CHIRALITY

Stereoisomers

- Stereoisomers = compounds having the same molecular formula and connectivity, but different 3D arrangements of atoms.
- A pair of stereoisomers are, by definition, non-superimposable on each other.
- A compound is said to be chiral (asymmetric) if its mirror image is not superimposable on the original image.
- Draw the mirror image of each compound. Are the pairs superimposable?

Chiral Centers

- A carbon atom is chiral if it has four different groups/substituents.
- How many chiral centers are in each biomolecule below?
- Indicate each chiral center with a star (*).

A carbon atom is chiral if its mirror images are non-superimposable.
IS IT CHIRAL? Draw mirror images of the following tetrahedral carbon atoms.

Is a compound chiral? This is a different question than "does the compound have chiral centers" or "is this carbon chiral?"

- Recall that a chiral compound is asymmetric, in other words, it does not contain a plane of symmetry. You can check this by drawing a mirror-image of the compound in question.
- If the mirror-image is superimposable with the original compound, the compound is symmetric and is achiral.
- It is possible for a compound with chiral centers to be achiral. These are called meso compounds. Meso compounds contain chiral centers but have a plane of symmetry and so they are achiral.
- If the mirror-image is non-superimposable with the original compound, the compound is asymmetric and so is chiral.

EXAMPLES:

THIS WILL BE THE MOST IMPORTANT PART OF THIS CHAPTER:

R/S Configuration of a chiral center is how absolute stereochemistry is defined.

1. The four different substituents are prioritized (just like E / Z prioritization).
2. Orient the carbon atom so that two bonds are in the plane, one is above the plane (bold wedge), and the fourth priority group is behind the plane (dash).
3. Orient that carbon atom so that the substituent of fourth priority is behind the plane (dash).
4. The remaining three substituents are counted in a circle: 1 then 2 then 3 .
a. If the 1-2-3 circle goes clockwise, the chiral center is of (R) configuration.
b. If the 1-2-3 circle goes counter-clockwise, it is of (S) configuration.
5. Assign R / S configuration to compounds A-F below.

Enantiomers are a pair of compounds that are non-superimposable mirror images of each other.

- For a given pair of enantiomers, any (R) stereocenters on one compound will be (S) stereocenters on the enantiomer, and vice versa.

Diastereomers are a pair of compounds containing two or more chiral centers.

- For a pair of diastereomers, some of the chiral centers change in configuration, but at least one must be the same.
- Diastereomers are NOT mirror-images of each other (recall that non-superimposable mirror images are enantiomers

CHIRALITY

Stereoisomers or not? If so, what kind?

Assign R/S configurations for each stereocenter in the following compounds
Here's a trick: the normal way of assigning R / S requires the $4^{\text {th }}$ priority to be behind the page. If the $4^{\text {th }}$ priority is drawn in front of the page with a wedge, the configuration you assign is the opposite of how it looks. For example, if it looks like an R center with the $4^{\text {th }}$ priority wedged, it is actually an S configuration.

A

B

C

D

E

F

Indicate whether the following pairs are enantiomers, diastereomers, constitutional isomers, the same compound, or not isomers. You've already done the hard part by assigning R/S.

- For a given pair below, number the carbons, name the compounds, and write the formula.
- Constitutional isomers - same molecular formula, and the name differs by more than the R / S designation.
- Not isomers - different molecular formula.
- Enantiomers - All of the R centers are S centers on the pair, and vice versa.
- Diastereomers - At least one of the chiral centers has the same R/S designation, but the others are different.
- Same Compound - Everything is the same!

A\&B \qquad
\qquad A\&D \qquad
A\&E \qquad
\qquad B\&C \qquad
B\&D \qquad B\&F \qquad C\&D \qquad

C\&F \qquad D\&F \qquad E\&F \qquad
A 50:50 mixture of A\&F is called \qquad
The optical rotation value for this mixture is \qquad
What is the relationship between the optical rotations of A\&F? \qquad
Which other pairs share this relationship? \qquad
What's the relationship between E and the rest of the compounds? \qquad

