

1

Design Document
Project Wonderland

Team #06: Joonseo Kim, Erin Tan, Marc Kouyoumji, Woods Burton

Date: November 15, 2022

2

Table of Contents
Project Description .. 3

System Design .. 3

Sub-System Designs ... 5

User interface sub-system ... 5

Hardware sub-system .. 5

Audio sub-system .. 5

Light sub-system .. 5

Power sub-system.. 6

Constraints, Alternatives, and Trade-Offs ... 6

Electronic Design ... 6

Movement Design.. 8

Software Decomposition ... 9

Schedule ... 13

Integration ... 14

Conclusion .. 14

Appendix A – robot.py ... 14

Revision Record

Date Author Comments

Sept 16, 2022 Team Document Created

Sept 25, 2022 Erin Tan Software Documentation, system design,

hierarchical design, and state machine diagram

Oct 15, 2022 Woods Burton Added electrical section

Oct 16, 2022 Erin Tan Added Appendix A – robot.py and software

simulation video. Added pictures of the simulations

in software

Nov 15, 2022 Erin Tan [TODO] Change Appendix A to reflect final robot

code (gpio2.py, robot.py)

Finalized Software Decomposition description to

reflect final project

3

Project Description
This document details the verification tests that will be used for Project Wonderland. Project

Wonderland is a mechanical character that is capable of receiving a text input and outputting

speech audio. The character is a duck whose bill extends and retracts. Additionally, the duck’s

eyes light up when it’s talking. Additionally, the character will be contained in a box of size

Figure 1: Sketch of Project Wonderland design.

System Design

Table 1: Sketch of Project Wonderland design.

4

 GND

 5VDC

 5VDC
 GND Audio 5VDC GND Data

 Audio

Figure 1: Sub-systems interfaces diagram

Figure 2: System hierarchy diagram demonstrating our subsystems of hardware, light, audio, movement, and power as well as

their associated components.

Overall system

Subsytems

Components

5V

DC

Power

Suppl

y

h

f

GND

5V DC

Luminosity Speaker Rotational

movement

Volume
knob

Button

Eye light LED

Luminosity

5

Sub-System Designs
User interface sub-system
The user interface has the following inputs: test button, volume knob and power switch.

Test button will run through each part of the system such as audio, light, and movement. Volume

knob will use for changing the volume of sound output. Power switch will manually turn on and

off the power input.

Hardware sub-system
For the hardware, a processor (PI) will take 5 Volts DC and Ground from the power supply. It

will also be directed by a button. The processor will output 5V DC and GND to each of the eye

light LED, audio sub-system, and movement sub-system. Additionally, the PI will provide the

data for the movement sub-system as well as the necessary audio signal for the Audio sub-

system. The character which will be 16cm x 20 cm x 17 cm will be sitting on top of a box of size

35 cm x 35 cm x 18 cm. The box model is generated with the ….. software

Audio sub-system
For the audio, the sub-system will take 5 Volts DC and Ground from the processor to the

amplifier. Audio signal from processor will be connected to the volume knob, and after adjusting

the strength of the signal by the user, it will connect to the amplifier. After that, amplifier will

output an audio signal to the speaker.

Light sub-system
For the light, the sub-system will have two LEDs: one for the power indicator LED and one for

the Eye Light LED. The power indicator LED will have power going in and coming from the

power sub-system, and it will have luminosity that is outputted from the LED. The Eye Light

LED will have the power going in and coming from the PI, and it will output luminosity.

6

Power sub-system
The objective of power sub-system is protecting system and circuit. Power source is 5V DC from

the power adapter. It will connect to the system by 2.1mm DC barrel connector. After it connects

to the system. it connected to the 10A fuse for circuit protection and power switch for user can

on and off the system manually in series. When power switch is on, the power indicator light will

light up while the power is being supplied. After that, the power sub-system will provide 5V DC

to each sub-system.

Electronic Design
Our electrical design is centered around a Raspberry Pi 3 processor and a custom circuit board.

The Raspberry Pi manages the entire system, and the circuit board enables the user to control and

interact with the Pi to operate the device. An overview of the electrical connections within the

system are shown below. The power supply, lights, speaker, and motor are standalone; all other

components are contained in the circuit board. All outputs are direct from the Pi except for the

audio signal which needs to be amplified prior to being sent to the speaker.

Figure 3: Electronic component block diagram

7

Created in Eagle, the schematic below shows the components and connections within the circuit

board for the devices above. The circuit board contains four separate circuits: a power circuit, a

connection indicator light, a test button, and an audio amplifier. There are three pin headers for

connections to the Raspberry Pi, power supply, and speaker.

Figure 4: Schematic created in Eagle to connect and control the power supply, Raspberry Pi and speakers

The PCB was also created in Eagle using the schematic above. It is a two-layer PCB that

contains our course section and group as well as labels for the components.

Figure 5: PCB created in Eagle based on the schematic in fig. 4

8

Movement Design
The movement system consists of a servo mounted inside the body of the duck. The servo is

attached to a gear controlling a rack and pinion connected to the horn. This allows for the horn to

move forward and backward in controlled manner.

Figure 6: Rack and Pinion gear used for movement system in 3D-Design.

Figure 7 : Rack and Pinion gear on top-view with servo motor

9

Figure 8 : Servo motor and Rack and Pinion gear inside of Character with simulating

Software Decomposition
Our software design includes 5 different states—off, idle, text-to-speech, output, and clear input

as shown in Figure 9. Defining these states helped us lay out our software architecture as shown

in the UML diagram in Figure 10. Using these two diagrams, we wrote code to emulate our

design along with the motors, speaker, switches/test button, and Raspberry Pi defined in our

schematic. The source code for the GPIO (General Purpose Input/Output) encoding and robot

code to connect to the director and execute the functions can be found in Appendix A and B.

After writing the software code in the given robot.py file, several simulations were done to

ensure the operation between the director and the robot. One of the simulations is demonstrated

in the Software_Simulation_Video_B06.mp4 file in this folder. A test.csv file was given

outlining the format of the final script, and the director/robot relationship was shown to be

similar to a server/client relationship. As a result, the first simulation done was the successful

registering of the robot with the director. Another simulation done was the robot being able to

parse the test file and send it to an audio output. The last simulation done was having the

Raspberry Pi be able to output the sound from this mp3 file.

10

Figure 9: Software state machine with states off, idle, text-to-speech, output, and clear input.

11

Figure 10: Flowchart detailing the software architecture that includes text-to-speech, action/output,

and setup functions.

Figure 11: Simulation showing successful connection between the robot and the director on the director

screen, emulating a server-client relationship.

12

Figure 12: Simulation showing successful connection between the robot and the director on the robot

screen, emulating a server-client relationship.

In order to make this connection however, the raspberry pi must be on the same network as the

director. This was done through a personal hotspot, and the pi was set up with a WPA supplicant

file to automatically connect to the hotspot whenever the hotspot and the pi were on at the same

time. Successful execution of the required functionalities (servo movement, script audio, and

lights) are shown in the attached video.

Some difficulties we faced were getting the correct distance needed for the servo movement, as it

would often over or undershoot how far the robot’s horn needed to go. Audio was also a main

issue with the robot as we had problems outputting a sound with substantial volume. We later

figured out the servo distance through guessing and checking the distance the horn moved, and

figured out the audio as a loop within the real-time system (what was under the while True

statement) was causing the audio to play in bits and pieces at every real-time loop iteration

causing a low volume output that could not have been changed. Removing this loop solved this

audio volume issue.

Due to problems with the director, a robot and director connection from the junior design office

was not able to be done, so all testing and execution was done locally on the 127.0.0.1 address.

This was a class-wide problem.

13

Schedule
The schedule for completion of the project is shown in Table 2 where the task lead is indicated on each task.

Table 2 Schedule to complete Project Wonderland

14

Conclusion
See “End of Life” document.

Appendix A – robot.py
import sys
import socket
import selectors
import traceback
import multiprocessing
import time
import keyboard
import csv
import os

from Protocol import libserver
from Protocol import libclient
from gtts import gTTS

from Utils.robotUtils import create_request, listen_for_director,
start_connection, initiate_connection

ROBOT_NAME = "Robot0" #"<INSERT MATCHING ROBOT NAME IN CSV FILE"
HOST = "127.0.0.1" #"<DIRECTOR IP ADDR>"
PORT = 65432 # DIRECTOR LISTENING PORT

LISTEN_PORT = 65433 # ROBOT LISTEN PORT raspberry pi port SSH

def csv_msgparser(csv_file_path):
#robot6_speak = []

csv_reader = csv.reader(open(csv_file_path)) # open file
for i, robot_msgs in enumerate(csv_reader): #essentially the same as i
if ROBOT_NAME.lower() in csv_reader: # find robot6's message line(s)
robot_msg = [row for idx, row in enumerate(csv_reader) if idx == i]
break
#multiple lines
#robot_msgs = 'robot_msgs[{}] = {}'.format(i, robot_msgs) # create a list
of lists in each index for all messages found for robot6
#we only need the third column (the actual line) for this, robot6's messages
found now
for msgs in robot_msgs:
robot6_speak.append(msgs[2]) #get third column(message) from lines

return robot_msg

def msg_to_audio(msg_to_read):
language = 'en'
speak = gTTS(text=msg_to_read, lang=language, slow=False)
speak.save("speak.mp3")
os.system("speak.mp3")

15

if __name__ == "__main__":
 print('Register with director...')

 registration_request = create_request(ROBOT_NAME, "Register", LISTEN_PORT)
 initiate_connection(HOST, PORT, registration_request, libclient)

 print('Finished registration, booting up server to listen...')

 while True:
 msg = listen_for_director(HOST, LISTEN_PORT, libserver)

 print(msg)
 if msg['value'] == 'break':
 break

 print('Main Loop recieved ', msg, ' so will start to do corresponding task')

 # READ THE MESSAGE AND DO WHATEVER YOUR ROBOT WILL DO.
 os.system('python gpio2.py')

Appendix B – gpio2.py
import RPi.GPIO as GPIO
import os
import subprocess
from gpiozero import Servo
from time import sleep

#led = 17
#characterled = 23
#button = 22
#servo = 13
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.OUT)
GPIO.setup(23, GPIO.OUT)
GPIO.setup(22, GPIO.IN, pull_up_down=GPIO.PUD_UP) #led/audio control button

servo = Servo(13)
val = -1
ledState = False
buttonPress = False
os.system("gpio -g mode 12 alt0")

try:
 while True:
 if GPIO.input(22):
 buttonPress = False
 print("FButton")
 else:
 if not buttonPress:

16

 buttonPress = True
 ledState = not ledState
 GPIO.output(17, ledState)
 GPIO.output(23, ledState)
 servo.value = val
 sleep(0.1)
 while val < 0.5:
 val = val + 0.1
 sleep(1)
 servo.value = None

 sleep(1)
 os.system('omxplayer output2.mp3')

 servo.value = .5
 sleep(1)
 while val > -0.5:
 val = val - 0.1
 sleep(1)
 servo.value = None
 print(val)
except KeyboardInterrupt:
 print("Program stopped")

GPIO.cleanup()

	Date: November 15, 2022
	Project Description
	System Design
	Sub-System Designs
	User interface sub-system
	Hardware sub-system
	Audio sub-system
	Light sub-system
	Power sub-system

	Electronic Design
	Movement Design
	Software Decomposition
	Schedule

	Conclusion
	Appendix A – robot.py
	Appendix B – gpio2.py

