G.S. Gilbert, ENVS291 Transition to RvW2015 | 1
Class 8 glm and mixed models

Class 8: GLM, logistic regressions, count data, survival stats, and mixed models
Use of the generalized linear models where error variance is not constant or normal, the Imer
function for mixed models, and various survival analysis functions

Goals:
(1) Understand glm components: error structure, linear predictors, and link functions
(2) Logistic regression (proportional count data)
(3) Poisson regression (count data)
(4) Survival analysis (time-to-event data)
(5) Mixed models

When the error structure is not constant or normal, you can (1) transform the data and run
Im, (2) use non-parametric models, or (3) define a more appropriate error model and use
generalized linear models (glms, pronounced "glims"). To use glm, you must specify the
error structure to use (e.g., "binomial") and then a link function (e.g., "logit") that is used to
transform the product of the linear predictor function to a predicted value of y.

glm is used to fit generalized linear models which are useful for fitting models where the
variance is not constant and/or normally distributed, such as count data (poisson),
binomial proportional data (logistic), survival data (time to death, gamma).

Imer (linear mixed-effects models) from the Ime4 package is great for mixed-effects models
of many kinds. You must install the Ime4 package to use the Imer function. Please install,
with dependencies, from the Packages & Data: Packages Installer menu. Once
installed, you need to load the library with the call: 1library(lmer).

survival analyses are best done with the survival package. You must install the survival
package for most survival analyses.

Sample data sets:
#Load these data sets to use in the examples
rd<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/RegressionDataset.csv")

fl<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/logistregdata.csv")
fl2<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/logregdata2.csv")
bl<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/FactorialBlockDataset.csv")
f<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/mixedmodeldata.csv")
obs2x2<-
matrix(data=c(62,74,35,22),nrow=2,ncol=2,dimnames=1ist(c("male","female"),c("healthy",

"sick")))

p<- read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/ARBUMEflowers.csv")

s<- read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/survivaldata.csv")
library(lme4); library(survival)
end of loading data sets

Environmental Studies, UCSC 1

G.S. Gilbert, ENVS291 Transition to RvW2015 | 2
Class 8 glm and mixed models

A few notes on playing with distributions in R

You can generate a wide variety of distributions with functions described in Distributions
Some common functions for distributions include (?Distributions for the full list)
norm normal

Inorm lognormal

binom binomial

nbinom negative binomial
pois poisson

unif uniform

Each function has four variants. For the normal distribution

rnorm normal deviates (e.g., generate a bunch of numbers)
pnorm distribution function

gnorm quantile function

dnorm density function

#rnorm(n,mean,sd) generates n numbers from the given distribution
plot(x=seq(1,100,1),y=rnorm(n=100,mean=50,sd=10))
#plot shows, in order of generation, 100 random values from a normal distribution

#pnorm(q, mean,sd) where q is a vector of probabilities
#the p variant calculates the cumulative distribution function (CDF)

#and returns the probability that a value from the distribution #is less than value x.
pnorm(67,mean=50,sd=10) #~95% of values are below 67

#qnorm(p,mean,sd) where p is the quantile of the distribution from 0 to 1

#this is the inverse of pnorm, returning the p-th quantile of the distribution
gnorm(0.95,mean=50,sd=10) #66.4 is the 95 quantile

#dnorm(x, mean, sd) where x is a specific value from the distribution

#the d variant calculates the probability density function (PDF)

#and returns the probability of drawing that value from the distribution.

#does not make much sense for continuous distributions, but does for binomial
plot(x=seq(1,100,1),y=dnorm(x=seq(1l,100,1), mean=50, sd=10), main= "dnorm
mean=500 sd=10")

#plot shows probability of drawing each value from 1 to 100

#Three handy ways to look at distributions

par (mfrow=c(3,1))

hist(rnorm(n=100,mean=50,sd=10)) #plot histogram of 100 normal values
plot(ecdf (rnorm(n=100,mean=50,sd=10))) #plot continuous dist function
ggnorm(rnorm(n=100,mean=50,sd=10)) #QQ plot to examine normality

par (mfrow=c(1,1))

Fitting your data to a distribution

This is tricky, complicated stuff but as a first approximation

library (MASS)

fout<-fitdistr(fl$nndist, "lognormal") #finds parameter fit to lognormal
fout; fout$loglik #note loglik comparisons require same # parameters
par (mfrow=c(1,2));hist(f1l$nndist); hist(rlnorm(fout$n, foutSestimate[1l],
fout$sd[1l])); par(mfrow=c(1l,1))

Environmental Studies, UCSC 2

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 8 glm and mixed models

Cheat Sheet of Family Objects for Error Structure and Link Functions

Generalized linear models (glm) allows response variables to have any distribution (not
just normal), so you must specify the appropriate error distribution to be used (called
family type; e.g., Gaussian (= normal), binomial, poisson)) and the associated link functions
for your analysis (the link function varies normally with the predicted values). The
maximum likely estimates of coefficients through glm are from iterative reweighting. not
Ordinary Least Squares (as is done for Im)

(Note that for Im, the family object is gaussian(link="identity").)

The available family objects, and their default link functions are:

binomial(link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse") #note the capital G
inverse.gaussian(link = "1/mu”2")

poisson(link = "log")

quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")

quasipoisson(link = "log")

In glm models, you declare the error structure with a call to family=
glm(y~x,family=binomial(link="logit")) #this is for a logistic regression

If you want to use the default link function, you can omit the link="logit" part and just call

the error structure, and it uses the default associated link function:
glm(y~x,binomial)

However, some families can use multiple link functions, depending on your data structure:

gaussian(link = "identity") #gaussian is the normal distribution
gaussian(link = "log")
gaussian(link = "inverse")

binomial(link="1logit") #for logistic
binomial (link="probit") #for normal CDF
binomial (link="cauchit") #for Cauchy CDF
binomial(link="1log")
binomial(link="cloglog") #complementary log-log
Gamma (link="inverse")

Gamma (link="identity")

Gamma (link="log")

poisson(link="1log")
poisson(link="identity")
poisson(link="sqrt")
inverse.gaussian(link="1/mu"2")
inverse.gaussian(link="inverse")
inverse.gaussian(link="identity")
inverse.gaussian(link="log")

Environmental Studies, UCSC 3

3

G.S. Gilbert, ENVS291 Transition to R vW2015 | 4
Class 8 glm and mixed models

Generalized Linear Models (glm)

The glm function allows you to specific the error structure and associated link functions appropriate to
analysis of your data, so you are not limited to normal distributions (as you are for Im).

The glm algorithm finds coefficients for the models by maximum likelihood rather than through ordinary
least squares (as is done for Im). This means you don’t get the same F-statistics and R-squared values as
you do in OLS — this relates to the philosophy of the approaches, and is beyond the scope of this class.

However, let’s look briefly at running a simple linear regression using Im and glm, to compare the
outputs. The Im function assumes normal distribution for the error structure; to do the same in glm, we
need to specify that the family is Gaussian (= normal) and the link function is the "identity" function.

#here is the same analysis run using Im and glm
summary (lout<-1lm(precip~temp,data=rd))
Call:

Im(formula = precip ~ temp, data = rd)

Residuals:
Min 10 Median 30 Max
-148.43 -86.78 -2.99 75.30 151.42

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 125.227 51.396 2.437 0.0214 *
temp 2.051 3.270 0.627 0.5356
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

Residual standard error: 89.7 on 28 degrees of freedom
Multiple R-squared: 0.01385, Adjusted R-squared: -0.02137
F-statistic: 0.3934 on 1 and 28 DF, p-value: 0.5356

summary (gout<-glm(precip~temp, data=rd, family=gaussian (link="identity")))
Call:

glm(formula = precip ~ temp, family = gaussian(link = "identity"),
data = rd)

Deviance Residuals:
Min 10 Median 30 Max

-148.43 -86.78 -2.99 75.30 151.42

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 125.227 51.396 2.437 0.0214 *
temp 2.051 3.270 0.627 0.5356
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

(Dispersion parameter for gaussian family taken to be 8046.519)
#NOTE that the Dispersion parameter is square of the Residual Standard Error
Null deviance: 228468 on 29 degrees of freedom
Residual deviance: 225303 on 28 degrees of freedom
AIC: 358.86
Number of Fisher Scoring iterations: 2

Note: AIC=2k-2In(L) where k=df and In(L) is the log-likelihood

logLik(gout) #logLik -176.4 df=3
2*3-2%(-176.4282) #which is same as AIC for gout

Environmental Studies, UCSC 4

G.S. Gilbert, ENVS291 Transition to RvW2015 | 5
Class 8 glm and mixed models

Logistic regression v.1 (data are binary observations as 0 or 1)

Logistic Regression is used when you want to model how a quantitative independent variable
affects the outcome of a binary response. For instance, imagine you are interested in how the size
of a plant (number of leaves) and the density of plants (as distance to nearest neighbor) affect the
likelihood that individual plants in a population produce flowers.

For each of 40 plants you record if the plant flowered during the leaves nndist flowered
season (flowered = 1 if yes, 0 if no), the number of leaves it had at > 219 0

1 1.21 0
the end of the season (leaves), and the distance to the nearest 2 2.85 0
conspecific neighbor (nndist). (see data set £1). You want to 2 3.22 0
ask if probability of flowering is a function of leaves, nndist, or an Z g : gg 1

interaction between them. etc.

Flowering is a binomial response. Binomial errors have

asymptotes toward zero as the proportion approach 0 and 1 so the variance is hump-shaped.
Remember that a logistic curve is an S-curve.

The linear predictor used in this logistic regression is 1, = X, , B + X, a Bua + X sysonna Bivsema

where x are the explanatory variables and the {3 are the parameters to be estimated. The values
given by the linear predictor with binomial error are logits, where logit(p) = In(p/(1-p)). The
inverse of the logit linking function can then be to transform the logits back to the value of p where

p=exp(logit(p)) / (1 + exp(logit(p)).

Logistic regression is performed using the glm function - generalized linear models.

GLM does linear models where you can specify the error structure (here "binomial"), and connect it
to the model with a link function (here, "logit"). You specify the error type as "family", and the link
function as "link". (Note: in glm, if you set family=binomial, the link function defaults to "logit", so
you can specify it explicitly or not, as you choose).

The basic format for this logistic regression is then :
glm(flowered~leaves*nndist,family=binomial (link="logit"),data=fl)

Use AIC to find the minimum model (f~leaves, f~nndist, f~leaves+nndist, etc.).
flout<-glm(flowered~leaves*nndist, family=binomial(link="logit"),data=£f1)
flout2<-glm(flowered~leaves+nndist, family=binomial(link="1logit"),data=£f1)
flout3<-glm(flowered~leaves, family=binomial (link="logit"),data=£f1)
flout4d<-glm(flowered~nndist, family=binomial (link="logit"),data=£f1)
AIC(flout,flout2,flout3,floutd) #compare reduced models

summary(flout3) #show summary of best model

#alternatively get the same place with the stepwise function
summary (step(glm(flowered~leaves*nndist,family=binomial(link="1logit"),data=£fl)))

plot(jitter(flowered,.2)~jitter(leaves),data=f1) #plot the original data with jitter
points(flout3$fitted.values[order(flout3$data$leaves)]~
flout3$data$leaves[order(flout3$data$leaves)],type="1",1ty="dashed",1wd=2)

#look at what happens if you do not include the order function

#Note: jitter only affects the display, not the data used in analysis.
#it makes it easier to see how many data points are present

Environmental Studies, UCSC 5

G.S. Gilbert, ENVS291 Transition to R vW2015 | 6
Class 8 glm and mixed models

The output looks like this:

o [
= 0o ®© P 8-9--¢
e
> AIC(flout,flout2,flout3, flout4d) #compare g 1 /
reduced models T © /
o .
df AIC 5§ o /
flout 4 24.08837 2 <« | ,'
flout2 3 22.12320 = ° /
flout3 2 20.26362 #this is the best model g - /
flout4 2 57.31238 - e
S 1&# % %o
T T T T T
2 4 6 8 10
> summary(flout3) #show summary of best model leaves
Call:
glm(formula = flowered ~ leaves, family = binomial(link = "logit"), data = fl)
Deviance Residuals:
Min 10 Median 30 Max
-1.94568 -0.23503 -0.04037 0.10149 1.97943
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.8804 3.1987 -2.776 0.00550 =*=*
leaves 1.7683 0.6345 2.787 0.00532 **
Signif. codes: 0 ‘***xr (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * r 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 54.548 on 39 degrees of freedom

Residual deviance: 16.264 on 38 degrees of freedom

AIC: 20.264

Number of Fisher Scoring iterations: 7

> anova(flout3, test="Chisq") #test the fit of the model

Analysis of Deviance Table

Model: binomial, link: logit

Response: flowered

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi])

NULL 39 54.548
leaves 1 38.285 38 16.264 6.114e-10 **=*
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

note: the model is logit(flower)=-8.8804+1.7683*leaves

recall that the antilogit is exp(logit(p)) / (1 + exp(logit(p))
#try this to show the curve

antilogit<-function(x) {exp(x)/(l+exp(x))}

lvs<-seq(l,10,.1) #create points along the desired x domain
logithat<--8.8804+1.7683*1lvs #predict the logits from the formula
plot(lvs,antilogit(logithat),type="1")

Environmental Studies, UCSC 6

G.S. Gilbert, ENVS291 Transition to RvW2015 | 7
Class 8 glm and mixed models

Logistic regression v.2 (where data are available as frequency counts)

Sometimes, you have frequency counts, rather than a single line for each individual. For
instance, imagine you have a study where you measure the density of Stachys bullata
(plants/m?) in a series of random plot, and for each plant in the plot you record if the plant
has powdery mildew (sick) or not (healthy). From those data you can calculate proportion
with powdery mildew (proppm). You want to ask if probability of disease incidence
(proportion of plants) in the plot is a function of host density.

#look at plots of proportion with density and log(density) in data frame f12
par (mfrow=c(1,2))

plot (proppm~density,data=f12) #linear density

plot (proppm~log(density),data=£f12) #log density

par (mfrow=c(1,1))

o) o]
fl2 #use data frame f12 S ° o S ° oo
density sick healthy proppm . o - o

1 2.0 1 3 0.2500 £ . o £ . o
To] 1o}
2 3.0 1 5 0.1667 g S o S S o
3 3.0 2 4 0.3333 5 — 5 —
4 3.5 2 5 0.2857 4% 4 %
5 5.0 4 6 0.4000 x _Oo X P o
6 7.5 5 5 0.5000 T T T T 17 171 T T 1 1
7 9.0 10 8 0.5556
8 10.0 14 6 0.7000 2 6 10 14 1.0 20
9 12.5 21 4 0.8400
10 13.5 20 7 0.7407 density log(density)
11 15.0 22 8 0.7333
12 15.5 23 8 0.7419
>y
To do analysis you first need to bind sick and healthy counts . Uli ['2;
together into one object {2’} 1 5
y<-cbind(f12%$sick, f12$healthy) [3,] 2 4
[4,] 2 5
#logistic regression takes the form [5/1] 5 5
#out<-glm(Counts~IndepVar, family=errortype(link="11inkFunction™) [S'] 12 Z
lrm out<-glm(y~fl2$density, family=binomial(link="logit")) {8’} 14 6
summary(lrm out) #get coef, deviances, and model fits [9:] o1 4
[10,1 20 7
plot(proppm~density,ylab="proportion with powdery mildew", data=f12) [11,] 22 8
lines(f12$density,predict(lrm_out,list(density),type="response™)) (12,1 23 8
#success and
failure (1/0) in
Note: compare these one object, as
antilogit<-function(x) {exp(x)/(l+exp(x))} #useful paired columns
lrm out$fitted.values #fitted values in model object

fitted(lrm out) #extract the fitted values from model object
predict(lrm out,list(density),type="response") #gives fitted probs
predict(lrm out,list(density)) #predict gives logits
antilogit(predict(lrm out,list(density))) #convert logits to fitted

Logistic regression v.3 (using proportions and weights)

summary (glm(I(f12$sick/(f12$sick+fl28healthy))~fl2$density, binomial,
weights=(f12$sick+fl2$healthy)))

#can do the logistic regression on proportions if you include weights
#that indicate the total number of individuals for that proportion.

Environmental Studies, UCSC 7

G.S. Gilbert, ENVS291 Transition to R vW2015
Class 8 glm and mixed models

The output from logistic regression v.2 looks like this:

Call:
glm(formula = y ~ fl2$density, family = binomial(link = "logit"))

Deviance Residuals:
Min 1Q Median 3Q Max
-0.85736 -0.40473 -0.07568 ©0.01858 1.55260

Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) -1.26495 0.43828 -2.886 ©.0039 **
fl12$density 0.17153 0.03833 4.475 7.63e-006 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 <’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.0511 on 11 degrees of freedom
Residual deviance: 5.1075 on 10 degrees of freedom

AIC: 43.272
. . . . 2
Number of Fisher Scoring iterations: 4 3 o o
E S -
> anova(lrm_out, test="Chisq") g I o
Analysis of Deviance Table 2 g —
[
[oN —
Model: binomial, link: logit £ o
Response: y £ u o
s o _|°
. . S o o
Terms added sequentially (first to last) s T T T T T T
2 4 6 8 10 12 14 16
Df Deviance Resid. Df Resid. Dev P(>IChil) density
NULL 11 27.0511
fl2$density 1 21.944 10 5.1075 2.808e-06 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘1

So, from the summary output, the model is
logit(sick)=-1.26495 + 0.17153*density

#to see if logistic regression has a better fit with log-transformed density
1lrm_out<-glm(y~log(fl2$density), family=binomial(link="1logit"))
AIC(lrm_out,11lrm_out)

df AIC
lrm_out 2 43.27156
llrm out 2 41.86101

#log transformation might be marginally better, but not much

Environmental Studies, UCSC 8

8

G.S. Gilbert, ENVS291 Transition to RvW2015 | 9
Class 8 glm and mixed models

A few random notes about examining models that I have found confusing

Let’s go back and look at the various models from Logistic Regression v1.
flout<-glm(flowered~leaves*nndist, family=binomial(link="logit"),data=£f1)
flout2<-glm(flowered~leaves+nndist, family=binomial(link="1logit"),data=£f1)
flout3<-glm(flowered~leaves, family=binomial (link="logit"),data=£f1)
flout4d<-glm(flowered~nndist, family=binomial (link="logit"),data=£f1)

There are several ways to compare models
1. Stepwise does it all for you (running blind) using AIC (not recommended — use your eyes and brain)
step(glm(flowered~leaves*nndist, family=binomial(link="logit"),data=£f1l))

2. Fit multiple, specified models and then compare with AIC
compares reduced models looking for lowest AIC with rule of thumb that must be different by 2 units to be

considered different. Here flout3 is best.
AIC(flout,flout2,flout3, floutd)

df AIC
flout 4 24.08837
flout2 3 22.12320
flout3d 2 20.26362
flout4 2 57.31238

3. Summary of the model object gives p-values from Wald tests for dropping each coefficient compared to the

full model with all the coefficients
summary (flout)
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -8.7160 6.7912 -1.283 0.199
leaves 1.6393 1.2713 1.289 0.197
nndist -0.2971 2.9565 -0.101 0.920
leaves:nndist 0.1116 0.5970 0.187 0.852

4. ANOVA Likelihood Ratio Test on model object adds terms sequentially, comparing smaller model

with the next most complex (leaves vs. leaves + nndist) (kind of weird comparisons)
anova(glm(flowered~leaves*nndist,family=binomial(link="logit"),data=f1l), test="LRT")
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 39 54.548

leaves 1 38.285 38 16.264 6.114e-10 ***
nndist 1 0.140 37 16.123 0.7079
leaves:nndist 1 0.035 36 16.088 0.8520

4. ANOVA Likelihood Ratio Test, model by model (note the difference from 4; here it compares
leaves vs. leaves + nndist + leaves*nndist)

anova(flout,flout3,test="LRT")
Analysis of Deviance Table

Model 1: flowered ~ leaves * nndist
Model 2: flowered ~ leaves
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 36 16.088
2 38 16.264 -2 -0.17525 0.9161

Recall that AIC=2*DF — 21n(L) and logLikelihood (L) is -2*Residual Deviance
logLik(flout3) #'log Lik.' -8.131812 (df=2)

2%2-2%(-8.131812) #20.26362 which is AIC from AIC(flout3)

and Resid. Dev. From anova(flout3) is 16.264 which is also -2%*(-8.131812)

Environmental Studies, UCSC 9

G.S. Gilbert, ENVS291 Transition to R vW2015 | 10
Class 8 glm and mixed models

Poisson Regression (Log Linear models)

Poisson regression is useful when response variables are counts, rather than continuous.
This is particularly useful when counts of something happening are available, but we don't
now know often something does not happen (when you know the proportion of total times
something happens, look instead at logistic regression).

For example, every two weeks we record all the species of flowers found in 41 litter traps
on the UCSC Forest Ecology Research Plot. Data set p includes the number of times that
flowers of Arbutus menziesii have been found in each trap, as well as the number of stems
and the total basal area of A. menziesii within a 10-m radius of that trap. Let's ask if the
number of times flowers of A. menziesii are found in a trap is a function of the number of
individuals (stems) or the size (basal area) of A. menziesii nearby. Because the flower data
are counts, and bounded by zero, Poisson regression is appropriate.

head(p)

summary (poutl<-glm(flowers~1,family=poisson(link="1log"),data=p)) #just the
intercept

summary (pout2<-glm(flowers~stems, family=poisson(link="1log"),data=p)) #number
of stems

summary (pout3<-glm(flowers~basalarea,family=poisson(link="1log"),data=p))
#basal area

AIC(poutl, pout2, pout3) #AIC comparison of the three and pout3 is best

par (mfrow=c(2,2)) #set up to compare poisson and gaussian
plot(flowers~basalarea,data=p, main="poisson") #make a graph of the data
poutpred<-predict(pout3,list(basalarea= seq(min(p$basalarea),max(p$basalarea),.01)))
#gets predicted values

#but the link function returns the log value, so you must first

#do the antilog of the predicted values

lines(seq(min(p$basalarea),max(p$basalarea), .01),exp(poutpred))

plot(pout3,which=1) #show Residuals vs Fitted plot

#Now compare these results to fitting with a Gaussian error structure
#Compare to what you would get if you did the analysis with 1m
summary (gout<-glm(flowers~basalarea,family=gaussian,data=p))
summary (1lm(flowers~basalarea, data=p))

plot(flowers~basalarea,data=p, main="gaussian")
goutpred<-predict(gout,list(basalarea=seq(min(p$basalarea),max(p$basalarea),.01)))
#gets predicted values

lines(seq(min(p$basalarea),max(p$basalarea), .01),goutpred)

plot(gout,which=1) #show Residuals vs Fitted plot
par (mfrow=c(1,1))

Look at the residual deviance of the models - should be close to the df. Poisson is
closer than Gaussian.

Environmental Studies, UCSC 10

G.S. Gilbert, ENVS291 Transition to RvW2015 | 11
Class 8 glm and mixed models

Output of Poisson regression

Call: glm(formula = flowers ~ basalarea, family = poisson(link = "log"), data = p)
Coefficients:
(Intercept) basalarea

0.5045 1.2392

Degrees of Freedom: 40 Total (i.e. Null); 39 Residual
Null Deviance: 126.8

Residual Deviance: 68.21 AIC: 167.3

Analysis of Deviance Table

Df Deviance Resid. Df Resid. Dev P(>|Chi])
NULL 40 126.769
basalarea 1 58.557 39 68.213 1.975e-14 ***

Deviance Residuals:
Min 10 Median 30 Max
-2.0256 -1.8200 0.0208 0.8978 2.2686

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.5045 0.1402 3.599 0.000319 =**=*
basalarea 1.2392 0.1543 8.033 9.51le-16 ***

Null deviance: 126.769 on 40 degrees of freedom
Residual deviance: 68.213 on 39 degrees of freedom
AIC: 167.33

> pchisg(deviance(pout),df.residual (pout), lower=F)
[1] 0.002605805

Output of Gaussian regression (compare to what you would get from 1lm)
Call: glm(formula = flowers ~ basalarea, family = gaussian, data = p)

Coefficients:
(Intercept) basalarea
1.249 5.199

Degrees of Freedom: 40 Total (i.e. Null); 39 Residual
Null Deviance: 346.4

Residual Deviance: 117.4 AIC: 165.5

Analysis of Deviance Table

Df Deviance Resid. Df Resid. Dev P(>|Chi])
NULL 40 346.44
basalarea 1 229.04 39 117.40 < 2.2e-16 **x*

Deviance Residuals:
Min 10 Median 30 Max
-3.41713 -1.24948 -0.05991 1.21499 3.94009

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.250 0.351 3.560 0.000994 ***
basalarea 5.199 0.596 8.723 1.06e-10 ***

(Dispersion parameter for gaussian family taken to be 3.010280)
Null deviance: 346.44 on 40 degrees of freedom

Residual deviance: 117.40 on 39 degrees of freedom
AIC: 165.49

Environmental Studies, UCSC 11

G.S. Gilbert, ENVS291 Transition to RvW2015 | 12
Class 8 glm and mixed models

Analysis of Simple Contingency Tables

Categorical Count Data (using 2x2 count table in matrix obs2x2)

Count data in categories can be analyzed by fisher's exact tests, chisquare teste, or glm.
obs2x2 #start with this table
healthy sick
male 62 35
female 74 22

Fishers exact test
obs2x2
fisher.test(obs2x2)

Fisher's Exact Test for Count Data

data: obs
p-value = 0.05806
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.2654182 1.0349204
sample estimates:
odds ratio
0.5283995

#chisq.test(obs)
chisqg.test(obs2x2)

Pearson's Chi-squared test with Yates' continuity correction

data: obs
X-squared = 3.4109, df = 1, p-value = 0.06477

#Note: for complex, multi-way contingency tables, use glm with
family=poisson.

Environmental Studies, UCSC 12

G.S. Gilbert, ENVS291 Transition to R vW2015 | 13
Class 8 glm and mixed models

Survival statistics (time-to-event analysis)
Often how long it take for an event to happen (death, germination, pupation) is more interesting
than whether it happens (everything dies). Analysis of time-to-event (also called failure time or
time-to-death or survival analysis) allows you to do that. You can't just analyze the data with a
linear model because of two problems.

(1) Failure times generally have a Gamma distribution.

(2) Observations are often censored (the experiment ends before all individuals die).
There are a number of ways to handle survival analyses.

Survival v. 1. Everyone dies (no censored observations). The glm version (limited use)
Here we will use data frame s, ignoring the "died" column. Assume the all the values in weeks
indicate how long the birds lived. We want to know if there is a difference in the rate of
mortality between males and females. +

Data of this sort can be analyzed using glm, provided there is no right censoring.
allout<-glm(weeks~gender, Gamma, data=s)

summary (allout)

Call:
glm(formula = weeks ~ gender, family = Gamma, data = s)

Deviance Residuals:
Min 10 Median 30 Max
-1.1195 -0.6111 -0.2628 0.4128 1.3427

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.33333 0.03661 9.104 8.45e-14 **x*
gendermale -0.08009 0.04598 -1.742 0.0856

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

(Dispersion parameter for Gamma family taken to be 0.4705659)
Null deviance: 39.179 on 77 degrees of freedom

Residual deviance: 37.711 on 76 degrees of freedom

AIC: 332.01

Coefficients table suggests a marginally significant difference with
males surviving less time than females.

Setting which reference level using relevel()
Because the first record in s is for a female, the above analysis treats female as the reference level, and provides the
coefficient for effect of being a male. If you want to switch the reference level, use relevel.

s$Sgender<-relevel (s$gender, "male") #makes male the reference level
summary(allout<-glm(weeks~gender, Gamma, data=s))

Think of this in terms of alive or dead — alive would be the reference, and you are looking to see how your
predictors affect whether death occurs.

Environmental Studies, UCSC 13

G.S. Gilbert, ENVS291 Transition to R vW2015 | 14
Class 8 glm and mixed models

Survival v. 2. Surv and survfit with Right-censored observations: Making graphs

Most commonly, survival data are right censored (you can’t wait until all of them die, or they die from
unrelated causes). Here the Surv and survfit functions are useful. Use Surv to make a survival object,
then survfit to create a suitable graph of survival curves.

There are two ways to use Surv, depending on your data format:

1. Surv(time,event) #time is the follow-up time, event is 0=alive 1=dead at end for right censoring

2. Surv(time,time2,event) #time is start time and time2 is end time

Here is an example with the type 1, with the data in

s<- read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/survivaldata.csv")
library(survival)

pwfit<- survfit(Surv(time=s$weeks,event=s$died)~s$gender)

pwfit; summary(pwfit)

plot(pwfit,lty=c("solid", "dashed"),ylab="Proportion surviving",xlab="weeks")
legend(locator(l),legend=c("female","male"),lty=c("solid", "dashed"))

#note: locator(l) need to click on graph where you want to place the legend

Call: survfit(formula = Surv(s$weeks, s$status) ~ s$gender)

records n.max n.start events median 0.95LCL 0.95UCL
s$gender=female 39 39 39 38 2 2 4
s$gender=male 39 39 39 36 3 2 5

s$gender=female
time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 39 10 0.7436 0.0699 0.6184 0.894
2 29 11 0.4615 0.0798 0.3288 0.648
3 18 5 0.3333 0.0755 0.2139 0.520
4 13 5 0.2051 0.0647 0.1106 0.380
5 8 4 0.1026 0.0486 0.0405 0.260
6 4 1 0.0769 0.0427 0.0259 0.228
7 3 1 0.0513 0.0353 0.0133 0.198
8 2 1 0.0256 0.0253 0.0037 0.177

s$gender=male
time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 39 9 0.7692 0.0675 0.6477 0.914
2 30 7 0.5897 0.0788 0.4539 0.766
3 23 6 0.4359 0.0794 0.3050 0.623
4 17 2 0.3846 0.0779 0.2586 0.572
5 15 3 0.3077 0.0739 0.1922 0.493
6 12 4 0.2051 0.0647 0.1106 0.380
7 8 2 0.1538 0.0578 0.0737 0.321
8 6 2 0.1026 0.0486 0.0405 0.260
9 4 1 0.0769 0.0427 0.0259 0.228
o

@
o <O
£
=
g ©
5 o
2]
5
£ X
o ©O
Q
(<]
<
o N
o
=
o
T T T T
0 2 4 6 8
weeks

Environmental Studies, UCSC 14

G.S. Gilbert, ENVS291 Transition to R vW2015 | 15
Class 8 glm and mixed models

Survival v. 3. Non-parametric cox proportional hazards model (constant hazard)
Survival analyses use a special object called the Kaplan-Meier suvivorship object, which is
included in the model as Surv(timetoevent,censoring)

For censoring, 1=event occurred, and 0=event did not occur during study
library(survival)

cphout<-coxph(Surv(s$weeks,s$died)~s$gender)

summary (cphout)

Call:
coxph(formula = Surv(sS$weeks, s$died) ~ s$gender)

n= 78, number of events= 74

coef exp(coef) se(coef) z Pr(>|z]|)

s$gendermale -0.4142 0.6609 0.2371 -1.747 0.0806
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

exp(coef) exp(-coef) lower .95 upper .95
s$gendermale 0.6609 1.513 0.4153 1.052
Concordance= 0.552 (se = 0.044)
Rsquare= 0.038 (max possible= 0.999)
Likelihood ratio test= 3.05 on 1 df, p=0.08092 #marg sig male/female diff
Wald test = 3.05 on 1 df, p=0.08063
Score (logrank) test = 3.09 on 1 df, p=0.07869

Survival v. 4. Parametric version with a Weibull distribution (non-constant hazard)
pwout<-survreg(Surv(s$Sweeks,s$died)~s$gender)
summary (pwout)

Call:

survreg(formula = Surv(s$weeks, s$died) ~ sS$gender)
Value Std. Error b4 P

(Intercept) 1.209 0.1127 10.73 7.30e-27

s$gendermale 0.319 0.1580 2.02 4.33e-02

Log(scale) -0.387 0.0909 -4.25 2.10e-05

Scale= 0.679 #Note that <1 indicates mortality accelerates with age

Weibull distribution

Loglik(model)= -161.5 Loglik(intercept only)= -163.5
Chisg= 3.96 on 1 degrees of freedom, p= 0.047

Number of Newton-Raphson Iterations: 5

n= 78

#Suggests marginally significant difference in survival time
Note: survreg can take any of several distributions that describe distribution of times to

event. These include "weibull", "exponential”, "gaussian”, "logistic", "lognormal” and
"loglogistic". Can use fitdistr (see bottom p 2) to help decide appropriate distribution.

Environmental Studies, UCSC 15

G.S. Gilbert, ENVS291 Transition to RvW2015 | 16
Class 8 glm and mixed models

Mixed-effects Models

Sometimes models include both fixed effects (e.g., treatments) and random effects (e.g., split plots,
repeated measures, blocks, individuals). Fixed effects have informative factor levels (e.g., fertilized vs.
control), whereas random effects are generally uninformative (e.g., individual A, individual B). How the
error terms are handled in such models is very important. We won't review all the ways this can happen,
but generally introduce how Ime4 is used to handle mixed-effects models.

Mixed models are best handled using functions found in the Ime4 package. Please install Ime4 including
dependencies, from the Packages & Data: Packages Installer menu. Then don't forget to load
them into your workspace: 1ibrary(1lme4).

1mer function

The 1mer function is the current workhorse function for mixed-effects models. It allows you to fixed
effects and random effects explicitly. It is analogous to PROC MIXED in SAS, but has several
differences in output, that relate to differences in opinion of what is more correct between the author
(Douglas Bates) of Ime4 and SAS (see https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html if you
are interested). In particular, it delves into why Imer does not give you p values! You can get the manual
for Imer at http://cran.r-project.org/web/packages/Ime4/Ime4.pdf. It is a great reference for how to do all
kinds of things with mixed models.

Let's do this by example of a single fixed effect with nested random effects.

Imagine you measure how many species of fungi are in leaves of a number of trees. Half the trees were
treated with nitrogen fertilizer, and half are controls (a fixed effect called treat). The sampling was
done on three trees per treatment; within each tree three leaves were collected from each of three
branches, in a nested design. Tree and branch are random effects, in that order from biggest to
smallest nested scale. Note that you need to make sure your random effects are factors, not numbers. Do
this either by using text, or by specifying (use as.factor: e.g., fStree<-as.factor(f$tree)).

The dataframe "f" looks like this:

> f

treat tree branch fungi
1 nitrogen TA Bl 16
2 nitrogen TA Bl 11
3 nitrogen TA Bl 6
4 nitrogen TA B2 12
5 nitrogen TA B2 16
51 control TF B17 9
52 control TF B18 13
53 control TF B18 7
54 control TF B18 6

lmer (depvar~fixedeffects + (1 | randomeffects), data=mydata)

The Imer function includes first the model formula, written as usual as response ~ FixedEffects.
This is followed by random-effects terms, enclosed in parentheses, separated by a "+" symbol.

The random effects terms have two parts, separated by "|", which means "by".

The model matrix comes to the left of "|"; To the right of ""|" are the grouping factors.

Most often the model matrix is "1", for intercept; it can be a factor for the slope term.

"/" is used to indicate nesting, including all the levels, from big to small. Or one can specify nesting
explicitly using ":", thus: (1 |tree/branch) is equivalent to (1 | tree:branch) + (1 | tree).

Environmental Studies, UCSC 16

G.S. Gilbert, ENVS291 Transition to RvW2015 | 17
Class 8 glm and mixed models

So, a model for the effect of treat (a fixed effect) on fungi, with the random effects of branch nested
within tree, would be:

lmer (fungi~treat + (1 | tree/branch), data=f) #or equivalently
lmer (fungi~treat + (1 | tree:branch) + (1 | tree), data=f)

if there were no fixed effect treatment, and you just wanted to look at variance across the random effects,
lmer (fungi~1 + (1 | tree/branch), data=f)

The output of Imer is an object of type "mer", which is a huge, nasty, gnarly beast.
summary (mmout<- lmer (fungi~treat + (1 | tree/branch), data=f))
anova (mmout)

Linear mixed model fit by REML
Formula: fungi ~ treat + (1 | tree/branch)
Data: £
AIC BIC logLik deviance REMLdev
329.2 339.1 -159.6 322.6 319.2
Random effects:

Groups Name Variance Std.Dev.

branch:tree (Intercept) 2.3405e-19 4.8379e-10
tree (Intercept) 5.8485e-11 7.6476e-06
Residual 2.3887e+01 4.8875e+00

Number of obs: 54, groups: branch:tree, 18; tree, 6

Fixed effects:

Estimate Std. Error t value
(Intercept) 6.4074 0.9406 6.812
treatnitrogen 3.8889 1.3302 2.924

Correlation of Fixed Effects:
(Intr)
treatnitrgn -0.707

Analysis of Variance Table
Df Sum Sg Mean Sq F value
treat 1 204.17 204.17 8.547

There are various useful extractor functions for the output object of type “mer”, detailed in the manual
fixef (mmout) #this will give the coefficients for fixed effects

ranef (mmout) #this extracts the coefficients for random effects
fitted(mmout) #the fitted values of the model

To compare different models, use the anova function:

mmout<- lmer (fungi~treat + (1 | tree/branch), data=f)
mmout2<- lmer (fungi~treat + (1 | tree), data=f)

anova (mmout,mmout2)

Data: £

Models:

mmout2: fungi ~ treat + (1 | tree)

mmout: fungi ~ treat + (1 | tree/branch)

Df AIC BIC 1logLik Chisg Chi Df Pr(>Chisq)
mmout2 4 330.57 338.52 -161.28
mmout 5 332.57 342.51 -161.28 0 1 1 #don’t reject simpler mmout2

Environmental Studies, UCSC 17

G.S. Gilbert, ENVS291 Transition to RvW2015 | 18
Class 8 glm and mixed models

Analysis of a factorial design with blocks

Read in the data set FactorialBlockDataset.csv as data frame "bl"
bl<-read.csv("http://people.ucsc.edu/~ggilbert/Rclass_docs/FactorialBlockDataset.csv")

Imagine a factorial data set with two fixed effects: cultivar (wildtype and its transformed GM counterpart)
and treatment (control, nitrogen, or potassium fertilizer). There are five blocks (random effect), and the
response variable is plant_mass. Each block is divided into plots, and each combination of factors (e.g.,
control-GM, wildtype-potassium) is randomly assigned within the block.

bl

cultivar treatment block plant mass
1 wildtype control 1 2.91
2 wildtype control 2 2.49
3 wildtype control 3 2.32
29 GM potassium 4 4.30
30 GM potassium 5 5.30

note: block defaults to type integer, but there is no order to the blocks. Best to convert to factor
bl$block<-as.factor(bl$block)

summary (blout<-lmer (plant_mass~cultivar*treatment + (1 | block),data=bl))

Linear mixed model fit by REML
Formula: plant mass ~ cultivar * treatment + (1 | block)

Data: bl
AIC BIC logLik deviance REMLdev
98.58 109.8 -41.29 84.46 82.58
Random effects:
Groups Name Variance Std.Dev.
block (Intercept) 0.49630 0.70448
Residual 0.96674 0.98323

Number of obs: 30, groups: block, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 3.3020 0.5409 6.104
cultivarwildtype -0.7460 0.6218 -1.200
treatmentnitrogen 0.1820 0.6218 0.293
treatmentpotassium 0.0740 0.6218 0.119
cultivarwildtype:treatmentnitrogen 1.8040 0.8794 2.051
cultivarwildtype:treatmentpotassium -0.0020 0.8794 -0.002

Correlation of Fixed Effects:
(Intr) cltvrw trtmntn trtmntp cltvrwldtyp:trtmntn

cltvrwldtyp -0.575
trtmntntrgn -0.575 0.500
trtmntptssm -0.575 0.500 0.500

cltvrwldtyp:trtmntn 0.406 -0.707 -0.707 -0.354
cltvrwldtyp:trtmntp 0.406 -0.707 -0.354 -0.707 0.500

anova(blout)
Analysis of Variance Table

Df Sum Sqg Mean Sq F value
cultivar 1 0.1584 0.1584 0.1639
treatment 2 7.3417 3.6708 3.7972
cultivar:treatment 2 5.4300 2.7150 2.8084

Although Douglas Bates would not approve, you can get SAS-equivalent p-values like this:
pf(.1639,df1=1,df2=8,lower.tail=F) #pvalue for cultivar df2=8=2%(5-1)

pf(3.7972, dfl=2, df2= 16,lower.tail=F) #pvalue for treatment df2= 16 = 2*(5-1)*(3-1)
For comparison for a balanced design you can do this analysis using aov. But be careful with unbalanced designs!

summary (blout2<-aov(plant_mass~cultivar*treatment +Error(block),data=bl))

Environmental Studies, UCSC 18

