CHEM 8B, LECTURE 17 What is a pKa? Titration of Phosphoric Acid (pKa₁ 2.1; pKa₂ 7.2; pKa₃ 12.3) Indicate the charge of the dominant ionic phosphate species at... pH 1 _____ pH 2.1 ____ pH 5 ____ pH 7.2 ____ Physiological pH (7.4)? _____ pH 12.3 ____ pH 13 ____ **Amino Acids** – which is the least likely representation? $$+ H_3 N \xrightarrow{R} CO_2 H \qquad + H_3 N \xrightarrow{R} CO_2 \xrightarrow{-} H_2 N \xrightarrow{R} CO_2 \xrightarrow{-} H_2 N \xrightarrow{R} CO_2 H$$ Titration of L-Leucine, neutral amino acid (pKa₁ 2.4, pKa₂ 9.6; pKa_R N/A) $$^{+}$$ H $_{3}$ N $^{-}$ CO $_{2}$ H **L-Leucine** (fully protonated) pH < ____ < pH < ____ pH > ____ **pl = Isoelectric point** – pH at which the highest concentration of molecules are in neutral form (not necessary neutral @ pH 7) - Calculate by taking the average of the 2 pKa's on either side of neutral molecule ## Titration of L-Aspartic Acid, an acidic amino acid (pKa₁ 1.9, pKa₂ 9.6; pKa_R 3.7) Isoelectric Point of Aspartic Acid (without looking at the table!)... pl = ## Titration of L-Lysine, a basic amino acid (pKa₁ 2.2; pKa₂ 9.0; pKa_R 10.5) +H₃N ² $+H_3N$ L-Lysine (fully protonated) ____<pH < ____ ____<pH<____ pH < _____ pH > _____ Isoelectric Point, pI = **Electrophoresis** – separation of amino acids based on charge. @ pH 5, Leu = ____; Asp = ____; Lys = ____ @ pH 9, Leu = ____; Asp = ____; Lys = ____ | \oplus | | Э | |----------|--|---| |----------|--|---|