

Structural basis of the enantioselectivity of a pathogenic epoxide hydrolase Z Nie¹, NM Taher², AR Simard¹, K Hvorecny³, DR Madden¹

¹Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth College, NH USA. ²Institute of Biomolecular Targeting at Dartmouth College, NH USA, ³Department of Biochemistry at University of Washington, WA USA.

1. Background – i. aCif is an α/β hydrolase^[1]

- ✤ aCif (<u>Acinetobacter CFTR inhibitory factor</u>) is a virulence factor with epoxide hydrolase activity.
- \Rightarrow aCif is a member of the α/β hydrolase super family, consisting of a core domain and a lid domain.
- A a Cif has a N-terminal extension distinct from its homolog Cif (from *P*. aeruginosa).
- ✤ aCif is a dimer. Within each monomer, the active site is on the interface between the core and lid domain.

- their sequences and structures differ. The compositions of active-site residues also differ but their main-chain conformations are conserved.

ii. Mutation designs and activity assay

	Mutations					Activity	
wt	T162	Y235	G202	G204	Y270	S-SO	R-SO
"Door" mutant	-	_	S	V	-	-	-
"Active-site" mutant	W	Н	-	-	Н	+ +	-
"Door + active- site" mutant	W	Η	S	V	Н	+ +	+

Reference

1. Bahl, C.D., et al. (2014) J Biol Chem 289: 7460-7469

2. Bahl, C.D., et al. (2010) J Bacteriol 192: 1785-1795

aCif dimer

ii. 2-step hydrolysis of styrene oxide by aCif^[1,3-4] iii. Enantioselectivity of aCif^[1] The epoxide oxygen binds to ✤ a the His-Tyr oxyanion hole. Nucleophilic attack by D158 opens the epoxide ring and forms an adduct intermediate. Charge-relay D182-H329 activated water attacks the catalytic cycle of aCif. Adapted from Bahl, C.D., et al. adduct and releases product. (2014) J Biol Chem 289: 7460-7469 over S-SO.

(Solid red line indicates the relative position of L203 to nucleophilic D158)

- The "door" mutations alone (b) rearrange the lid domain (pink) and unfold an adjacent helix (cyan).
- * "Active-site" mutation's side-chain conformation (c) is closer to Cif than aCif. Interestingly, F207 (green) employs another rotamer similar to Cif. The "door" residues are unchanged.
- When 'door' mutations are combined with • "active-site" mutations (d), the conformation of "door" residues are similar to those in Cif.

Acknowledgements

1.70 Å

"Door + active-site" mutant *

3. Discussion

- For L203 to employ a Cif-like conformation, structural "support" is required from active site resides, indicating the co-evolution of structurallyrelated sites.

Cif shows distinct			
enantioselectivity for			
he model substrate			
Styrene <u>O</u> xide (SO)			
compared to Cif.			
Cif only hydrolyses			
S-SO, while Cif shows			
reference for R-SO			

S *	R C	•				
*chiral carbon						
Activity						

	S-SO	R-SO
Cif	+ +	+ + +
aCif	+ +	-

* This structure has an additional mutation D182N

0.1926

0.1612

Mutagenesis, activity assays, and X-ray crystallography indicate that the conformation of "door" residues is crucial for the enantioselectivity of aCif for SO.

