
ENGS 147 - Mechatronics
Project Rat - Final Deck

Nick, Majd, Alex, Youssef

CONTENTS

1) Introduction
2) Hardware
3) Low Level Control

a) Motor Characterization
b) Sensor Characterization
c) Speed Control

i) Wall following
d) Position Control

i) Turning
ii) Stopping

4) Maze Algorithm
5) State Machine System Architecture
6) Code Organization

Introduction

The purpose of this assignment was to
design, build, and program an autonomous
vehicle to navigate and escape a small
maze.

Hardware consisted of off the shelf and
custom fabricated components. IR
proximity sensors and magnetic motor
encoders were used to sense movement
around the maze.

Low level speed and position controllers
were designed in MATLAB and
implemented on a Arduino Due.

Our Final Submission

Include a video of traversing the maze

https://docs.google.com/file/d/19Xxhjo85kRIoyBHxKw-BG92Mr3lCRC0R/preview
https://docs.google.com/file/d/1sbfV0nroZGniJF3aAZJXNhL6MxxxyD53/preview
https://docs.google.com/file/d/1sbfV0nroZGniJF3aAZJXNhL6MxxxyD53/preview

Hardware - Motor Selection
The following design specifications were
considered in motor selection:

● Torque
● Operating Speed
● Size

The methodology to the left shows how
torque was determined. Ultimately, a motor
was chosen with a S.F ~ 2. The logic
behind the higher gearing was reduce the
operating speed to roughly 0.5 m/s

Hindsight: Prioritizing a small form factor
reduces the risk of wall collision, and
increases the margin of error compensators
can operate under.

Hardware - Motor Mounting

● Motors are mounted in modular packages. The drive shaft is supported by two bearings
in order to reduce radial load on the motor shaft.

● Motor shaft is custom 4mm - ¼” to reduce overall chassis width.

● Motor velocity/ position read by shaft mounted magnetic encoders

The chassis was 3D printed, and designed
to be a modular such that iterations of
motor units could be quickly swapped
in/out.

The chassis is supported by off the shelf
casters.

Hindsight: Smaller casters could be
chosen to reduce the overall dimension of
the mouse, and potentially reduce friction in
the system.

Hardware - Chassis

Hardware - Execution

3x IR Sensor

Deadweight to improve wheel traction

Sensor breadboard

Hindsight: wheel sleeping proved to be a
significant issue which our system sensing was
not able to capture. Wheel selection could be
optimized for traction.

Low Level Control - Motor Characterization

● Input PWM commands to measure
voltage output and motor speed

● Measured τ values for different s.s.
speeds

● Ran s.s. Theoretical vs.
Experimental tests to calibrate our
Km value to be more representative
of the motor.

Low Level Control - Sensor Characterization

Max output = 700 ~~ min distance = 6.8 cm
Distance = a * (output) ^ b (power law)

Procedure:
- Move IR to a distance measured with ruler
- Take 100 measurements, find median (more robust to outliers)
- Repeat for all distances from 1 to 30
- Extrapolate using power law - save separate coefficients for

each sensor

https://github.com/Alex-Carney/Micromo
use/tree/master/lib/PositionSensor

https://github.com/Alex-Carney/Micromouse/tree/master/lib/PositionSensor
https://github.com/Alex-Carney/Micromouse/tree/master/lib/PositionSensor

Low Level Control - Position

● Lead- PI designed in via Discrete Approximation in
MATLAB’s siso tools

● Damping prioritized (~.707) with a settling time spec of
<2 s

● Dithering was implemented in GetPWM function to
overcome motor stiction in the event of overshoot.

● Position control exits when error threshold for both
motors is met

● Sampling rate 10ms. Dither frequency at this sampling
rate

LLC: Position Control Applied - Stopping

Initiate Stop
Sequence Read IR Position Control

Loop Error Threshold
Stopped
State
Achieved

Fail

Pass

1. Front IR sensors detect wall node
2. Distance passed into position control and compared to reference for

node alignment
3. IR sensor read again and compared to reference
4. If some disturbance entered system (bad IR reading, slip) control loop

is executed with updated IR reading. Otherwise, mouse continues

LLC: Position Control Applied - Turning

● Right vs left turning reference adjusted based off

L

● To turn 90 degrees we need each wheel to
travel ¼ of the circle

○ L = distance between wheels = 16.5 cm
○ Arc distance per wheel = πL/4 = 12.96 cm

● Reference to wheel
○ Rotate wheel amount corresponding to

that arc distance
○ Percent of a wheel rotation expressed in

rads
■ ((πL/4)/C) * 2 π = ((πL/4)/πd) * 2π
■ Wheel ref = Lπ/2d

○ (16.5 cm * π)/(2 * 7 cm) = 3.7 rads

● Designed a controller via Discrete Approximation for
constant velocity of the mouse.

● ess = 0 w/ disturbance.

● 40 ms sampling time

Low Level Control - Velocity Control 3 rad/s

LLC: Velocity Control 7 rad/s

● Ramp up speed
○ Higher top speed

■ Change controller for new reference
● Wall following

○ Use PD to change speed reference
○ Decrease sample time of velocity control to follow the wall

better
■ 20 ms

LLC: Wall Following - System

- What compensator should we use to convert Δx to Δw? Is Proportional gain enough?

LLC: Wall Following - Compensation

Attempt 1: Proportional Control

- Fundamental problem:
Position control with
proportional gain has this
root locus:

Attempt 2: PID Control

- High gain = massive
oscillations

- Low gain = cannot
compensate fast enough

- High derivative gain causes
system to have fast transient
response

- Integrator gain removes
steady state error, better
response for longer walls

- Allows for larger proportional
gain without oscillations

- Saturation protection: protects
against derivative control
effort

LLC: Wall Following - Limitations and Improvements

Limitations

- If mouse is angled,
IR sensors read
improperly

- Wall following while
in an intersection =
system failure.

- Using timing to
turn on wall
following after
entering an
intersection

Future Improvements

- Use NAxisShield heading to
correct IR sensor distances
(project position vector onto “x”
axis)

- When traveling through an
intersection, use 1 wall to follow
instead of 0

- Replace timing control with
position or logical control

Maze Algorithm-Traversal

● Packaged in an Arduino Library: MazeTraversal.h, MazeTraversal.cpp
● Called every time the mouse reaches an intersection
● Expects 5 integers indicating whether the mouse can go right, left,

forward or backward and the right motor encoder reading (To find the
distance the mouse moved since last intersection)

● Implements DFS to traverse the maze using a stack:
○ Once the mouse reaches an intersection, the possible directions

are pushed to the stack and the direction on the top of the stack
is marked as visited

○ Once we reach an intersection where multiple paths can be
taken, all paths are pushed to the stack

○ If the mouse reaches a dead end, we enter the backtracking
state where we pop the top of the stack and instruct the mouse
to move in the opposite direction of the top of the stack

 1 1 0 1
 0 1 1 1 Stack:
 0 0 0 1 Right, visited

 1 1 0 1 Left, visited
 0 1 1 1 Stack: Right, not visited
 0 0 0 1 Left, visited
 Right, visited
 1 1 0 1
 0 1 1 1 Stack: Right, not visited
 0 0 0 1 Left, visited
 Right, visited
 1 1 0 1
 0 1 1 1 Stack: Right, visited
 0 0 0 1 Left, visited
 Right, visited

Maze Algorithm-Traversal

● To void possible cycles and ensure correct mapping from the physical
map to an array representing the maze, we only push cardinal
direction on the stack where North is taken as initial direction the
mouse is pointing

● Conversion between cardinal directions and mouse direction is
performed within the MazeTraversal library using:

○ int convertToMouseOrientation(int d);

○ struct Path convertToMazeOrientation(int path_right, int

path_left, int path_forward, int path_back);

 1 1 0 1
 0 1 1 1 Stack:
 0 0 0 1 East, visited

 1 1 0 1 West, visited
 0 1 1 1 Stack: East, not visited
 0 0 0 1 North, visited
 East, visited
 1 1 0 1
 0 1 1 1 Stack: East, not visited
 0 0 0 1 North, visited
 East, visited
 1 1 0 1
 0 1 1 1 Stack: East, visited
 0 0 0 1 North, visited
 East, visited

Maze Algorithm-Mapping

● The stack method is not sufficient to identify a cycle if the maze
contains one

● To detect cycles, we map the number of steps the mouse moves in
one direction to 2-D array

● We find the number of steps from the encoder reading where 1000 = 1
step

● 1 indicated visited squares and 0 indicated unvisited squares
● No changes are made to the visited array in the backtracking state
● If we write to a non-zero element in the 2-D array while in the

traversing state, then the mouse is moving in a path that it has
explored before.

● Once a cycle is detected, we enter the backtracking state and traverse
back to the first non-explored element of the stack

 1 1 1 1
 0 1 1 1 Stack: East, visited
 0 0 0 1 North, visited
 East, visited

 1 1 1 1 West, visited
 0 1 1 1 Stack: East, not visited
 0 0 0 1 North, visited
 East, visited

 South, visited
1 1 1 1 West, visited
0 1 1 1 Stack: East, not visited
0 0 0 1 North, visited
 East, visited
 Cycle detected, backtrack

Maze Algorithm-Ending

● Given the encoder to cells mapping, the maze ending appears as 3x3
square on the visited array where the edges are non-zero and the
center is zero

● Every time the mouse detects an intersection, it checks for such
square in the visited array. If found, the mouse stops traversing the
maze

 1 1 1
 1 0 1
 1 1 1

State Machine -
Overview

State Machine - Virtual States

- Different actions within the same state, based
on logic determined by previous state

- Avoids clutter of states (1 turning state rather
than 4, 1 deceleration state instead of 2, etc.)

- StopMode triggers between 2 types of decelerating states
- No need for 2 separate states entirely

- TurnDirection triggers
between 4 types of turning
states

State Machine - Implementation + Code Organization

- Finite states, all
possibilities accounted for
in switch statement

- Proper scoping of all parameters
required for each state (i.e:
drive_control::SAMPLE_TIME or
pos_control::SAMPLE_TIME)

- State transitions can be
performed at any point in state

- All states have an “initialization”
stage - isFirstStateIteration

Software Architecture

- Utility code properly
packaged into
libraries

- Proper memory
management for all
libraries.
Results: 0 memory/seg
fault issues during entire
project

- Github for proper
collaboration and
development

https://github.com/Alex-Car
ney/Micromouse- Custom macros

for rapid
iteration

https://github.com/Alex-Carney/Micromouse
https://github.com/Alex-Carney/Micromouse

Thank You
We would like to thank Professor Ray and

Professor Kokko for their advice and mentorship
during this process!

