
Fall 2023: Algebraic, motivic, and topological vector bundles
Thomas Brazelton and Morgan Opie

Course goals:

• Learn classical algebro-geometric methods for studying algebraic bundles

• Understand Quillen’s proof of Serre’s conjecture, and aspects of the Bass–Quillen conjecture gener-
alizing Serre’s conjecture

• Understand algebro-geometric versions of topological problems, for example questions about decom-
posing bundles as direct sums

• Learn about A1-invariance and the subtleties of using A1-invariant techniques to study vector bundles

• Learn about motivic techniques that can be used to address problems in bundle theory

• Understand algebraizability problems for topological vector bundles and some recent progress on
this topic

Week 1: (9/7/23) Overview (Morgan Opie, UCLA and Thomas Brazelton, Harvard)

• Topological methods for studying and classifying vector bundles

• What are algebraic vector bundles? What are motivic vector bundles? (high-level)

• The difference between splitting, cancellation, and decomposability problems in topology vs in alge-
bra

• Overview of themes and topics to be covered throughout the seminar

References: [AE17, Section 1, 2], [MS74]

I. Serre’s Problem: statement, solutions, and generalizations

Week 2: (9/14/23) Serre’s correspondence between algebraic vector bundles and projective modules (Ben
Spitz, UCLA)

• Provide the basic definitions of algebraic varieties and vector bundles

• Give an overview of the correspondence between algebraic vector bundles on affine schemes and
finitely generated projective modules over the ring of global sections

• Explain how faithfully flat descent is used in the Serre correspondence

• Motivate the transportation of topological questions about vector bundles into the algebraic setting
and vice versa

• State Serre splitting as in [Ser58], and Bass cancellation [Bas68, V.3.5], compare and contrast with
topological statements

References: [Ser55, Ser58, Bas68]

Week 3: (9/21/23) An intro to Serre’s problem and Horrock’s theorem (Anubhav Nanavaty, UC-Irvine)

• State Serre’s problem about finitely generated vector bundles on polynomial rings over fields, and
the heuristic that affine space should be “contractible” in some sense. Cover some low-dimensional
examples:

– Mention Seshadri’s result that vector bundles over the affine plane are trivial
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– Mention Murthy-Towber’s result that algebraic vector bundles over affine three-space over a
field are trivial

• Spend the bulk of the talk stating and proving Horrock’s theorem [Lam05, IV.2.1, IV.2.2] following
the original cohomological proof [Hor64, Theorem 1] (see also [Aso, 6.1.4.1]).1

• If time allows, discuss other proofs of Horrock’s theorem [Lam05, Chapter IV]

References: [Lam05, Chapters 1,4], [Ses58, Hor64, MT74]

Week 4: (9/28/23) Quillen’s solution to Serre’s problem (Zhong Zhang, UChicago)

• Introduce Zariski descent for modules

• Follow Quillen’s proof of Serre’s problem. This uses Horrock’s theorem, and Quillen patching which
should be explained

References: [Lam05, Chapters 4,5], [Qui76]

Week 5: (10/5/23) The Bass-Quillen conjecture: extending Serre’s problem (Dan Marlowe, Warwick)

• State the Bass-Quillen conjecture

• Cover Lindel’s theorem, explain what this means for vector bundles over smooth affine k-schemes
[Aso, 6.3]. See also [Lam05, VIII.6]

• (Optional) explain how Lindel’s étale neighborhood argument can be replaced with Gabber’s geo-
metric presentation lemma [AHW20, 2.2]

References: [Lam05, Chapter 8.6], [Lin82]

II. Building, classifying, and decomposing algebraic vector bundles

Week 6: (10/12/23) K-theory and Chow groups; Chow-valued Chern classes; cycle class maps (Krishna
Kumar Madhavan Vijayalakhsmi, Milan)

• Cover the definition of algebraic K0 (stress the difference between isomorphism and stable isomor-
phism). Define Chow groups, and give the axiomatic definitions of Chern classes valued in Chow
groups, and some examples.

• Discuss cycle class maps, and algebraic Chern classes mapping to topological Chern classes.

• Define the Chern character map out of algebraicK-theory. Explain that, if Chern classes characterize
the isomorphism type of bundles over some variety X, then cancellation holds over X. Thus under-
standing whether bundles can be constructed with unique Chern data directly leads to cancellation
statements.

References: [Bas64], [Ful98], [Sri96]

Week 7: (10/19/23) Cancellation and Suslin’s conjecture (Yang Hu, New Mexico State)

• State what “cancellation” means for vector bundles

• Bass ([Bas64, Theorem 9.3], also in [Lam05, V.4.8]) proves that if X = Spec(R) with R Notherian,
of Krull dimension d < ∞, then cancellation holds for bundles of rank > d.

• Suslin proves that, if X is a finite type affine k-scheme of dimension d over a C1-field, then rank d
bundles on X are stably isomorphic if and only if they are isomorphic. [Sus82, 2.4]

1We will need to state the classification of vector bundles on P1, but we can defer the proof to Week 8.
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• Suslin conjectures in [Sus80] that the correct bound for cancellative bundles of rank r is r ≥ d+1
2 .

This turns out not to be correct (Kumar [MK85] gave examples of bundles of rank r = d − 2 on
dimension d ≥ 2 smooth rational affine k-varieties over k = k̄, which answered Suslin’s conjecture in
the negative and collapsed the open range of his cancellation conjecture to just the case r = d− 1.)

• A preprint of Fasel proves cancellation for bundles of rank r = d− 1 on a smooth variety over a field
where d! is a unit [Fas21].

References: [Bas64], [Fas21]. Look at [Lam05, VIII.2] for historical context. If you speak Russian, [Sus77a,
Sus77b, Sus80]

Week 8: (10/26/23) Algebraic vector bundles on the projective line and projective plane (Yuyuan Luo,
MIT)

• Present Grothendieck’s classification of vector bundles on P1 [Aso, §2.4.3, §2.4.4]

• Explain the constraints on Chern classes of bundles arising from Riemann-Roch (a good reference
for this is Schwarzenberger’s appendix to Hirzebruch’s book [Hir95, §23])

• As an example, discuss vector bundles on P2 following Schwarzenberger

References: [Aso], [Sch61b, Sch61a]

Week 9: (11/2/23) Plane bundles on P3 and higher-dimensional questions (Natalia Pacheco-Tallaj, MIT)

• Present Atiyah and Rees’ classification of topological plane bundles on P3.

• Define the α-invariant as in Atiyah-Rees, explain how it classifies topological bundles [AR76, 2.8, 3.3].
Discuss how to compute the α-invariant for algebraic vector bundles [AR76, 5.4].

• Discuss how the α-invariant, together with Horrocks’ construction for locally free sheaves, can be
combined to show that all topological vector bundles of rank 2 on P3 admit algebraic structures
[Hor68].

• Explain the connection between studying vector bundles on projective space and complete intersec-
tions in projective space. State Hartshorne’s conjecture about plane bundles on projective space
[Har74, 6.3].

References: [AR76, Har74]

III. Simplicial and motivic methods: applications to classification and algebraicity

Week 10: (11/9/23) Representability of torsors in simplicial varieties (Kyle Ormsby, University of Wash-
ington)

• Discuss simplicial presheaves on varieties, and the Zariski and Nisnevich topologies. Define τ -local
weak equivalences following Jardine.

• Argue that the bar construction for a group scheme G classifies G-torsors in the τ -local homotopy
category.

• Argue that GLn-torsors in the Nisnevich topology classify algebraic vector bundles of rank n.2

• (Optional) Show that étale torsors for a group scheme are not A1-invariant. [Par78]

References: [Jar15]

Week 11: (11/16/23) A1-localization, motivic spaces, and intro to affine representability (Alexander Ziegler,
Wuppertal)

2This uses a string of identifications Vectalgn (X) = H1
Zar(X,GLn) = H1

Nis(X,GLn).
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• Building off of work from last week, localize at A1 to define the category of motivic spaces

• Explore when the functor X 7→ Vect(X) is and is not A1-invariant. Give a counterexample (e.g. P1)
and state Morel’s result about representability over smooth affine schemes

• State the affine representability theorem

References: [AE17], [Mor06, Mor04]

Week 12: (11/30/23) Affine representability I and II (Federico Ernesto Moccheti, Milan/Osnabrück)

• Go through the proof of affine representability for vector bundles [AHW17] and, as time allows, affine
representability for principle bundles [AHW18]

• Discuss the local-to-global principle for torsors for group schemes, compare this to results about
Quillen patching we have seen earlier

• As a special case of affine representability, show that K0 is represented by Z×BGL for smooth affine
schemes. The theorem is true for all smooth schemes (not necessarily affine)!

References: [AHW17, AHW18]

Week 13: (12/7/23) Obstructions to algebraizicity (Gabriela Guzmán, CIMAT)

• Establish that motivic vector bundles are an intermediate setting for studying lifts of topological
bundles to the algebraic setting

• Explore motivic obstruction theory for the first two Chern classes

• Sketch the construction of the main result of [AFH19]: that algebraizability of Chern classes is not
enough to guarantee algebraizability of the bundle

References: [AFH19].
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