## CHEM 8B, LECTURE 17

What is a pKa?

Titration of Phosphoric Acid (pKa<sub>1</sub> 2.1; pKa<sub>2</sub> 7.2; pKa<sub>3</sub> 12.3)



Indicate the charge of the dominant ionic phosphate species at...

pH 1 \_\_\_\_\_ pH 2.1 \_\_\_\_ pH 5 \_\_\_\_ pH 7.2 \_\_\_\_

Physiological pH (7.4)? \_\_\_\_\_ pH 12.3 \_\_\_\_ pH 13 \_\_\_\_

**Amino Acids** – which is the least likely representation?

$$+ H_3 N \xrightarrow{R} CO_2 H \qquad + H_3 N \xrightarrow{R} CO_2 \xrightarrow{-} H_2 N \xrightarrow{R} CO_2 \xrightarrow{-} H_2 N \xrightarrow{R} CO_2 H$$

Titration of L-Leucine, neutral amino acid (pKa<sub>1</sub> 2.4, pKa<sub>2</sub> 9.6; pKa<sub>R</sub> N/A)

$$^{+}$$
H $_{3}$ N $^{-}$ CO $_{2}$ H

**L-Leucine** (fully protonated)

pH < \_\_\_\_ < pH < \_\_\_\_ pH > \_\_\_\_



**pl = Isoelectric point** – pH at which the highest concentration of molecules are in neutral form (not necessary neutral @ pH 7)

- Calculate by taking the average of the 2 pKa's on either side of neutral molecule

## Titration of L-Aspartic Acid, an acidic amino acid (pKa<sub>1</sub> 1.9, pKa<sub>2</sub> 9.6; pKa<sub>R</sub> 3.7)





Isoelectric Point of Aspartic Acid (without looking at the table!)...

pl =

## Titration of L-Lysine, a basic amino acid (pKa<sub>1</sub> 2.2; pKa<sub>2</sub> 9.0; pKa<sub>R</sub> 10.5)

+H<sub>3</sub>N <sup>2</sup>  $+H_3N$ L-Lysine (fully protonated)

\_\_\_\_<pH < \_\_\_\_ \_\_\_\_<pH<\_\_\_\_ pH < \_\_\_\_\_

pH > \_\_\_\_\_



Isoelectric Point, pI =

**Electrophoresis** – separation of amino acids based on charge.

@ pH 5, Leu = \_\_\_\_; Asp = \_\_\_\_; Lys = \_\_\_\_



@ pH 9, Leu = \_\_\_\_; Asp = \_\_\_\_; Lys = \_\_\_\_

| $\oplus$ |  | Э |
|----------|--|---|
|----------|--|---|