G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

Class 7: Functions, Loops, and Conditional Statements - writing scripts

Goals:
(1) introduce the basics of custom functions
(2) explore the use of a variety of conditional statements
(3) introduce the use of loops

A function is a R code that performs a specific task. You use built-in functions all the time
(e.g., read.table, Im, plot). Functions generally take one or more objects as input, and then
produce an object as output. You can create your own functions to do one of two things:
-make a simple function to apply a complicated formula you use regularly
-organize the output components from a multi-step analysis into a user-friendly format.

Conditional statements allow you to accomplish complex recoding and subsetting tasks.
E.g. If the diameter is less than 10 cm, then label as "juvenile"; otherwise, label as "adult".

Loops allow you to do repetitive rules-based applications of functions such as:
-For each stem on a plot, find the distance to the nearest stem of the same species.
-Randomization test when assumptions for other tests are not met
-Iterative matrix multiplication to project population growth over time

#Sample data sets:

#2007 data of stem from the UCSC Forest Ecology Research Plot
ferp<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/FERPO7data.csv")

#A small data set of species counts
divdat<-
data.frame(spp=c("a","b","c","d","e","£"),freq=c(4,5,12,8,1,2))

#END OF SAMPLE DATA SETS

Notes on efficiency

(1) Anytime you can apply a function to an entire vector, do so.

(2) Functions compiled in C (e.g.,, sSapply) are much faster that for loops

(3) Operations on matrices are much faster than operations on data frames

(4) If you want to see how long it takes to do something in R, embed it in system.time()

Environmental Studies, UCSC 1

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

(RE)INTRODUCTION TO FUNCTIONS

We had a brief introduction to functions in Class 3, but I'll repeat that here, and extend it.
There are two steps. First you create a function, and initialize it in your workspace. Then
you can use it in that workspace, calling it as you would any function. If you save that
workspace, that function remains available if you re-open that workspace later.

Creating a function.
Recall from Class 3, that to create a function, use this structure:
NameOfMyFunction<-function(dataobjects)

{
a<-functionl(dataobject) #do something to your dataobject

b<-functionZ(dataobject) #do something else
a*b #the result of the last line is what is returned by the function

}

#note that dataobject is a placeholder name - it takes the value of what you put in the ()

Dataobjects are inside (), following the call to function. Multiple data objects are separated
by commas. Give these variables meaningful, but short names.

What the function actually DOES to the data objects is placed inside curly brackets { }.
The order of the data objects is the order in which you will put the real variables when you

apply your function. That is, there is positional matching. Alternatively, you can specify
which object is which by including specifying it by name when you call the function.

EXAMPLE

Let's make a function to calculate the volume of a rectangular solid. The function must
accept values for height, width, and depth of the solid, multiply them together, and return
the value. Let's call our function Solid.Volume.

#Create the function like this
Solid.Volume<-function(h,w,d){h*w*d}

#Now apply the function using positional matching
Solid.volume(2,4,5)

#0r by directly specifying each element
Solid.Volume (h=2,w=4,d=5)

#0r apply to data in a data frame
rectsol<-data.frame(height=c(1,3,5),width=c(2,3,5),depth=c(2,5,7))
rectsol
rectsol$volume<-Solid.Volume(rectsol$height,rectsol$width,rectsol$depth)
rectsol

Environmental Studies, UCSC 2

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

Some important notes about functions:

(1) Once the data objects are passed to a function, they are internally called by the names in
the function definition (here h,w,d) and not by their names outside the function (height,
width, depth). This makes the function universally applicable to any object of that type.

(2) You can have multiple lines of code within a function, but anything calculated there is
completely internal to the function. It does not exist outside the function. Only the result of
the last line is returned by the function.

#A function that does NOT work
Solid.Volume<-functionCh,w,d){vol<-h*w*d}
Solid.Volume(2,4,6) #testing

vol

Error: object 'vol' not found

#Make this function work by calling vol as the last line
Solid.Volume<-functionCh,w,d)

{

vol<-h*w*d

vol

}

Solid.Volume(3,5,7) #testing

[1] 105

(3) A variable assigned inside a function is internally accessible for further calculations:
Sgrt.Solid.Volume<-functionCh,w,d)

{

vol<-h*w*d

sqrt(vol)

}

Sqrt.Solid.Volume(2,2,9) #testing

[1] 6

(4) Create a list to return multiple objects from a single function.
Sgrt.Solid.Volume<-functionCh,w,d)

{

vol<-h*w*d

sqrt<-sqrt(vol)

list(paste("volume=",vol),paste("square root of volume=",6sqrt))

}
Sqrt.Solid.Volume(2,2,9) #testing

[[11]
[1] "volume= 36"

[[21]

[1] "square root of volume= 6"

Environmental Studies, UCSC 3

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

A few examples of Functions
#Find the distance between two points that are described by x,y coordinates

pythag<-function(xl,yl,x2,y2) {sqrt((x1-x2)A2+(yl-y2)A2)}
pythag(2,4,3,7) #testing

#Calculate the Shannon-Weiner Diversity Index

#H' is the negative of the sum of the p* In(p) where p is the proportion of individuals in the sample
#There is then a correction factor -[(NumSpecies - 1)/(2*NumlIndivs)]
Hprime<-function(counts)

{

NumIndivs<-sum(counts) #find the total number of individuals
ps<-counts/NumIndivs #divide each species count by NumIndivs to get p
plnp<-ps*log(ps) #calculate plnp for each species

NumSpecies<-length(counts) #gets the number of species
-(sum(plnp))-((NumSpecies-1)/(2*NumIndivs)) #put it all together

ks

Hprime(divdat$freq) #testing

#Maybe you want to create a more descriptive output for H'
Hprime<-function(counts)

{

NumIndivs<-sum(counts) #find the total number of individuals
ps<-counts/NumIndivs #divide each species' count by NumIndivs to get p
plnp<-ps*log(ps) #calculate plnp for each species
NumSpecies<-length(counts) #gets the number of species

H<- -Csum(plnp))-((NumSpecies-1)/(2*NumIndivs)) #put it all together
outl<-paste("This sample included",NumSpecies,"species and

" ,NumIndivs,"individuals.")

out2<-"The Shannon-Weiner diversity index, calculated as -Sum(pi*1n(pi)) -
((5-1)/(2*N)), pi is the proportion of all individuals N that are species i,
and S is the total number of species”

out3<-paste("H'=",round(H,4),".")

paste(out3,outl,out2)

ks
Hprime(divdat$freq)

[1] "H'= 1.5433 . This sample included 6 species and 21 individuals. The
Shannon-Weiner diversity index, calculated as -Sum(pi*Ln(pi)) - ((S-
1)/(2*N)), pi is the proportion of all individuals N that are species 1, and
S is the total number of species™

Environmental Studies, UCSC 4

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

Conditional Statements WHICH, IF, and IFELSE
ferp<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/FERPO7data.csv")
ferp2<-ferp[1:100,c(1,2,4,5,6)] #get just the columns of FERP data you need
head(ferp2,4)

tag code dbh east north

1 2 QUERPA 31 1.9 6.3

2 3 PSEUME 378 0.6 6.2

3 4 QUERPA 20 0.5 6.8

4 5 SEQUSE 1420 3.1 13.7

(1) WHICH

which(ferp2$code=='QUERPA') #returns the line numbers where code==QUERPA

[1] 1 3 5 21 54 63 71 72 73
QUERPA only<-ferp2[which(ferp2$code=='QUERPA'),] #subsets all lines of QUERPA

#WHICH works across the whole vector at once

(2) IF

if (condition) {action}
x<-100

if (x<200) {size<-"small"}
X; size

#IF does not work across the whole vector at once
if (ferp2$code=="'QUERPA') {ferp2$tree=="0ak"}
logical(0)
Warning message:
In if (ferp2$code == "QUERPA") { :
the condition has length > 1 and only the first element will be used

#Loop it. Instead, you need to call each line separately in a for loop
ferp2$tree<-"not"
for (i in l:length(ferp2$code))

{if (ferp2$code[i]=="QUERPA") {ferp2$tree[i]<-"0Oak"}}
(3) IFELSE

#ifelse (condition, ActionIfTrue, ActionIfFalse)
x=243

ifelse(x>=100, "large", "small") # [1] "large"
x=96

ifelse(x>=100,"large", "small") # [1] "small"

(4) You can include conditional statements using "return” inside a function

For instance, if your function only applies to a particular range of numbers, you can test
first if your data objects are within that range. If they are not, return "NULL"; If they are,
continue to calculate your function.

square.root<-function(x)
{if (x<@) return (NULL)
sqrt(x)}

square.root(9) #returns 3
square.root(-4) #returns NULL

Environmental Studies, UCSC 5

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

Introduction to Loops

Loops are really common in many programming languages, like FORTRAN, C++, MATLAB,
etc. R has a number of great functions (vector functions, sapply, etc.) that do the same
thing as a loop, but more efficiently and elegantly. For many R programmers, using loops is
poor form, because they are inelegant. However, sometimes loops allow you to do rather
complex actions in a way that is intuitive and easy to set up, and useful. Order of
preference should be: vector function > sapply or apply > loops.

A simple example: Take a column of numbers in a data frame, and add a new column with

the square of that value.
rd<-data.frame(ran_num=runif(25)) #create data frame with random numbers

Vector function approach (CLEAN AND FASTEST)

rd$squared<-rd$ran_num”2

Custom function and sapply (CLEAN AND FAST)
square<-function(x) {xA2} #create a function called square
rd$squared<-sapply(rd$ran_num,square)

Loop approach (SLOW, BUT FLEXIBLE)
for (i in 1:25) {rd[i,"squared"]<-rd[i,1]"2}

GENERAL STRUCTURE OF LOOPS using FOR

Loops take a similar structure to function, with a () and { } section

for (while certain conditions apply) {what to do in the loop}

Most often, the "certain conditions" are a counter for a range of repetition you set.

An example using "rd" data frame of 5 random numbers:
rd<-data.frame(ran_num=runif(5)) #create data frame with random numbers

Use a loop to take each of the 5 lines (for i from 1 to 5) in turn and square rd$ran_num.
for (i in 1:5) {rd[i,"squared"]<-rd[i,1]"2}

rd

ran_num squared
1 0.3958177 0.15667162
2 0.7372523 0.54354092
3 0.1981701 0.03927139
4 0.9938110 0.98766031
5 0.5583553 0.31176061

What this does is:
rd<-data.frame(ran_num=runif(5))
#Enter the loop

rd[1l, "squared"]<-rd[1l,1]"2
rd[2, "squared"]<-rd[2,1]"2
rd[3, "squared"]<-rd[3,1]"2
rd[4, "squared"]<-rd[4,1]"2
rd[5, "squared"]<-rd[5,1]"2
#exit the loop

Environmental Studies, UCSC 6

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

An example where a loop would be more useful.

Imagine you have a set of individuals, each with a tag number, and
each mapped with x,y coordinates. Create a small data frame subset
of the ferp data to play with.

O114

39

o
115
- O113

a<-ferp[102:110,c(1l,5,6)] #get data subset

O112

37

plot(a$east,a$north,asp=1,cex=1.5,pch=19)
text (a$east-.2,a$north-.2,as$tag,pos=4)

a$north

35

For each of the points we want to find the distance to the nearest 7
point. To do this, conceptually, we want to:

1. Take the locations of the first point.

2. Use our pythag function (above) to calculate the distance
from that point to every other point.

Find which point is closest (taking care to exclude the distance from a point to itself).
Record the tag number and distance of the nearest neighbor.

Go back to (1) and do the same for the second point.

Continue looping until you have all the points.

afeast

kW

Your loop needs to run from 1 to the number of individuals in the data frame. You can find how
many there are using the length function (i.e., length(a$tag)), and including this in " i in 1: x"
part of the function directly.

for (i in l:length(a$tag))

{

eastl<-aSeast[i] # gets the east coordinate for the i*" point.
northl<-a$north[i] # gets the north coordinate for the i*™ point.
tagl<-aS$tag[i] # get the tag number for the i*® point.

#create a temp variable in the data frame with the distance from the ith
point to every other point

a$tempdist<-pythag(eastl,northl,a$east,a$north)

#we don't want the distance to itself to appear to the be closest neighbor,
so set it to NA

as$tempdist[i]<-NA #the tempdist of the focal point is NA

#use which function to get the index number of the point with the minimum
tempdist

#na.rm-TRUE says to ignore the point with tempdist=NA

mindist<- min(a$tempdist,na.rm=TRUE)
#then take tag number of that record, and put > a

in mintag tag east north nntag nndist

:)] L 102 107 5.4 32.9 110 3.2802439
mintag<-a$tag[which(a$tempdist==mindist)] 103 108 0.3 32.6 109 0.7280110
asnntag[i]<-mintag 104 109 1.0 32.8 108 0.7280110
asnndist[i]<-mindist 105 110 2.8 34.9 111 1.2806248
) 106 111 3.6 35.9 110 1.2806248
) . o 107 112 2.3 37.7 115 0.9433981

a<-a[,-4] #get rid of column "tempdist 108 113 1.2 38.2 115 0.6708204
109 114 0.6 39.8 113 1.7088007

110 115 1.8 38.5 113 0.6708204

Environmental Studies, UCSC 7

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

Alternatives to for in making loops.

(1a) You can use while, instead of for

While requires establishing a counter that is incremented with each iteration of the loop.
First.Five.Powers<-function(x)

{
i=1 #set the first value of your counter
d<-c(rep(NULL,5)) #create an empty vector of length 5 to hold values
while(i<=5)
{
d[i]j<-x"i #raise the value of x to the current value of i
i<-i+1 #increment your counter
}

d #call the vector of 5 values to return this as the output of the function

i

First.Five.Powers(3) #testing

(1b) Another example using while
Here we will find the even numbers in a vector of numbers

somedata<-c(2,3,4,5,7,8,9) #here is a vector of numbers to use.

Find.Evens<-function(x)
{
i<-1 #set your counter to 1
N<-length(x) #find the number of elements in your vector
evens<-NULL #establish an empty vector
while(i<=N)
{
if (x[1]%%2==0) {evens<-append(evens,x[i]) } #if the modulo=0 keep it
i<-i+1 #advance your counter

}

evens #return the list of even numbers

}

Find.Evens(c(2,3,4,5,6)

(1c) And another example using while.

Calculate generations of exponential growth to a pre-defined limit and then stop.

r=1.5; N=10; grow<-NULL #set value of r and initial N, and create empty
vector called grow

while (N<100000){grow<-append(grow,N); N<-r*N} #in each iteration, append
new N to grow

grow

#personal note: For cases la and 1b, I would use a Tor loop. Ic is easier with while.
(2) You can also use the repeat and break functions to create loops. However, they make

me nervous because it is easy set up infinite loops if you are careless. I avoid them, because you
can do the same thing with while.

Environmental Studies, UCSC 8

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

Using loops for repetitive tasks
Get the FERP data from web site. These data include east and north coordinates for each of
8180 stems from 31 woody species, plus the diameter at breast height for each stem.
ferp<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/FERPO7data.csv")
ferp<-ferp[,c(1,2,4,5,6)] #trim down to variables needed here
head(ferp)

tag code dbh east north

1 2 QUERPA 31 1.9 6.3

2 3 PSEUME 378 0.6 6.2

3 4 QUERPA 20 0.5 6.8

4 5 SEQUSE 1420 3.1 13.7

5 6 QUERPA 74 4.7 19.2

6 8 LITHDE 31 5.6 14.8
> head(querpa)

NumStems<-length(ferp$tag) #8180 stems tag code dbh east north
1 2 QUERPA 31 1.9 6.3
3 4 QUERPA 20 0.5 6.8

#Extract the data for QUERPA 5 6 QUERPA 74 4.7 19.2

querpa<-ferp[which(ferpScode=="QUERPA"),] 21 23 QUERPA 37 16.8 17.9
54 57 QUERPA 34 6.2 0.3
63 67 QUERPA 24 18.8 22.1

Make a histogram of dbh for that species
hist(querpa$dbh,xlab="dbh (mm)",
ylab="number of QUERPA
stems" ,main="QUERPA",col="blue")

To save this as a png, embed the hist call in a png device:
png(filename="querag_dbh.png")
hist(querpa$dbh); dev.off()

number of stems
200 400 600

0

Now, how do you do that for all the species, individually?
Three simple steps. 0 100 300 500
1. Create a folder, and make it your working directory
2. Get a list of all the species.

species<-unique(ferp$code); species
[1] QUERPA PSEUME SEQUSE LITHDE CORYCO ...

dbh (mm)

3. Make a loop that creates a png for each one.

#0jO make sure you set your working directory to where you want the pngs to go

for (i in 1l:length(species))

{

temp<-ferp[which(ferp$code==species[i]),] #subset of species i
png(filename=paste(species[i], "dbh.png",sep="_")) #open png
hist(temp$dbh,xlab="dbh (mm)",ylab="number of

stems" ,main=paste(species[i],"n=",dim(temp)[1]),col="blue™)

dev.off() #close png

ks

This loop (1) makes a temp data frame including only species i, (2) opens a png with filename
created by pasting the contents of species[i] with dbh.png, separated by a , (3) creates the
histogram, including a title with the species[i] name and the number of stems, and (4) closes the
png. Rinse and repeat.

Environmental Studies, UCSC 9

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

Using loops for simulations

Often you can calculate the probability of something happening analytically from information
you have in your data, but sometimes the analytical solution is impractical or impossible, and
good old brute-force Monte Carlo simulations, based on repeated random sampling, save the day.
Here is a simple example for how to go about it. Two notes: First, I'm not sure that I'd actually
take this approach for this question, but it is a convenient example. Second, there are a whole
range of Monte Carlo Packages for R, so you don't necessarily have to build it yourself. The
goal here is to show you how easy it is to build a random resampling algorithm in R.

Goal: How many species in a random sample of 20 stems from the FERP, and how does this
change depending on the size class of stems you sample?

#read in the data from the ferp, then trim to the variables needed here
ferp<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/FERP@7data.csv™)

ferp<-ferp[,c(1,2,4,5,6)]

#make a custom function to categorize stems as small, medium, or large
#based on dbh cutoffs, using conditional ifelse and if statements
makeSize<-function(diam)

{s<-ifelse(diam>=10 & diam<1@0,s<-"small",s<-"medium™)

1f(diam>=300) s<-"large"

s}

#apply the makeSize function to the FERP data

#0ption 1- use a for loop to apply this function for each stem one at a time
for (1 in l:dim(ferp)[1])

{ferp$size[i]<-makeSize(ferp$dbh[i])} #system.time() takes 3.706 seconds

#0ption 2- use sapply to apply this function to each stem as a vector
ferp$size<-sapply(ferp$dbh,makeSize) #Takes 0.09 seconds

head(ferp) #take a look at the categories

#create a blank dataframe, then use this to write

a blank csv file with column headings to append to

you always want to write the outputs of simulations to a file

so you can interrupt it if it takes too long, and not lose it

blank<-
data.frame(run=numeric(@),all=numeric(@),small=numeric(@),medium=numeric(@),1
arge=numeric(@))

blank #take a look at the blank data frame

write.table(blank, "mcoutfile.csv",append=FALSE, col.names=TRUE, row.names=FALSE

,sep=",") #write the blank data frame to disk, to get it started

#continued on next page

Environmental Studies, UCSC 10

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 7 Functions, Loops, Conditional Statements

#create a loop that takes a random sample of 20 stems, (either from
#all the stems, or only from small, medium, or large stems)

#unique extracts the unige codes in that lis

#and then length counts them to

#see how many species were included in the sample.

#Then append those four records of the number of species

#to the csv file. Repeat this for 1000 runs.

for (1 in 1:50)

{

all<-lengthCunique(sample(ferp$code,20))) #sample 20 from all stems
small<-lengthCunique(sample(ferp$code[ferp$size=="small"],20)))
medium<-lengthCunique(sample(ferp$code[ferp$size=="medium"],20)))
large<-lengthCunique(sample(ferp$code[ferp$size=="1arge"],20)))
out<-cbind(i,all,small,medium,large)

write.table(Cout, "mcoutfile.csv",append=TRUE, col.names=FALSE,

row.names=F,sep=",

}

#Now read the table back in
mc<-read.csv("mcoutfile.csv")
head(mc) #take a look

#look at the median and 95% CI for each of the size classes
sout<-sapply(mc,quantile,probs=c(0.025,.5,0.975))
sout[,2:5]

bp<- barplot(sout[2,2:5], ylab="Mean species in 20 stems",xlab="Size class",
ylim=c(0,12)) #draw 95% CI on bar plot of median values

arrows(bp, sout[1,2:5], bp, sout[3,2:5], lwd=1.5, angle=90, length=0.1, code=3)
box()

Environmental Studies, UCSC 11

