

FIGURE 22.1 Influence of an external magnetic field on spin state energy levels.

FIGURE 22.2 Excitation of a nucleus from its low-energy state to its high-energy state and emission of energy upon relaxation of the nucleus.

Magnetic field direction

FIGURE 22.3 Nuclear magnetic dipole (a) aligned with an external magnetic field (α) and (b) opposed to an external magnetic field (β).

FIGURE 22.5 Block diagram of a basic FT NMR spectrometer.

FIGURE 22.17 Common NMR terminology.

FIGURE 22.11 ¹H NMR spectrum of ethyl propanoate at 200 MHz.

FIGURE 22.12 ¹H NMR spectra of *tert*-butyl acetate in the region from 0 to 500 Hz at (a) 60 MHz and (b) 200 MHz. The chemical shift of each signal is the same regardless of the spectrometer frequency.

FIGURE 22.13 Approximate regions of chemical shifts for different types of protons in organic compounds.

TABLE 22.2	Characteristic ¹ H NMR chemical shifts in CDCl ₂
TABLE 22.2	Characteristic 'H NMK chemical shifts in CDC

Compound	Chemical shift (δ , ppm)	
TMS	0.0	
Alkanes (C-C-H)	0.8–1.9	
Amines (C-N-H)	0.6–4.5	
Alcohols (C-O-H)	0.5–5.0	
Alkenes a (C=C-C- H)	1.5–2.6	
Alkynes (C≡C− H)	1.7–3.1	
Carbonyl compounds (O=C-C-H)	1.9–3.3	
Halides (X—C— H)	2.1–4.5	
Aromatic compounds ^b (Ar–C– H)	2.2–3.0	
Alcohols, esters, ethers (O-C-H)	3.2–5.3	
Alkenes (C=C- H)	4.5–8.5	
Phenols (Ar-O-H)	4.0-8.0	
Amides (O=C-N- H)	5.5-9.5	
Aromatic compounds (Ar-H)	6.5–9.0	
Aldehydes (O=C-H)	9.5–10.5	
Carboxylic acids (O=C-O-H)	9.7–12.5	

a. Allylic protons.

b. Benzylic protons.

Additive parameters for predicting NMR chemical shifts of aromatic protons in CDCl₃

		•	3
	Base value	7.36 ppm ^a	
Group	ortho	meta	para
—CH ₃	-0.18	-0.11	-0.21
$-CH(CH_3)_2$	-0.14	-0.08	-0.20
—CH ₂ Cl	0.02	-0.01	-0.04
—CH=CH,	0.04	-0.04	-0.12
—CH=CHĀr	0.14	-0.02	-0.11
—CH=CHCO₂H	0.19	0.04	0.05
—CH=CH(C=O)Ar	0.28	0.06	0.05
Group	ortho	meta	para
—Ar	0.23	0.07	-0.02
—(C=O)H	0.53	0.18	0.28
—(C=O)R	0.60	0.10	0.20
—(C=O)Ar	0.45	0.12	0.23
—(C=O)CH=CHAr	0.67	0.14	0.21
$(C=O)OCH_3$	0.68	0.08	0.19
$-(C=O)OCH_2CH_3$	0.69	0.06	0.17
-(C=O)OH	0.77	0.11	0.25
—(C=O)Cl	0.76	0.16	0.33
$(C=O)NH_2$	0.46	0.09	0.17
—C≣N	0.29	0.12	0.25
— F	-0.32	-0.05	-0.25
—Cl	-0.02	-0.07	-0.13
—Br	0.13	- 0.13	-0.08
—OH	-0.53	-0.14	-0.43
—OR	-0.45	-0.07	-0.41
—OAr	-0.36	-0.04	-0.28
O(C=O)R	-0.27	0.02	-0.13
O(C=O)Ar	-0.14	0.07	-0.09
$-NH_2$	-0.71	-0.22	-0.62
$N(CH_3)_2$	-0.68	-0.15	-0.73
NH(C=O)R	0.14	-0.07	-0.27
$-NO_2$	0.87	0.20	0.35

a. Base value is the measured chemical shift of benzene in CDCl₃ (1% solution).

TABLE 22.3 Additive parameters for predicting NMR chemical shifts of alkyl protons in CDCl₃^a

Base values

Methyl 0.9 ppm Methylene 1.2 ppm Methine 1.5 ppm

	Metrine	т.э ррш	
Group (Y)	Alpha (α) substituent	Beta (β) substituent	Gamma (γ) substituent
	H —C—Y	H —C—C—Y	H —C—C—C—Y
—R	0.0	0.0	0.0
—C=C	0.8	0.2	0.1
—C=C —C=C—Ar ^b —C=C(C=O)OR —C≡C−R —C≡C−Ar	0.9	0.1	0.0
C=C(C=O)OR	1.0	0.3	0.1
—C≡C−R	0.9	0.3	0.1
—C≡C−Ar	1.2	0.4	0.2
—Ar	1.4	0.4	0.1
—(C=O)OH	1.1	0.3	0.1
(C=O)OR	1.1	0.3	0.1
(C=O)H	1.1	0.4	0.1
(C=O)R	1.2	0.3	0.0
(C=O)Ar	1.7	0.3	0.1
$(C=O)NH_2$	1.0	0.3	0.1
—(C=O)Cl	1.8	0.4	0.1
—C≡N	1.1	0.4	0.2
—Br	2.1	0.7	0.2
—Cl	2.2	0.5	0.2
—OH	2.3	0.3	0.1
—OR	2.1	0.3	0.1
—OAr	2.8	0.5	0.3
O(C=O)R	2.8	0.5	0.1
O(C=O)Ar	3.1	0.5	0.2
$-NH_2$ -NH(C=O)R	1.5	0.2	0.1
-NH(C=O)R	2.1	0.3	0.1
NH(C=O)Ar	2.3	0.4	0.1

a. There may be differences of 0.1-0.5 ppm in the chemical shift values calculated from this table and those measured from individual spectra.

b. Ar = aromatic group.

FIGURE 23.4 Approximate regions of ¹³C chemical shifts for different types of carbon atoms in organic compounds.

TABLE 23.1 Characteristic ¹³C NMR chemical shifts in CDCl₃

Compound	Chemical shift (ppm)
TMS	0.0
CDCl ₃ (t)	77
Alkane (C–CH ₃)	7–30
Alkane (C-CH ₂)	15–40
Alkane (C-CH) and (C-C)	15–40
Carboxylic acids, esters, and amides (C-C=O)	20–35
Allyl (C-C=C)	20–35
Arene (C –Ar)	20–45
Ketones, aldehydes (C -C=O)	30–45
Amines (C-N)	30–65
lodides (C-I)	-5-45
Bromides (C -Br)	25–65
Chlorides (C–Cl)	35–70
Fluorides (C–F)	80–95
Alcohols (C -OH), ethers (C -OR), esters (C -O[C =O] R)	55–80
Alkyne (C ≡C)	70–100
Alkene (C =C)	110–150
Aromatic	110–160
Nitriles (C ≡N)	110–125
Carboxylic acids, esters, and amides (C =O)	160–180
Aldehydes (C=O)	185–210
Ketones (C-O)	190–220