Using language-wide phonotactics to learn affix-specific phonology

Brian W. Smith UC Santa Cruz brwismit@ucsc.edu

Today

- A case of phonologically-conditioned suffixation, in which...
 - learners have very little data
 - the distribution of affixes can be learned through a combination of...
 - (1) extending language-wide phonotactics
 - (2) learning small affixal differences
- No sublexicons are necessary for this data

Case study

• Two suffixes, each with two allomorphs

```
-licious -alicious [li \int \theta s] [\underline{\boldsymbol{\vartheta}} li \int \theta s] -thon -athon [\boldsymbol{\theta} \alpha n] [\underline{\boldsymbol{\vartheta}} \theta \alpha n]
```

Phonological conditioning

- Both suffixes conditioned by phonology
 - Schwaful variant is more likely after stressed syllables, consonants
 - Schwaless variant is more likely after unstressed syllables, vowels
- Shown in the following slides using data from GIOWbE (Davies et al. 2013)
 - GloWbe: data from 2012-2013, 60% blogs

Effect of segment: -(a)licious

```
    -alicious / C_
    appolicious good-a-licious craftilicious bookalicious
    -licious / V_
```

roylicious

skalicious

bow-licious

rawlicious

Effect of stress: -(a)licious

```
    -<u>a</u>licious / σ΄_
    spookalicious swoon-a-licious nomalicious meadilicious
```

-licious / σ
 dietlicious summerlicious
 Twilightlicious Jerseylicious

Rate of schwa in -(a)licious

Rate of schwa in -(a)licious

Rate of schwa in -(a)thon

Rate of schwa in -(a)thon

Idiosyncratic differences

- Despite the fact that phonological conditioning is similar across the suffixes, the suffixes differ in their overall rate of schwa
- This difference holds across all phonological contexts

Summary

 -(a)licious and -(a)thon are conditioned by phonological context in the same ways

- But!
 - -athon is used more often than -alicious across all phonological contexts

Whence phonological conditioning?

- Affixes prefer some roots over others
- Two explanations:
 - Language-wide grammar
 - Subcategorization

Language-wide grammar

- Phonological conditioning comes from the phonological grammar (e.g., Mester 1994, Kager 1996, Mascaró 1996)
 - In OT, markedness constraints: one set of constraints for allomorphy, alternations, and phonotactics
 - E.g., choice of suffix avoids hiatus and stress clash, driven by *HIATUS and *CLASH

Subcategorization

 Lexical listing / subcategorization frames (e.g. Paster 2006, Embick 2010)

```
-alicious ↔ C ___-licious ↔ V ___
```

 Sublexicons: every suffix can have its own GateKeeper grammar (Becker, earlier)

Three arguments for languagewide grammar approach

- 1. Cross-suffix similarity
 Many suffixes are subject to the same phonological conditions
- 2. Poverty of the stimulus
 Both suffixes are very rare, with uneven distributions in a corpus
- 3. The same constraints that condition the suffixes also play a role in alternations and the distribution of words in the lexicon

A solution

- Problem: the phonological conditioning of the suffixes persists despite a lack of learning data
- Using the pre-existing phonotactic grammar to choose between suffixal forms solves this problem — learners don't need many -(a)licious words data to learn -(a)licious!

Cross-suffix similarity

Experiment: -(a)licious and -(a)thon

Experiment

Goals

- Test for effects of segment and stress beyond words in corpus
- Estimate probabilities of -(a)licious and
 -(a)thon across contexts

Experiment

 Web-based forced choice presented through lbex Farm

Item design

Four stress and segmental contexts

EXAMPLE	FINAL SEGMENT	STRESS
cactus	С	10
police	С	01
hero	V	10

• 10 roots of each type (plus 40 fillers)

Item design

Four stress and segmental contexts

EXAMPLE	FINAL SEGMENT	STRESS
cactus	С	10
police	С	01
hero	V	10

• 10 roots of each type (plus 40 fillers)

Item design

Four stress and segmental contexts

EXAMPLE	FINAL SEGMENT	STRESS	
cactus	С	10	+
police	С	01	
hero	V	10	+

Effect of segment

• 10 roots of each type (plus 40 fillers)

Experiment

- 109 participants after exclusions
 - All self-identified as native speakers of English
 - Only included data for American participants

Summary for -(a)licious

Summary for -(a)thon

- Comparing -(a)licious and -(a)thon we find roughly the same phonological conditioning
- We also see that schwa is used more often in -(a)thon

- The greater preference for schwa in -(a)thon holds across items and participants
 - Including fillers, which have other stress patterns, e.g. 102, 201, 010
 - True for 78/80 words in the experiment
 - True for 87% of participants (95/109)

By item

Conspiracies

- Experiment shows that speakers use roughly the same phonological criteria for both -(a)thon and -(a)licious
- Many suffixes in English seem subject to the same constraints
 - -(a)holic, -(e)teria, -(o)rama, etc.
- And well-established derivational suffixes
 - -(e)ry, -ese, -al, -eer, -ee, -ette, -ize, -ify (Raffelsiefen 2005 and earlier work)

Subcat?

 Under subcategorization, similarity across suffixes and alternations is a coincidence

Poverty of the stimulus

Poverty of the stimulus

- Speakers agree on the phonological conditioning of the suffixes
- But if the corpus data is representative: data is scarce
 - -(a)licious and -(a)thon are not very common to begin with
 - Especially uncommon with roots of certain shapes

Uncommon...

- In GIOWbE, licious- and thon-words are uncommon. Out of 500 million words for American and Canadian English (combined):
 - 933 tokens for -(a)licious
 - 1866 tokens for -(a)thon
- Assume a speaker hears 30,000 words/day…
 - 30 licious/year, 60 thon/year

Variety in root shape...

- For both suffixes, more than half of the types are hapaxes (182/310 for -(a)licious)
- The top 10 most-frequent words account for >50% of the tokens

And most of the frequent -(a)thon words have schwa

For -(a)licious, the most frequent words don't have schwa

Poverty of the stimulus

 If a speaker gets 30–60 of these tokens per year and doesn't get a variety of phonological contexts, learning the "correct" subcategorization frames will be difficult at best

The same constraints are active in suffixation, alternations, phonotactics

MaxEnt model

- A model of -(a)licious and -(a)thon with handpicked constraints
- Fit on experimental probabilities
 - Note: probably not how learners acquire the distribution in the real world
 - Using MaxEnt Grammar Tool (Wilson & George 2009)

Markedness constraints

- *CLASH:
 Assign a violation for every σσ sequence
- *LAPSE:
 Assign a violation for every ŏŏ sequence
- *HIATUS:
 Assign a violation for every V.V sequence

Constraints to capture preference for schwa

- Analyze schwa alternation as listed allomorphs
- Constraints encode which listed allomorph is default (UR constraints, Pater at al. 2012)

```
UR = /əlɪ∫əs/ (-alicious)
```

```
UR = /lɪ∫əs/ (-licious)
```

- UR = $\frac{1}{2}\theta\alpha n$ (-athon)
- UR = $/\theta \alpha n/$ (-thon)

Learned weights

Constraint	Weight	Constraint	Weight
*CLASH	2.61	-athon	1.97
*HIATUS	2.31	-alicious	0.37
*LAPSE	0.43	-licious	0.18
		-thon	0.13

*Clash > *Hiatus > *Lapse

- Order of *Clash, *HIATUS, and *Lapse is mirrored in English lexicon
- On the next slide: counts from CMU dictionary, number of 3+ syllable words that violate the constraint
- Important: constraint weights were determined using only the experimental probabilities for -(a)licious and -(a)thon

CMU violators

Constraint	Weight	Number of violators	
*CLASH	2.61	1,597	8%
*HIATUS	2.31	2, 792	13%
*LAPSE	0.43	8, 702	41%

Defaults

- For both -athon and -alicious, the default is the schwaful form
- The preference for -athon
 over -thon is greater than the
 preference for
 -alicious over -licious

Constraint	Weight	
-athon	1.97	
-alicious	0.37	
-licious	0.18	
-thon	0.13	

Defaults

- Phonotactics alone can't explain the distribution of -(a)licious or -(a)thon
 - No phonotactic motivation for baseline difference in schwa rates
- Speakers then must learn from observation
 - -athon is more common than -thon
 - -licious is more common than -alicious

*CLASH in English

- A small sample
 - Rhythm Rule (Liberman and Prince 1977)
 thìrtéen → thìrteen mén
 - **optional** *that* (Lee and Gibbons 2007) *I know (that) Lucy went* vs. *I know (that) Louise went*
 - genitive alternation (Shih et al. 2015) the car's wheel vs. wheel of the car
 - historical change (Schlüter 2005)

*HIATUS in English

- English avoids hiatus, especially when the left vowel is lax
- Observable in phonotactics, repairs, and allomorphy

*HIATUS in English

Radio Rule: no hiatus where V₁ is lax
 √radio, boa *.iedɪ.o, bɔ.ə (Chomsky & Halle 1968)

- Glottal stop epenthesis
 mora-[?]ist (Plag 1999), sea [?] otter (Davidson & Erker 2014)
- Intrusive R and intrusive L
 draw[r]ing [dɹαɹɨŋ] (McCarthy 1993); draw[l]ing [dɹɔlɨŋ] (Gick 2002)
- a/an allomorphy and function word reduction
 an apple, a pear; [ði] apple, [ðə] pear (overview in Smith 2015)

*HIATUS in -(a)licious

 As in the rest of English, hiatus is especially bad when the left vowel is lax

*HIATUS in -(a)thon

 As in the rest of English, hiatus is especially bad when the left vowel is lax

Learning with sparse data

How to learn -(a)licious and -(a)thon

- The proposal:
 - 1. Take the pre-existing phonotactic grammar
 - 2. For each suffix, learn the rate of allomorphs from available data

BLICK grammar

- Weights of phonological constraints come from BLICK (Hayes 2012)
 - a MaxEnt phonotactic grammar of English based on CMU pronouncing dictionary (Weide 1994)
 - constraints are a mix of hand-picked and machine-generated

Learning the rate of schwa

- For each suffix, set the weight of morphemespecific constraints to match the overall probability of schwa
 - Here, fitted on token frequency not type
 - Token frequency provides significantly better fit than type frequency for -(a)licious (difference is largely due to booty-licious)

Model's performance on -(a)thon

- Model captures the relative likelihood of schwa across contexts
- Overpredicts schwa in CACTUS and HERO roots

%schwa	Target	Model	
POLICE- thon	99	99	
CACTUS- thon	79	94	
HERO- thon	48	87	
SODA- thon	10	1	

Model's performance on -(a)thon

Grammar contains a constraint against obstruent- θ sequence

%schwa	Target	Model	
POLICE- thon	99	99	
CACTUS- thon	79	94	
HERO- thon	48	87	
SODA- thon	10	1	

Model's performance on -(a)thon

Grammar doesn't contain a general constraint against hiatus

%schwa	Target	Model	
POLICE- thon	99	99	
CACTUS- thon	79	94	
HERO- thon	48	87	
SODA- thon	10	1	

Model's performance on -(a)licious

 Model doesn't capture a difference between HERO and CACTUS

%schwa	Target	Model
POLICE- licious	93	94
CACTUS- licious	45	46
HERO- licious	9	46
SODA- licious	4	0

Model's performance on -(a)licious

Grammar doesn't contain a general constraint against hiatus

%schwa	Target	Model
POLICE- licious	93	94
CACTUS- licious	45	46
HERO- licious	9	46
SODA- licious	4	0

Improving the BLICK grammar

- Assume HERO+ə violates the stress-sensitive constraint against hiatus in the grammar (*ÝV)
- Assume constraint against obstruent followed by θ doesn't operate across morpheme boundaries

With improved BLICK grammar

	Target	Model		Target	Model
POLICE- thon	99	99	POLICE- licious	93	94
CACTUS- thon	79	87	CACTUS- licious	45	46
HERO- thon	48	51	HERO- licious	9	12
SODA- thon	10	1	SODA- licious	4	0

Conclusion

Take-away

- Sometimes, affix-specific phonology doesn't require learning much affix-specific information
 - In the account here, the only affix-specific information is the rate of schwa
 - Using the phonotactic grammar solves sparse data problems, and also accounts for similarities between suffixes and phonotactics

Predictions

- Under the strongest form of the language-wide grammar hypothesis, we should find a single grammar for all licious-like suffixes
 - Same constraints for every one
 - Same relationship between constraints
 - Only differences are in default forms

Predictions

- Any constraint that's active in English should have an effect on -(a)licious
 - Liquid OCP (which has effects in derivational morphology)
 - Syllable contact

A problem

- Phonotactics aren't going to work for every case of affixation, e.g. English comparative -er
- How does the learner decide which approach to employ?

Thank you