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Transition to R Classes 4 and 5: Basic Statistics — Regression, ANOVA, t-test
Tools for basic statistics in the base R package.
Goals:
(1) Fitting Models
1A. Model objects and Extractor functions p2
1B. attach() and detach() p3
1C. How to write formulas for models in R p4
(2) Linear regression using Im() p5
2A. Simple Linear Regression pS
2B. Accessing individual named components of Im model objects p7
2C. Using predict() to get fitted lines and confidence intervals p9
2D. Multiple Linear Regression and Stepwise Model Selection pl0
(3) ANOVA using aov() or Im() pl2
3A. Independent 2-Sample #-test, test of equal variance, Wilcoxon Rank test pl2
3B. Paired sample and one-sample #-tests  pl3
3C. Simple one-way ANOVA using Im and aov ~ pl4
3D. oneway.test, and Kruskal-Wallis anova packages pl8
3E. Factorial design ANOVAp19
3F. Blocked or split-plot design ANOVA  p20
3G. Nested ANOVA p20
3H. ANCOVA p21
(4) Testing for homogeneity of variance among groups p22
(5) Type I and Type III sums of squares p22
(6) Summary cheat sheet p23

Sample data sets:

The examples here draw on five data frames (rd, three, two, fb, nes), available from the course web page
by running the following code in R.

#run this block of code to get all five data frames

rd<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/RegressionDataset.csv",sep=","  heade
r=TRUE)

three<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/ThreeTreatmentDataset.csv",sep=",",h

eader=TRUE)
two<-three[-which(three$treatment=="potassium"),]

fb<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/factorialdata.csv",sep=",",header=TR
UE)

nes<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/NestedAOVdata.csv",sep="," ,header=TR
UE)

#end of code to get data frames
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(1) Model Objects and Extractor Functions: When you run an analytical function in R, you usually
get back a very sparse result, not enough for what you need. That is because the output of analytical
functions like linear regression (Im) and analysis of variance (aov), are model objects, usually of type
List and most of the model object are hidden from view. These model objects often have a large number
of important embedded components that you can access using a variety of extractor functions (e.g.,
summary(), anova()) that package the information into useful structures and present the results.

Always assign the output of a model you run to an object and then extract it; don't just run the model.
Do this: 1mout<-1m(rd$temp~rd$precip)  Notthis: 1m(rd$temp~red$precip)

To see a "table of contents" of the model object, use the str() function.
Imout<-1m(rd$temp~rd$precip)
str(lmout) # this shows that Imout is a List with 12 elements

*You can access some components of the model object by name (e.g., coefficients(lmout))

*You can use the $ to access named components (e.g., lmout$coefficients)

*You can call elements by the position in the list; e.g., since fitted.values are the 5th § element in the
model object list, so you can call

Imout[[5]] #the [[ ]] is used as position indicator in lists

Some elements of the list have sub-clements; e.g., "lmout$qr" (element 7) has five $ sub-elements, the
third of which is "pivot". There are several ways to see the values. Each of the following gives the
same result:

Imout$qr[3] Imout[[7]1]1[3] Tmout[[7]]$pivot 1mout$gr$pivot

Doing statistics in R is a matter of knowing which analytical functions are appropriate, what the
structure of the resulting model object is, and which extractor functions and names are useful for getting
what you want.

Generic extractor functions
There are a number of generic extractor functions that package the model output in useful ways.

Generic extractor What it does

summary() shows parameter estimates, and statistical values such as F, R%, P, df
anova() gives the ANOVA table with SS, MS, F, P, df
plot() produces 4 diagnostic plots: Residual vs. Fitted; Normal QQ); Scale Location;

Residual vs. leverage. Hit return in console to produce each in turn; scroll
through with command-arrows. Or use this to see all at once:
par(mfrow=c(2,2));plot(myModel); par(mfrow=c(l,1))

coef() shows the estimated parameters from the fit model

fitted() shows the fitted valued as predicted by the model for the independent variables
included in the model

resid() shows the residuals; measured minus predicted values of the dependent variable

predict() produces a smooth function based on the fitted model to plot

methods(class=function) shows all the extractor functions available for a function (usually)



G.S. Gilbert, ENVS291 Transition to R vW2015
Classes 4 and 5 Regression, ANOVA, t-test

1B. A note on attach() and detach()

Attach(): auseful and dangerous friend to avoid typing the data frame name repeatedly
If you are only going to be working with one data frame for a while, and you don't want to have to type
the dataframe$columnl each time, and instead just call columnl, you can use the function attach.

Compare:
rdout<-1m(rd$temp~rd$precip) #specify the data frame for each variable
plot(rd$temp~rd$precip)

with:
attach(rd) #attach the data frame
rdout<-1m(temp~precip) #call directly to the variables
plot(temp~precip)
detach(rd) #detach the data frame to work on a different data frame

Be careful with attach()! If you have a variables called "temp" and "precip" in data frame "rd"
(rd$temp) and attach the data frame "rd", you then just call Im(temp~precip). BUT, if you
happen to have another object in your workspace called simply "temp", things can get ugly very
quickly. Use attach with caution, and be sure to detach as soon as appropriate.

3
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1C. How to write formulas for models in R
Models in R take the form: response variable ~ explanatory variables

R formulas have several special symbols

* interaction, e.g., A*B is A, B, and the interactions between A and B

A interaction, e.g., (A+B)"2 is A, B, and the interactions between A and B

: interaction, e.g., A:B is the interaction between A and B (compare to *)

/ nested, e.g., A/B is A + B nested in A, note that left to right is largest to smallest plot

1) The "as is" function. Because *, /, and " are both operators (multiply, divide, to the power) AND
they mean something different in formulas (interaction, nested, interaction), the I() allows what
is inside the () to be treated as an operator. y~x + I(x2) + I(1/z) says to fity =x + x> + 1/z

Error() Allows specification of error terms to use in models when there are multiple error terms, such as

in split-plot designs

- remove this factor from the model

If: y is a continuous dependent variable
x and z are continuous independent variables
A, B, and C are categorical factors

Model formulation

What it does

y~1

y~X

y ~ Xtz

y ~ X*z

y ~ (x+2)"2

y~x+I1x"2)+z
y ~poly(x,2) +z

y ~x-1

log(y) ~ I(1/x) + sqrt(z)
y~A

y ~A+B

y ~A*B

y ~ A+B+A:B

y ~ A*B*C-A:B:C
y ~x+A

y ~x*A

y ~A/B/C
y~A+B %in% A

y ~ A*B*C+Error(A/B/C)

#the null model of intercept only

#y is a function of x

#multiple regression with two independent variables

#multiple regression with interaction as y ~ x+z+x:z

# multiple regression with interaction as y ~ x+z+x:z

# fits the model y =x + x” + z

# fits the model y =x + x> + z

#y as a function of x with no intercept (force through zero)

#fits transformed model In(y) = 1/x + Vz

#one-way ANOVA

#two-way ANOVA

#2-way factorial ANOVA

#explicit form of 2-way factorial ANOVA

#3-way factorial ANOVA, but do not fit the 3-way interaction term

# analysis of covariance, with one slope, two intercepts (covariate first)
# analysis of covariance, with two slopes and two intercepts

#Factor C nested in B nested in A, left to right is largest to smallest
#A plus B nested in A, the equivalent of y ~ A/B

#Split-plot factorial with different error variances for each of 3 plot sizes

The update function. update() allows you to test reduced variations of a full model without re-writing
all the terms each time. The term "~." (tilde period) means "the model as it is.

FullModel <- Im(y~A*B) # fit the full model of y = A + B + A:B, and save as FullModel
NolntModel<- update(FullModel,~. -A:B) #based on FullModel, fit the reduced model y = A + B.
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(2) Linear regression using Im()

2A. Simple linear regression

Data frame rd includes data on mean temperature, mean precipitation, and the number of species
(temp, precip, num_spp) in 30 plots.

Use this code to get it from the course website

rd<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/RegressionDataset.csv",sep
="," header=TRUE)

head(rd,4)

temp precip num_spp
1 15 7.55427 5
2 8 18.25095 3
3 6 27.53882 1
4 16 48.95995 11

Here are three ways to do the same thing: fit a simple linear regression of num_ssp on precip;
(that is, num_spp = BO + B1(precip)) and save the model object to slrout

#1. specify the data frame for each variable
slrout<-1m(rd$num_spp ~ rd$precip)

#2. specify the data frame once, then just call variables with simple names
slrout<-1m(data=rd, num_spp ~ precip)

#3. attach the data frame, then call the variables by simple names
attach(rd)

slrout<-1ImCnum_spp ~ precip)

detach(rd) #do not forget to detach when you are done!

Remember, you have now created a model object called "slrout” with lots of component elements.
You have to use extractor functions to see and use the different elements.

str(slrout) #shows the table of contents of the model object slrout
In abbreviated form, the main components are:

coefficients : Named num [1:2] 4.8781 0.0964

residuals : Named num [1:30] -0.607 -3.638 -6.534 1.401 2.496 ...
effects : Named num [1:30] -109 46.09 -5.81 2 3.04 ...

rank : int 2

fitted.values: Named num [1:30] 5.61 6.64 7.53 9.6 10.5 ...
assign : int [1:2] 0 1

nnnnnnnnnnnn

qr :List of 5 (gqr, graux, pivot, tol, rank)

df.residual : int 28

xlevels : list()

call : language lm(formula = num spp ~ precip)

terms :Classes 'terms', 'formula' length 3 num spp ~ precip
model :'data.frame': 30 obs. of 2 variables:

..$ num spp: int [1:30] 5 3 1 11 13 13 14 15 6 19 ...
..$ precip : num [1:30] 7.55 18.25 27.54 48.96 58.35 ...
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The following six lines will show you the most of what you need for simple linear regression.
slrout #shows the model

summary(slrout) #this shows parameter estimates and errors, plus significance
anova(slrout) #gives the ANOVA table

par(mfrow=c(2,2)); plot(slrout); par(mfrow=c(l,1)) #4 diagnostic plots on 1 page
plot(rd$num_spp~rd$precip) #plot of the original data

abline(slrout) #takes the fitted model, and draws that 1line through the data

HERE IS THE OUTPUT

> slrout #shows the model

Call:
Im(formula = num spp ~ precip)

Coefficients:
(Intercept) precip
4.87809 0.09643

> summary(slrout) #this shows parameter estimates and errors, plus significance

Call:
Im(formula = num spp ~ precip)

Residuals:
Min 10 Median 30 Max
-8.703 -4.449 1.785 3.100 5.553

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.878094 1.738312 2.806 0.00902 =*=*
precip 0.096429 0.009735 9.905 1.19e-10 **=*

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1
Residual standard error: 4.653 on 28 degrees of freedom
Multiple R-squared: 0.778, Adjusted R-squared: 0.77
F-statistic: 98.11 on 1 and 28 DF, p-value: 1.187e-10

> anova(slrout) #gives the ANOVA table
Analysis of Variance Table

Response: num_spp

Df Sum Sqg Mean Sq F value Pr (>F)
precip 1 2124.42 2124.42 98.113 1.187e-10 **x*
Residuals 28 606.28 21.65
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * * 1
> par(mfrow=c(2,2)); plot(slrout); par(mfrow=c(l,1l)) #diagnostic plots

> #note that the par statements just put the four plots on a sigle page

See next page for the graphs that appear in the quartz window (command-3)
Use command-left arrow to scroll back through graphs
Use command-right arrow to scroll forward through graphs
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2B. Accessing individual named components of Im model objects

str(slrout) #see the TOC of the 12 components embedded in the Im model object
In abbreviated form, the main components are:

$ coefficients : Named num [1:2] 4.8781 0.0964

$ residuals : Named num [1:30] -0.607 -3.638 -6.534 1.401 2.496
$ effects : Named num [1:30] -109 46.09 -5.81 2 3.04

$ rank : int 2

$ fitted.values: Named num [1:30] 5.61 6.64 7.53 9.6 10.5

$ assign : int [1:2] 0 1

$ gr :List of 5 (gqr, graux, pivot, tol, rank)

$ df.residual : int 28

$ xlevels : list()

$ call : language lm(formula = num spp ~ precip)

$ terms :Classes 'terms', 'formula' length 3 num spp ~ precip
$ model :'data.frame': 30 obs. of 2 variables:

..$ num _spp: int [1:30] 5 3 1 11 13 13 14 15 6 19
.$ precip : num [1:30] 7.55 18.25 27.54 48.96 58.35

methods(class=1m) #shows the available extractor functions

[1] addl.1lm* alias.lm* anova.lm case.names.lm¥*

[5] confint.lm* cooks.distance.lm* deviance.lm* dfbeta.lm*

[9] dfbetas.lm* dropl.lm* dummy .coef.lm* effects.lm*

[13] extractAIC.lm* family.lm* formula.lm* hatvalues.1lm

[17] influence.lm* kappa.lm labels.1lm* logLik.lm*

[21] model.frame.lm model.matrix.lm plot.1lm predict.lm

[25] print.1lm proj.lm* residuals.lm rstandard.lm

[29] rstudent.lm simulate.lm* summary.lm variable.names.lm*

[33] vcov.lm*
Non-visible functions are asterisked #THAT MEANS THEY DON’'T RETURN ANYTHING

You can extract individual elements by calling these methods, or by addressing the elements of the
model object list, depending on what you need. See page 2.
Try these, as examples:

formula(slrout)

extractAIC(slrout)

fitted(slrout)

coefficients(slrout)

slrout$coefficients

slrout[[1]]

slrout$model

slrout$call

slrout$df

You can extract data, statistics, and descriptors from the model to use in other analyses, to adorn
graphics, or to create tables of values. For example, try this:

plot(rd$num_spp~rd$precip)

abline(slrout)

text(150,5,paste("num_spp=", round(slrout$coefficients["(Intercept)"],3), "+",
round(slrout$coefficients["precip"],3), " "precip"),pos=4)
text(150,3,expression(R[adj]Ar2~"="),pos=4)

text(150,3,paste(" ", round(summary(slrout)$r.squared,3)),pos=4)
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2C. Using predict() to get fitted lines and confidence intervals

The model object produced by Im() contains all the information to generate fitted values and confidence
intervals for a line. The function predict() gives you those values for each of the values of the
independent variable used in creating the original model. predict() takes the general form:

predict(modelobject, interval = c("none", "confidence", "prediction"), level = 0.95)

Interval can take one of three values:
"none" or blank: the predicted line itself
"confidence" or "c": CI that reflect uncertainty around the line itself; if level=0.95, traditional 95%CI

"nn,

"prediction" or "p": PI reflect uncertainty about future observations

Predict takes a model fit from one set of data, and applies it across a desired ranges of x values in a
separate data frame, but with the same variable name as used in the original model. The output includes
three columns: the model fit, the lower CI, and the upper CI.

By default, predict uses the values for the dependent variable used to fit the original model to generate
the fitted data or confidence intervals. If you want to predict over a different range of dependent

variables, you can specify newdata. This takes the general form:
predict (modelobject, newdata=data.frame(originaldepvarname=yournewvalues))

#start with the linear regression of number of species on precipitation, as in 1A.
slrout<-1ImCnum_spp~precip, data=rd) #produces an 1lm model object called slrout
predfit<-predict(slrout) #generates the fitted values for each of the original x
values from precip

#look at output where open are original data and closed are predicted
plot(num_spp~precip, data=rd); points(predfit~rd$precip,pch=19)

#if you want to fit data over a particular range
predfit2<-predict(slrout,newdata=data.frame(precip=seq(50,150,10)))

#uses predict to generate fitted values over the range of 50 to 150 by step 10
#look at output where open are original data and closed are predicted
plot(num_spp~precip, data=rd); points(predfit2~seq(50,150,10),pch=19)
or showing predicted values as a line
plot(num_spp~precip, data=rd); points(predfit2~seq(50,150,10),type="1")

#you can also use predict to give confidence intervals
predCI95<-predict(slrout,interval="confidence", level=0.95) #95% Confidence Int.
predPI95<-predict(slrout,interval="p", level=0.95) #95% Prediction Int.

#Confidence interval is where mean of future observations are most like to occur
#Prediction interval is where future observations are most like to occur.

#Put the fitted line and both kinds of confidence intervals on one graph
plot(rd$precip,rd$num_spp)

lines(predfit2~ seq(50,150,10),1lwd=5, 1lty=2) #fitted line over particular range
matlines(rd$precip, predCI95, lty=2,col="black") #draws confidence bands
matlines(rd$precip, predPI95, 1lty=3,col="blue") #draws prediction bands
matlines(rd$precip, predfit, lty=1, col="red", lwd=1l) #draws regression line

9
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2D. Multiple Linear Regression and Stepwise Model Selection
Use data frame "rd" from 24, check if precip and temp are both predictive of number of species.
First, take a look at pairwise correlations among the three variables.

0 100 200 300

pairs(rd,panel=panel.smooth) #graphs

L1 11 1
[ (g

cor(rd) #correlation matrix oo O 8
temp | P ¢

temp precip num_spp o o %0° 2

temp 1.0000000 0.1177029 0.1902117 ° o° ©

precip 0.1177029 1.0000000 0.8820303
num_spp 0.1902117 0.8820303 1.0000000

0 100 200 300
| I I I |

Since there is no strong correlation between temp and
precip, you could go ahead and include both on the
right side of the Im model statement

T

0 10 20 30

mlrout<- 1lm(num_spp~precip+temp,data=rd)
summary(mlrout) 5 10 15 20 0 10 20 30

Im(formula = num spp ~ precip + temp, data = rd)

Residuals:
Min 10 Median 30 Max
-8.264 -4.107 1.187 3.563 6.298

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 2.567401 2.937668 0.874 0.390
precip 0.095302 0.009812 9.713 2.64e-10 # precip is important
temp 0.166867 0.170939 0.976 0.338 # temp is not important

Residual standard error: 4.657 on 27 degrees of freedom
Multiple R-squared: 0.7855, Adjusted R-squared: 0.7697
F-statistic: 49.45 on 2 and 27 DF, p-value: 9.397e-10

You can use AIC (Akaike Information Criterion) to compare different models. First, by hand:

AIC(ImCnum_spp~precip+temp+precip*temp,data=rd)) #full model with interaction
[1] 183.6184

AIC(ImCnum_spp~precip+temp,data=rd)) #no interaction term
[1] 182.2800

AICCupdate(mlrout,~. -temp)) #precipitation only, using the update function
[1] 181.3205

AIC(ImCnum_spp~temp,data=rd)) #temperature only
[1] 225.3643

Rule of thumb: AAIC (model; — best model) < 2 suggests substantial support for the reduced model;
AAIC between 3 and 7 suggests much less support, AAIC suggests little support for the model.
Removing the interaction term or temp and the interaction term has a small, negative AAIC (181.3-
183.6) suggesting that the reduced model (num_spp~precip) has a lot of support. Removing precip
instead (leaving num_spp~temp) has a huge AAIC =225.4-183.6, suggesting there is no support for that
model. Together, this suggests that temp contributes little, and the best model is numspp~precip.
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R has an automated stepwise selection function Step, that uses AIC scores to do stepwise selection of
model terms, beginning with the full model. Automatically keeps the best model, given its cutoffs.

sd<-step(Im(hum_spp~precip*temp,data=rd),direction="backward", trace=1)
summary(sd)

> sd<-step(lm(num_spp~precip*temp,data=rd),direction="backward", trace=1l)

Start: AIC=96.48 #AIC for the Full model,
num_spp ~ precip * temp

Df Sum of Sq RSS AIC
- precip:temp 1 12.773 585.61 95.144 #removes the interaction term
<none> 572.84 96.482

Step: AIC=95.14
num_spp ~ precip + temp

Df Sum of Sq RSS AIC
- temp 1 20.67 606.28 94.184 #removes the temperature term
<none> 585.61 95.144 #AIC with precip + temp in model
- precip 1 2046.29 2631.90 138.228 #removes the precipitation term

Step: AIC=94.18
num_spp ~ precip

Df Sum of Sq RSS AIC
<none> 606.28 94.184 #AIC with just precipitation term
- precip 1 2124.4 2730.70 137.333 #AIC with intercept only
> summary (sd) #gives summary of best model

Call:
Im(formula = num spp ~ precip, data = rd) #structure of the best model

Residuals:
Min 10 Median 30 Max
-8.703 -4.449 1.785 3.100 5.553

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 4.878094 1.738312 2.806 0.00902

precip 0.096429 0.009735 9.905 1.19e-10

(Intercept) **

precip *kk

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

Residual standard error: 4.653 on 28 degrees of freedom
Multiple R-squared: 0.778, Adjusted R-squared: 0.77
F-statistic: 98.11 on 1 and 28 DF, p-value: 1.187e-10

Notes on optional parameters:

Direction: can take the values "backward", "forward", "both'

trace: if positive, gives information on each step. Larger values give more info.
k: allows you to change the number of degrees of freedom for the penalty
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(3) Means comparisons: ANOVA & t-test
Get data frames three and two

three<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/ThreeTreatmentDataset.csv"
,sep=",",header=TRUE)

two<-three[-which(three$treatment=="potassium™),]

3A. Independent, 2-sample t-test, test of equal variance, and wilcoxon rank test
First, the simplest ANOVA, an independent-sample t-test on data frame "two"

Two treatments (control and nitrogen), with 10 reps each; dependent variable plant mass
#independent-sample t-test with unequal variances

t.test(plant_mass~treatment, data=two)
Welch Two Sample t-test

data: plant mass by treatment
t = -16.3829, df = 15.237, p-value = 4.359e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.446290 -1.883710
sample estimates:
mean in group control mean in group nitrogen
2.479 4.644

#Note - t.test() default is to assume unequal variances.
#to assume equal variances and pool them,
t.test(plant_mass~treatment, data=two, var.equal=T)

#Test whether the variances are different or not

var.test(plant_mass~treatment, data=two)
F test to compare two variances

data: plant mass by treatment
F = 2.4831, num df = 9, denom df = 9, p-value = 0.1916
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.6167757 9.9970885
sample estimates:
ratio of variances
2.483135
# p=0.19 so we cannot reject that the variances are equal

#non-parametric rank-test comparison of two independent samples

wilcox.test(plant_mass~treatment, data=two)
Wilcoxon rank sum test with continuity correction

data: plant _mass by treatment
W = 0, p-value = 0.0001806
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(x = c¢(2.2, 2.64, 2.64, 2, 2.9, 2.28, 2.82,
cannot compute exact p-value with ties
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3B. Paired-sample and one-sample tests
Rearrange the data in "two" so that they are "paired” data (pretend they were collected that way)

cnpair<-data.frame(cbind(two[1:10,2],two[11:20,2]))
names(cnpair)<-c("control”,"nitrogen™)
chpair

control nitrogen

1 2.20 4.68
2 2.64 4.84
3 2.64 4.20
4 2.00 4.77
5 2.90 4.38
6 2.28 4.79
7 2.82 4.77
8 2.36 4.83
9 2.93 4.43
10 2.02 4.75

t.test(cnpair$control, cnpair$nitrogen, paired=TRUE) #paired t-test
Paired t-test

data: cnpair$control and cnpair$nitrogen
t = -13.4803, df = 9, p-value = 2.842e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.528313 -1.801687
sample estimates:
mean of the differences
-2.165

wilcox.test(cnpair$control, cnpair$nitrogen, paired=TRUE) #non-parametric test
Wilcoxon signed rank test

data: control and nitrogen
V =0, p-value = 0.001953
alternative hypothesis: true location shift is not equal to 0

t.test(cnpair$control, mu=2.0) #1l-sample t-test, is control mean = 2.07?
One Sample t-test

data: cnpair$control
t = 4.2929, df = 9, p-value = 0.002011
alternative hypothesis: true mean is not equal to 2
95 percent confidence interval:
2.226591 2.731409
sample estimates:
mean of x
2.479
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3C. Simple one-way ANOVA (using dataframe "three")
There are a variety of ways to do Analysis of Variance in R.
Here we will look at the functions Im, aov, oneway.test, and the Kruskal-Wallace Test.

eIm and aov give identical results, but the output is slightly different.

«If you have multiple error terms, you must use aov.

eSome extractor functions, like Tukey HSD and model.tables are not compatible with Im.
eQOverall, aov is probably more generally useful for ANOVAS.

eoneway.test is a variant that does not assume equal variances across groups.

ekruskal.test is a non-parametric comparison among groups.

«If you want to do mixed-models and specify fixed and random effects, use Imer in Ime4 package.

First, take a quick look at data means and variance

measures using box-and-whisker plots
plot(three$plant mass~three$Streatment)

- —
Si=—

I [ I
control nitrogen potassium

three$plant_mass
20 3.0 4.0

three$treatment

How to read a box-and-whisker plot: The thick line is the median; The upper and lower part of
the box are the 25% and 75% percentiles (15t and 34 quantiles); The whiskers show either the
maximum and minimum values OR 1.5X the interquartile range (~2 standard deviations),
whichever is smaller. If the latter, outlier points are shown individually.
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Using the "Im" approach to ANOVA

attach(three)

a3<-Im(plant_mass~treatment) #run an ANOVA using 1m and put in a3

anova(a3); summary(a3) #show basic info from model object
pairwise.t.test(plant_mass,treatment) #LSD pairwise post-hoc
meansa3<-tapply(plant_mass,treatment, mean) #get the means for each treatment
sda3<-tapply(plant_mass,treatment, sd) #get the sd for each treatment
as.table(cbind(meansa3,sda3)) #put means and sd into pretty table
detach(three)

#NOTE: SEE THE NEXT PAGE FOR SOME HELP IN INTERPRETATION OF THE OUTPUT
Analysis of Variance Table

Response: plant_mass

Df Sum Sqg Mean Sq F value Pr (>F)
treatment 2 23.5891 11.7946 121.15 3.274e-14 **x*
Residuals 27 2.6285 0.0974

Signif. codes: 0 ‘#***’ 0.001 ‘**’ Q.01 ‘*’ 0.05 ‘“.” 0.1 * " 1

Call:
Im(formula = plant mass ~ treatment)

Residuals:
Min 10 Median 30 Max
-0.4790 -0.2630 0.0730 0.1797 0.5200

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.47900 0.09867 25.125 < 2e-16 ***
treatmentnitrogen 2.16500 0.13954 15.516 5.66e-15 ***
treatmentpotassium 0.93100 0.13954 6.672 3.68e-07 ***
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

Residual standard error: 0.312 on 27 degrees of freedom
Multiple R-squared: 0.8997, Adjusted R-squared: 0.8923
F-statistic: 121.2 on 2 and 27 DF, p-value: 3.274e-14

> pairwise.t.test(plant mass,treatment) #LSD pairwise post-hoc
Pairwise comparisons using t tests with pooled SD
data: plant mass and treatment

control nitrogen
nitrogen 1l.7e-14 -
potassium 3.7e-07 3.7e-09

value adjustment method: holm
meansa3<-tapply(plant_mass,treatment, mean) #get the means for each treatment
sda3<-tapply(plant mass,treatment, sd) #get the sd for each treatment
as.table(cbind(meansa3,sda3)) #put means and sd into pretty table
meansa3 sda3
control 2.4790000 0.3528440
nitrogen 4.6440000 0.2239147
potassium 3.4100000 0.3426693

vV VVHw
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Interpreting summary() and anova() estimates from Im() ANOVA models in R

In the data frame three used in the example above, we are looking at an experiment with one
treatment factor that has three levels: control, nitrogen, and potassium. Above we created the
model object called “a3” from Im(plant_mass~treatment).

In many statistical packages, we get a measure of the significance of the overall effect of treatment,

including all the levels. This kind of output is extracted using anova() or summary.aov()
> anova(a3)
Df Sum Sqg Mean Sq F value Pr (>F)
treatment 2 23.5891 11.7946 121.15 3.274e-14 ***
Residuals 27 2.6285 0.0974

However, when we used Im() to create a ANOVA model object the summary(a3) output looks like
this (in part):

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.47900 0.09867 25.125 < 2e-16 **x*
treatmentnitrogen 2.16500 0.13954 15.516 5.66e-15 ***
treatmentpotassium 0.93100 0.13954 6.672 3.68e-07 ***

In a regression, the Coefficient estimates are easy to interpret - they are the coefficients for the
regression equation, starting with the intercept, and then a coefficient for each term in the model
(num_spp ~ temp + precip would give three coefficient estimates - one intercept and one each for
temp and precip). For this ANOVA, we use the simple model Im(plant_mass~treatment) but get
three coefficients. That is because R defaults to treatment contrasts in presenting output from
Im() anova models. Recall that the underlying model fit by Im(plant_mass~treatment) is really:

plant_mass = a + b*treatment; + c*treatment; + d* treatments

By convention, the mean for whatever treatment level comes first in your data frame (in this case,
control) becomes the coefficient estimate for the Intercept. The other estimates are the
differences between this mean and the other means of treatment levels.

So: to get the mean value of nitrogen, it would be 2.479+2.165 = 4.644.
The mean value of potassium would be 2.479+0.931 = 3.41

Recall from above that when we calculated group means using tapply, we got:
means sd

control  2.4790000 0.3528440

nitrogen 4.6440000 0.2239147

potassium 3.4100000 0.3426693

You can control which is the reference level using "relevel”
fb$treatment<-relevel(fb$treatment,ref="potassium")
summary(Im(fb$plant_mass~fb$cultivar*fb$treatment))
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Using the "aov" approach to ANOVA

attach(three)

a4<-aov(plant_mass~treatment)

a4 ;anova(a4) ; summary.1lm(a4);

TukeyHSD(a4) #does not work for 1m

model.tables(a4,"means",se=T,n=T) #does not work for 1Im
meansa4<-tapply(plant_mass,treatment, mean)
sdad<-tapply(plant_mass,treatment, sd); as.table(cbind(meansa4,sda4))
detach(three)

We'll just look at a couple things here, rather than show the full output. When using aov() for
anova, the summary() and anova() extractors function identically, but differently from what
summary() give you for an object created using Im(). The extractor function summary.lm() gives
the treatment-contrast approach discussed above.

anova() provides a test of the overall significance of treatment (all the levels included)

anova(a4)
Analysis of Variance Table

Response: plant_mass

Df Sum Sqg Mean Sq F value Pr (>F)
treatment 2 23.5891 11.7946 121.15 3.274e-14 **x*
Residuals 27 2.6285 0.0974

Signif. codes: 0 ‘#***’ 0.001 ‘**’ Q.01 ‘*’ 0.05 “.” 0.1 * " 1

summary.lm() provides information about the significance of the effect of each treatment level, as
described in the previous section.
summary.1m(a4)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.47900 0.09867 25.125 < 2e-16 ***
treatmentnitrogen 2.16500 0.13954 15.516 5.66e-15 ***
treatmentpotassium 0.93100 0.13954 6.672 3.68e-07 ***

Residual standard error: 0.312 on 27 degrees of freedom
Multiple R-squared: 0.8997, Adjusted R-squared: 0.8923
F-statistic: 121.2 on 2 and 27 DF, p-value: 3.274e-14

Note that several other useful extractor functions, like TukeyHSD() and model.tables() work for
model objects created using aov() but not for Im().
TukeyHSD(a4)  #provides a conservative post-hoc comparison of treatment means
Tukey multiple comparisons of means
Streatment
diff lwr upr p adj
nitrogen-control 2.165 1.8190293 2.5109707 0.0e+00
potassium-control 0.931 0.5850293 1.2769707 1.1le-06
potassium-nitrogen -1.234 -1.5799707 -0.8880293 0.0e+00

Overall, doing ANOVAS using aov() is probably a bit more generally useful because there are more
analytical options .
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3D. Using the "oneway.test" approach to ANOVA
This is a one-way analysis of variance that does not assume equal variances

a5<-oneway.test(plant_mass~treatment, data=three)
> a5
One-way analysis of means (not assuming equal variances)

data: plant mass and treatment
F = 140.9555, num df = 2.000, denom df = 17.123, p-value = 2.319e-11

#note - this is pretty much all that is available There is not much to extract.

str(a5)
List of 5
$ statistic: Named num 141
..— attr(*, "names")= chr "F"
$ parameter: Named num [1:2] 2 17.1
..— attr(*, "names")= chr [1:2] "num df" "denom df"

4
$ p.value : num 2.32e-11
$ method : chr "One-way analysis of means (not assuming equal variances)"
$ data.name: chr "plant mass and treatment”
- attr(*, "class")= chr "htest"

Using the non-parametric "kruskal.test" approach to ANOVA

Here is the non-parametric Kruskal-Wallace test for differences among groups
ab<-kruskal.test(plant_mass~treatment, data=three)
a6

Kruskal-Wallis rank sum test

data: plant mass by treatment
Kruskal-Wallis chi-squared = 25.8179, df = 2, p-value = 2.476e-06

#As for oneway.test, that is pretty much it. Not much to extract.

str(a6)
List of 5
$ statistic: Named num 25.8
..— attr(*, "names")= chr "Kruskal-Wallis chi-squared"
$ parameter: Named num 2
..— attr(*, "names")= chr "df"
$ p.value : num 2.48e-06
$ method : chr "Kruskal-Wallis rank sum test"”

$ data.name: chr "plant mass by treatment”
- attr(*, "class")= chr "htest"
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3E. Factorial ANOVAS

fb<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/factorialdata.csv",sep=","
,header=TRUE)  # experiment with two cultivars and three treatments, 10 reps of each combination.
For this part, imagine it is a completely randomized design (i.e., ignore “block”)

attach(fb)

ab<-aov(plant_mass~cultivar*treatment) #set up as a factorial using *
a6; anova(a6); summary.lm(a6)

model.tables(a6, "means",se=TRUE)

TukeyHSD(a6)

interaction.plot(cultivar,treatment,plant mass)

detach(fb)

In this case, anova(a6) shows that overall, there is only a marginally significant effect of the

interaction term, but that both cultivar and treatment have main significant main effects.
Response: plant_mass
Df Sum Sg Mean Sq F value Pr (>F)

cultivar 1 129.067 129.067 75.1196 8.39e-12 ***
treatment 2 72.817 36.409 21.1906 1.61e-07 ***
cultivar:treatment 2 8.945 4.473 2.6032 0.0833
Residuals 54 92.780 1.718

summary.lm(a6) breaks it down into treatment contrasts, and shows that the effect of treatment is

due entirely to nitrogen
Estimate Std. Error t value Pr(>|t])

(Intercept) 4.9400 0.4145 11.918 < 2e-16 ***
cultivarwildtype 2.6800 0.5862 4.572 2.86e-05 ***
treatmentnitrogen 2.9600 0.5862 5.049 5.38e-06 **=*
treatmentpotassium 0.8800 0.5862 1.501 0.139
cultivarwildtype:treatmentnitrogen -0.5400 0.8290 -0.651 0.518
cultivarwildtype:treatmentpotassium 1.3000 0.8290 1.568 0.123

model.tables(a6) gives you a quick summary of means, standard errors, and n
Tables of means
Grand mean
7.686667

. e - treatment
cultivar ? —— potassium
GM wildtype g o 1 --- gitrogen
6.220 9.153 I L control
5 ©
g
treatment s~
control nitrogen potassium c
6.28 8.97 7.81 § ©
. o
cultivar:treatment
treatment - -
cultivar control nitrogen potassium widtype
GM 4.94 7.90 5.82 cultivar
wildtype 7.62 10.04 9.80

Standard errors for differences of means
cultivar treatment cultivar:treatment
0.3384 0.4145 0.5862
replic. 30 20 10
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3F. Blocked or split-plot ANOVAS

fb<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/factorialdata.csv",sep=","
,header=TRUE)

Experiment with two cultivars and three treatments, arranged in 10 complete blocks with a split-
plot design. Each block is split in two, with one half sown to GM and half to wildtype. Each
cultivar is then split in three, and receives nitrogen, potassium, or control.

Thus, each block has all combinations of 2x3 within it.
The largest plot size (block) is split with cultivar treatments; each cultivar is then split with one of
three fertilizer treatments.

The treatments (cultivar and treatment) are coded as a factorial, either as cultivar*treatment or
(cultivar+treatment)A2. The blocked, split-plot design requires specifying the error terms
explicitly, start from large to small, but not including the smallest unit.

Thus: aov(plant_mass~(cultivar + treatment)A2 + Error(block/cultivar))

Note that not all the usual extractor functions work when the Error terms are specified.

attach(fb)

a7<-aov(plant _mass~(cultivar + treatment)”"2 + Error(block/cultivar))

a7; summary(a7) #note: anova() and summary.lm() don’t work for this kind of model
interaction.plot(cultivar,treatment,plant mass)

detach(£fb)

3G. Nested ANOVA

nes<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/NestedAOVdata.csv",sep=","
,header=TRUE)

Comparison of native vs. exotic species of clover, with three species nested within each origin; 12
individuals of each species; dependent variable is percent survival.

General format for nesting is y~A/B/C, going from largest to smallest left to right.

For nes, where species is nested within origin:

nes<-nes[order(nes$origin,nes$species),] #sort data frame by origin and species
a8<-Im(survival~origin/species, data=nes)

a8; anova(a8); summary(a8)
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3H. ANCOVA (Analysis of Covariance)

three<-
read.table("http://people.ucsc.edu/~ggilbert/Rclass_docs/ThreeTreatmentDataset.csv"
,sep=",",header=TRUE)

Three treatments (control, nitrogen, potassium), with plants each. Measured the initial size (the
covariate) and the plant_mass at the end of the experiment. Treatment is a categorical factor, and
init_size is a continuous variable.

First take a look at how the dependent variable
plant_mass is associated with the covariate init_size. Use
pch to give each treatment a different symbol.
plot(plant_mass~init_size,
pch=as.numeric(treatment),data=three)

[0} [0}
It looks like plants that started off larger ended up larger in
the end. It is important to test whether any effect of
treatment might be a simple product of initial size, or whether
there is an interaction between treatment and initial size.
Analysis of covariance to test whether there is an effect of init_size
treatment on biomass, after removing the effect of initial size.

We will use AIC to test whether the interaction and covariate are important in the model.

plant_mass
20 25 3.0 35 40 45
t

0.4 0.6 0.8 1.0 1.2 1.4

To start with the full model, use the * to include interactions, and then fit each of the other reduced
models. Note that the order of the terms in the model matters - the covariate comes first, and
then the factors. Then use AIC to select the best model.

Loutl<-Im(plant_mass~init_size*treatment, data=three)
Lout2<-Im(plant_mass~init_size + treatment, data=three)
Lout3<-Im(plant_mass~treatment, data=three)
Lout4<-Im(plant_mass~init_size, data=three)

AIC(CLoutl); AIC(CLout2); AIC(CLout3); AIC(Lout4)

The resulting AIC values are 20.39, 20.35, 20.09, and 80.12 respectively. Models 1,2, and 3 are not
different from each other; the simplest model, then is Lout3, which only includes treatment. You
can get to the same place using step(Lout1). You can also compare models using ANOVA.

anova(lLoutl,Lout2,Lout3,Lout4)
Analysis of Variance Table

Model 1: plant _mass ~ init_size * treatment
Model 2: plant _mass ~ init_size + treatment
Model 3: plant mass ~ treatment

Model 4: plant_mass ~ init_size

Res.Df RSS Df Sum of Sqg F Pr(>F)
1 24 2.1740
2 26 2.4799 -2 -0.3058 1.6880 0.2061
3 27 2.6285 -1 -0.1487 1.6411 0.2124
4 28 20.7803 -1 -18.1517 200.3833 3.807e-13 **=*

Use anova() and summary() to extract the most useful information from the model object.
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(4) Testing for homogeneity of variance among groups
Testing for homogeneity of variance among groups for ANOVAS
There are two common tests for homogeneity of variance, Bartlett and Fliger-Killen

attach(three)
bartlett.test(plant_mass~treatment)
fligner.test(plant_mass~treatment)
detach(three)

> bartlett.test(plant _mass~treatment)
Bartlett test of homogeneity of variances

data: plant _mass by treatment
Bartlett's K-squared = 1.9741, df = 2, p-value = 0.3727

> fligner.test(plant mass~treatment)
Fligner-Killeen test of homogeneity of variances

data: plant _mass by treatment
Fligner-Killeen:med chi-squared = 3.6421, df = 2, p-value = 0.1619

#Both tests indicate no significant difference in variance among groups

(5) Type I and III Sums of Squares

There is a raging debate over the appropriate uses of Type I, Type II, or Type III sums of squares.
Type II1 SS have become quite common in Ecology, largely as a legacy of the way SAS handles
things. By default, though, R uses Type I (sequential) sums of squares. This is an issue for studies
with unbalanced designs - in balanced designs, Type [ and III are the same. We are not going to
discuss the relative merits in this class. The Car package in R is designed to handle different types
of SS easily -- check it out. There is a lot of discussion on the web on different approaches.
However, here is how you can do it in R base package.

#Create an unbalanced version of the fb (factorial) data frame from above
fbu<-fb[-c(6,16,18,33,34,59),]

# To get ANOVA table with Type I Sums of Squares
fbout<-1Im(plant_mass~cultivar*treatment, data=fbu)
anova(fbout)

#to get Type III SS:
options(contrasts=c("contr.sum","
sum to zero
fbout2<-1Im(plant_mass~cultivar*treatment, data=fbu)
dropl(fbout2, .~., test="F")

contr.poly")) # chooses contrast settings that

#Note: if instead you run these two versions using fb data frame, the ANOVA tables are identical
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Operators
* interaction ¢ interaction / nested A interaction IO as is
~. the model as it 1is Error() specify error terms

Linear regression models

Lout<-1m(DepVar~IndepVar, data=Mydata) #simple linear regression
Lout; anova(ClLout); summary(Lout); plot(Lout) #extract model object
predict(Lout, interval = "confidence, level = 0.95) #95%CI

ANOVA models

Aout<-aov(DepVar~Factor, data=Mydata) #one-way ANOVA
Aout<-aov(DepVar~FactorA*FactorB, data=Mydata) #two-way factorial ANOVA
Aout<-aov(DepVar~FactorA + FactorB + FactorA:FactorB, data=Mydata) #2-way
Aout<-aov(DepVar~(FactorA+FactorB)A2, data=Mydata) #two-way factorial ANOVA
Aout<-aov(DepVar~Factor + Block, data=Mydata) #Randomized block ANOVA

Aout; anova(CAout); summary.lm(CAout);TukeyHSD(CAout) #extract model object

t-tests

t.test(DepVar~Factor, data=Mydata) #independent sample t-test

t.test(DepVar~Factor, data=Mydata, var.equal=T) #ind-sample t-test, pooled variance
t.test(DepVar, mu=2.0) #one-sample t-test that mean is different from 2.0
t.test(DepVarl,DepVar2, data=Mydata, paired=TRUE) #paired sample t-test
wilcox.test(DepVar~Factor, data=Mydata) #wilcoxon rank-sum test

Testing assumptions

var.test(DepVar~Factor, data=Mydata) # test if two variances are equal

bartlett.test(DepVar~Factor,data=Mydata) #Bartlett test of homogeneity of variances

fligner.test(DepVar~Factor,data=Mydata) ##Fligner-Killeen test homog. of variance

cor(Mydata[col:col], method="pearson") #pairwise correlation coefficients (method =
pearson, spearman, or kendall)

cor.test(Varl,Var2, method="spearman") #test of correlation between two variables

ANCOVA models
Lout<-1m(DepVar~Covar*Factor, data=Mydata) #Analysis of Covariance ANCOVA

Stepwise regression
step(1lm(DepVar~IVarl+IVar2+IVarl*Ivar2, data=Mydata),direction="backward", trace=1)
AIC(modelobject) #gives AIC values

Plotting

boxplot(DepVar~Factor, data=Mydata) #Boxplot of means across groups

coplot(DepVar~CoVarlFactor, data=Mydata) #visualize covariance across factors

plot(DepVar~IndepVar); abline(lm(DepVar~IndepVar, data=Mydata)); CI95<-
predict(Lout,int="c",level=0.95); matlines(IndepVar, CI95, lty=2) #plot w 95%CI

pairs(Mydata[col:col]) #pair-wise scatterplots of variables in a data frame

Post-hoc tests
TukeyHSD(Aout) #post-hoc HSD comparison of means from model object
pairwise.t.test(DepVar,Factor) #post-hoc LSD comparison of means



