempts
per question than those with Absolutely None experience. We
also visualize the number of distinct attempts for all questions
for all pre-existing experience types (Figure 1).

Final Accuracy

We examine the final accuracy per question per student with a
pre-existing experience type. Final accuracy is 1 or 0, where
1 means the student ultimately got the question correct and 0
means the student did not get the answer correct. We run a
one-sided Mann-Whitney U test for each question to check if
students with Know Programming experience are more likely
to arrive at a correct answer than those with Absolutely None
experience. We also visualize the final accuracy values for
all questions for all pre-existing experience types (Figure 2).
There are 59,745 total question submission histories and 3,073
unique students in the data set (N Know Programming = 2220,
N Absolutely None = 853.

OBSERVATIONS AND ANALYSIS

We visualize student performance with comparative plots in
terms of average number of distinct attempts (Figure 1) and
average final accuracy (Figure 2).

The figures show that students with programming experience
generally use fewer attempts on a question and have a higher
mean accuracy than those with no programming experience.
Initially, mean attempts and mean accuracy are relatively con-
sistent; however, as the course progresses, the performance
of each group becomes more variable. The high standard de-
viations are a result of both extreme outliers and variability
in individual students. Additionally, there appears to be a
potential turning point in the course at 4-5, as nearly all mean
number of attempts are greater than the cumulative mean and
nearly all final accuracy means are below the cumulative mean.
However, 1-3, 2-1, and 3-4 also appear to either follow this
pattern or have a large difference in mean across groups.

Statistical analysis of distinct attempts and final accuracy re-
veals that students with pre-existing experience do outperform
students without experience in number of distinct attempts
and/or final accuracy for most questions. In Table 3, raw p-
values are shown. After the turning point in the course, the
p-values are more likely to show a statistically significant dif-
ference among groups (after a post hoc correction), supporting
the notion that the turning point also indicates a point where
the discrepancy in the performance of groups becomes more
distinct. An additional Mann Whitney U test revealed that
there is also an overall significant difference between distinct
attempts and final accuracy for each experience type.

DISCUSSION

Figure 1 and Figure 2 support the hypothesis that those with
pre-existing programming experience generally outperform
those with no pre-existing experience in regard to number of
distinct attempts and final accuracy. However, there are high
standard deviations, potentially limiting major conclusions.

The figures also suggest that for questions that appear more
difficult than average (as determined by number of attempts
and whether or not the student eventually arrives at a correct
answer), it is more likely that the difference in performance
between students with varying experience will be greater than
questions that are less difficult than average. In other words,
after the turning point of the course (and with challenging
questions like 3-4), students with no pre-existing experience

14

---- Mean
® Absolutely None
@ Know Programming
12 4 -
10 1 _ _
e T T —
2 T
2 -
[
8 L]
= _
& _ o T
" - -
=%
£ 61 [] []
g _ T T o -
< 7T o L]
T - _ _ ® L] s II“
44 |+ T [] T L] ®
(1] - T
T
[]
T e [
® L] L P8 * 4 . ° ®
24 |4] ® . ® °
o T T — T — —=

11 12 13 21 22 23 31 32 33 34 41 42 43 44 45 46 47 51 52 53 54
Question

Figure 1. Mean number of attempts per question (mean = 3.1237, n = 3,073). The error bars show +/- one standard deviation.

1000

[] L] L]
ol &% ¢ q ¢ 9 *® L
L]
L
[] ®
0.975 4 Py
L]
£ Ld ® L]
0.950 4 ° L L
- []
1 L
0.925 4 - 1 N * °
+ L 1 r
Z]
@ e
é 0.900 1
[] []

v}
g L]

0.875 *

L]
L []
0.850 4 L
0.825 4
L]
---- Mean
® Absolutely None '
@ Know Programming -
0.800 T T L Ly T T T T

1 12 13 21 22 23 31 32 33 34 41 42 43 44 45 46 47 51 52 53 54
Question

Figure 2. Mean final accuracy per question (mean = 0.9594, n = 3,073). The error bars show +/- one standard deviation.

Question Distinct Attempts Final Accuracy
1-1 0.011 0.004
1-2 0.037 0.186
1-3 0.909 <<0.001
2-1 <<0.001 <<0.001
2-2 0.024 <0.001
2-3 0.273 0.227
3-1 <<0.001 0.042
3-2 <<0.001 0.762
3-3 <<0.001 0.094
3-4 <<0.001 <<0.001
4-1 <0.001 0.376
4-2 <<0.001 0.306
4-3 0.020 0.074
4-4 0.030 0.109
4-5 <<0.001 <<0.001
4-6 <<0.001 <<0.001
4-7 0.004 <<0.001
5-1 <<0.001 <<0.001
5-2 0.119 0.011
5-3 0.127 <<0.001
5-4 <<0.001 <<0.001

Table 3. Raw p-values comparing number of distinct attempts per ques-
tion or final accuracy per question for the Absolutely None and Know Pro-
gramming groups. The black bar indicates the potential turning point in
the course suggested by Figure 1 and Figure 2. A darker highlight in-
dicates a significant value after a post hoc Bonferroni correction (alpha
= 0.0024), a lighter highlight indicates a significant value without a post
hoc correction (alpha = 0.05), and a lack of highlight indicates a statisti-
cally insignificant p-value.

were more likely to invest more attempts and give up/not
arrive at a correct answer on the question than those with
programming experience.

Looking at some of the questions that appear more difficult
than average, a few patterns begin to emerge. These questions
(3-4, 4-5 through 4-7, and Unit 5) involve taking multiple
smaller pieces of code and putting them together to make
one longer piece of code (often a game) that meets several
specific criteria. In Unit 5, the student does not have to get the
previous piece of code correct to be able to proceed with the
questions. These are the only problem set questions that have
this structure.

The one question that has neither a significant difference in
attempts nor a significant difference in final accuracy among
groups for any alpha is 2-3, "Using Bisection Search to Make
the Program Faster”. As bisection is a topic that requires both
computational thinking and knowledge of syntax, substantial
time and effort was put into the design of this question and
teaching of the topic. There is a lecture video and a finger
exercise dedicated to the topic, the question is heavily detailed,
and the question even contains test cases for the student. This

may explain how, despite the question containing some similar
characteristics to the more difficult than average questions, it
has a lower than average mean distinct attempts and higher
than average final accuracy among both groups and there is no
difference in the performance of the two groups.

NEXT STEPS

Our observations support the notion that those without pre-
existing programming experience generally struggle more than
those with pre-existing programming knowledge. This is un-
surprising, and while it is unlikely that an Absolutely None
group and Know Programming group will ever consistently
perform equally, efforts should be made in learning design
to close the gap. This means aiming for improved perfor-
mance in the Absolutely None group, not expecting those with
experience to decrease performance. By adequately taking
into account prior student knowledge, a course can be better
designed to support students at an appropriate pace.

In the future, it is important to experimentally explore how
question design and teaching could be improved to better
educate those without pre-existing programming experience.
Moreover, considerations should be given to question design
that will help all students connect several small coding con-
cepts to one larger project.

REFERENCES
[1] Ayesha Bajwa, Ana Bell, Erik Hemberg, and Una-May
OReilly. 2019. Student Code Trajectories in an
Introductory Programming MOOC. In L@S ’19. ACM,
Chicago, IL, USA.
https://dl.acm.org/doi/10.1145/3330430.3333646

[2

—_—

Sagar Biswas, Erik Hemberg, Nancy Law, and Una-May
OReilly. 2019. Investigating Learning Design
Categorization and Learning Behaviour in
Computational MOOCS. In Sixth ACM Conference on
Learning @ Scale. ACM, Chicago, IL, USA.
https://doi.org/10.1145/3330430.3333664

3

[}

Jennifer DeBoer, Glenda Stump, Lori Breslow, and
Daniel Seaton. 2013. Diversity in MOOC Students’
Backgrounds and Behaviors in Relationship to
Performance in 6.002x.

[4

—

Jitesh Maiyuran, Ayesha Bajwa, Ana Bell, Erik
Hemberg, and Una-May OReilly. 2019. How Student
Background and Topic Impact the Doer Effect in
Computational Thinking MOOCs. In 2019 IEEE
Learning With MOOCS. 47-52. DOI:
http://dx.doi.org/10.1109/LWMO0CS47620.2019.8939643

Justin Reich and José A Ruipérez-Valiente. 2019. The
MOOC pivot. 363 (01 2019), 130-131. DOI:
http://dx.doi.org/10.1126/science.aav7958

[5

—_

https://dl.acm.org/doi/10.1145/3330430.3333646
https://doi.org/10.1145/3330430.3333664
http://dx.doi.org/10.1109/LWMOOCS47620.2019.8939643
http://dx.doi.org/10.1126/science.aav7958

	Introduction
	Related Work
	Research Questions

	Course Context and Dataset
	Methods
	Distinct Attempts
	Final Accuracy

	Observations and Analysis
	Discussion
	Next Steps
	References

