UCSC, Binder
Name__
Student ID \#
Survey of Organic Chemistry
EXAM 2 (200 points)

In each of the following problems, you will use your knowledge of organic chemistry conventions to answer the questions in the proper manner. Be sure to read each question carefully. For extra credit, write down your favorite summer location on the last page of the exam. You have the entire class period (2 hours) to complete this exam. Pay attention to point values and problems to skip to use your

$1(24)$	
$2(37)$	
$3(22)$	
$4(16)$	
$5(16)$	
$6(22)$	
$7(21)$	
$8(18)$	
$9(24)$	
Total	

Keep your eyes on your own paper. Electronic devices of any kind are not allowed, including cell phones and calculators. Any student found using any of said devices, or found examining another student's exam, will be promptly removed from the exam room and at minimum will receive a zero on this exam. Such an incident may also be considered a form of academic dishonesty and reported to the UCSC Judiciary Affairs Committee.

1. Fundamentals

(a) (4 points) Provide the degrees of unsaturation in the following structures or formulas.

(b) (8 points) Rank the following carbocations from most stable (1) to least stable (4).

(c) (12 points) Indicate whether the following types of compounds are nucleophiles (N) or electrophiles (E).

Acids \qquad Bases \qquad Alkenes \qquad

Alkynes \qquad Alkyl Halides \qquad
\qquad

2. Nomenclature

(a) (12 points) Name any three of the following compounds. Indicate in the parentheses which three compounds you are choosing. Include stereochemistry in the name, where appropriate.

(i)

(ii)

(iii)

(iv)
() \qquad
() \qquad
() \qquad
(b) (15 points) Choose any three and draw structures corresponding to the following names.
(4E)-2,4-Dimethyl-1,4-hexadiene

3-Chloro-4,4-dimethyl-1-nonen-6-yne

5-tert-Butyl-2-methyl-3-octyne
cis-1-Bromo-2-ethylcyclopentane
(d) (10 points) Provide a cis/trans or E / Z designation for each isomerizable alkene on the lines provided. Write "Nl" if the alkene is non-isomerizable.

3 \qquad , 5 \qquad

4 \qquad , 6 \qquad
\qquad

3. Acid-Base Chemistry

(a) (8 points) List the pKa values that belong to each compound in the boxes below.
HCl
\square

(b) (10 points) Rank the following sets of molecules from most acidic (1) to least acidic (4).
(i)

(ii)

 $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$

\square

(c) (4 points) Draw the products in the following reactions. No arrow-pushing necessary.
(i)

(ii) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
\qquad
4. Single step reactions - FILL IN THE BOX. Choose any four of the five reactions below and fill in the missing reactant, reagent/solvent, or product. Put a large " X " over the problems you are skipping. Otherwise the first four will be graded. Show stereochemistry in the products where appropriate. For (a), (b), (d), and (e) below, circle whether the product(s) is/are achiral, racemic, or a mixture of diastereomers.
(16 points) Complete any four of the reactions below.
(a)

Achiral
Racemic
Mixture of Diastereomers
(b)

(c)

(d)

Achiral
Racemic
Mixture of Diastereomers
(e)

\qquad

5. Single-step reactions continued...

(16 points) FILL IN THE BOX. Choose any four of the five reactions below and fill in the missing reactant, reagent/solvent, or product. Put a large " X " over the problems you are skipping. Otherwise the first four will be graded. Ignore stereochemistry.
(g)

(h)

(i)

(j)

(k)

\qquad

6. Reaction Puzzles

(a) (12 points) Choose any two of the three reaction schemes below (i through iii) and Fill in the Box with the missing reactants, reagents, and products. Ignore stereochemistry.
(i)

(2 possible starting materials)
(ii)

(iii)

(b) (10 points) Fill in the missing reagents below to complete the reaction puzzle.

\qquad
7. Determination of unknowns. Use the information below to elucidate the structures of compounds A, B, C, D1, and D2. Use the space below to show your work and write your final answers in the boxes below. Only your final answers will be graded.

Compound $\mathbf{A}\left(\mathrm{C}_{6} \mathrm{H}_{8}\right)$ reacts with 2 molar equivalent of hydrogen with Pd / C catalyst to give compound $\mathbf{B}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$.

Upon treatment of \mathbf{A} with ozone followed by zinc under acidic conditions, only one product \mathbf{C} is formed. C is a dialdehyde (two aldehydes) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$.

Compound \mathbf{A} also reacts with 2 molar equivalents of OsO_{4} and yields 2 stereoisomeric products (D1 and D2) with molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}$ after treatment with aqueous sodium bisulfite.

\qquad
8. (18 points) Mark and Nick are beginning students in an organic chemistry lab and are arguing about the best way to synthesize 1-methyl-1-bromocyclohexane. Mark thinks that hydrobromination of 1-methylcyclohexene is best, but Nick thinks methylenecyclohexane is a better choice for the starting material. Their labmate Kat Ayan breaks up the fight and reassures them that either route is suitable.
(i) Draw arrow-pushing mechanisms for both reactions.
(iii) Give a brief explanation for why Kat was right.

\qquad
9. (24 points) Allylic bromination of 2-hexene with NBS yields a mixture of four products, all of which are constitutional isomers of each other. In the space provided below, show the arrowpushing mechanisms for the bromination of 2-hexene to all four products using the abbreviated form of radical bromine given (only show propagation steps).
(i)

(ii)

(iii)

(iv)

\qquad

