
Final Design Document
MAD HATTER In The Hat

Team #10B: Rushabh Shah, Zachary Crawford, Auveed Rokhsaz, Matthew Hannay

Date: November 9, 2022

Table of Contents
Project Description 3

System Design 3

Sub-System Designs 4

User Interface Sub-System 5

Audio Sub-System 5

Motion Sub-System 6

Light Sub-System 6

Power Sub-System 7

Processor Sub-System 7

Constraints, Alternatives, and Trade-Offs 8

Electronic Design 9

Mechanical Design 12

Software Design 17

Schedule 19

Integration 20

Conclusion 21

1

Revision Record

Date Author Comments

Sept 9, 2022 Team Document Created (system design and hierarchical design)

Sept 9, 2022 Rushabh and
Zachary

Changed the title, date, added members

Sept 16, 2022 Rushabh and
Matthew

Wrote and changed figure for the Project Description, wrote
and changed figure and table for System Design, and wrote
the Sub System Design, wrote and changed figures for
Mechanical Design

Sept 21, 2022 Rushabh Updated Project Description, System Design, User Interface
Sub System, Audio Sub System

Sept 23, 2022 Rushabh and
Auveed

Changed figure for Sub System Design, Motion Sub System,
updated Motion Sub System, Power Subsystem, Processor
Subsystem, Mechanical Design, Software Design

Sept 24, 2022 Rushabh Updated Project Description, System Design, Audio
Subsystem, Motion Subsystem, Power Subsystem, Processor
Subsystem, Constraints section, and Electronic Subsystem

Updated figure for Power Subsystem, Electronic Subsystem

Added Light Subsystem

Sept 25, 2022 Team Finalized PDR

Oct 11, 2022 Rushabh Created the CDR

Oct 13, 2022 Rushabh Updated the CDR

Oct 14, 2022 Rushabh,
Matthew,
Auveed

Electrical, software, and mechanical figures were updated.
Added software simulations and design flow.

Oct 15, 2022 Rushabh Added a component section for all subsystems

Oct 16, 2022 Rushabh Fixed schedule

Nov 5, 2022 Rushabh Updated and fixed the schedule

Nov 9, 2022 Rushabh Created the Final Document

Nov 11, 2022 Team Updated and finalized the document

2

Project Description
We have designed a box with a Mad Hatter figure in the center of a rotating circular table that
contains teacups on each side of the Mad Hatter. The box will be Georgia Tech-themed. In our
design, Mad Hatter’s Hat can move up and down according to our inputs which will sit on top of
Mad Hatter. The light on the side of the rotating round table will turn on a certain way when the
hat rises and another way when the hat drops. The potentiometer will increase/ decrease the
loudness of the dialogue when the audio button gets pressed.

Figure 1: Our initial rendering of the Mad Hatter thespian

Figure 2: Our final rendering of the Mad Hatter thespian

3

System Design

The system's inputs include 120V AC input power, an analog audio source, and user input.
The outputs of this system include a speaker, the movement produced by the figurine driven by
servo motors, and the light demonstration activated after movement or dialogue. The system
comprises six subsystems: the user interface, processor, power, motion, audio, and light. The
user interface includes the reset, motion, light, audio, and all live push buttons. The processor
consists of a Raspberry Pi processor and a Mbed processor. The audio sub-system comprises an
audio jack, a speaker, a potentiometer to change the volume, and a mBed to compute the speaker
volume using an analog input to the potentiometer. The motion system includes two servos, (0 to
180) and (0 to 270). The power sub-system includes a 120V AC to 5V DC transformer, a user
input switch, and a fuse. The light subsystem contains an LED strip controlled by a GPIO pin
from the Pi.

Figure 3: System Diagram

4

Table 1: Sub-system inputs and outputs

Sub-System Designs
Our design incorporates six sub-systems: user interface, computing, motion, power, audio, and
light sub-systems. The audio subsystem consists of a potentiometer to control the output volume
and a USB audio speaker connected to a USB output on the pi, the motion will execute the
movement of the figure, the power will convert 120V AC to 5V DC, and the lights will turn
on/off. The computing sub-system will integrate all of the sub-systems by converting the user
input to signals for the audio, movement, and light systems.

User Interface Sub-System (Lead: Rushabh)
The user interface will take 5 Volts DC for the voltage divider circuit and will use an analog line
IN for a test signal input in addition to the physical user input. This system will output analog
signals from the analog IN user input button and the audio jack. It will output a digital signal
from the four state buttons.

Figure 4: User Interface Sub-system

5

Figure 5: User Interface Sub-system for the actual Mad Hatter thespian

Audio Sub-System (Lead: AUVEED)
The audio system will take 5 Volts DC from the Power supply Module and sample an analog
signal from the MBED processor using the potentiometer using the Pin 20 Analog In feature.
The mBed will then convert the voltage to a float between zero and one representing the desired
volume percentage. This float is then sent to the Raspberry Pi 4 via a USB serial port. The Pi
then adjusts the volume of the audio output. The audio files are stored in a .wav format in the Pi’s
memory and are loaded as necessary by the software state machine system (part of the
computing subsystem). The audio files are played through the Pi’s USB port into the USB
speaker.

Audio Components
● Audio Pushbutton
● Potentiometer
● Mbed processor
● Raspberry Pi processor
● USB Mini Stereo USB Speaker

6

Figure 6: Audio Sub-System

Figure 7: Audio Sub-System for the actual Mad Hatter thespian

7

Motion Sub-System (Lead: MATTHEW)
The motion subsystem will take 5 Volts DC from the Power supply Module and receive PWM
Signal to control the servo motors from Raspberry Pi. The servo motors will then interpret the
signals and power the motors appropriately to produce the desired motion.

Motion Components
● Motion Pushbutton
● Raspberry Pi processor
● 2 Servo motors

Figure 8: Motion Sub-System

8

Figure 9: Motion Sub-System for the actual Mad Hatter thespian

Light Sub-System (Lead: Zachary)
The light subsystem will receive a GPIO output signal from Raspberry Pi and display various lit
functionalities on the LEDs on the rotating table. The timing of the LEDs turning on is
determined by the state machine in the computing subsystem.

Light Components
● Light Pushbutton
● Raspberry Pi processor
● LED Strip

9

Figure 10: Light Sub-System

Figure 11: Light Sub-System for the actual Mad Hatter thespian

Power Sub-System (Lead: Rushabh)
The power subsystem will take in 120 Volts AC as an input and output 5 Volts DC. It will route
power through a 20-Watt transformer, then through a power supply module to output the 5V DC
to the Raspberry Pi, Mbed, and the PCB electronic components to send and receive the signals.

Power Components
● 120V AC
● 20 W Transformer
● 5V Power Supply Module
● Mini Power Switch

10

● Power Fuse

Figure 12: Power Sub-System

Figure 13: Power Sub-System for the actual Mad Hatter thespian

11

Computing Sub-System (Lead: Auveed Rokhsaz)
The computing sub-system will take 5 Volts DC in addition to analog inputs from the
potentiometer and push buttons and will output PWM signals for the LEDs, digital signals for the
motor, and USB signal for the audio played through the speaker. The computing sub-system will
also output a 3.3V DC for the potentiometer.

Computing Components
● Potentiometer for analog in
● mBed processor
● USB Serial connection
● Pushbuttons
● Raspberry Pi processor
● LED strip
● Servo motors
● USB Mini Stereo Speaker

Figure 14: Processor Sub-System

12

Figure 15: Processor Sub-System using Mbed and Raspberry Pi for the actual Mad Hatter
thespian with its connections

Constraints, Alternatives, and Trade-Offs
One constraint with the servos was that we had to get the correct voltage so the servos and power
supplies could be used together.
Motors: Servo Motor

● The servo motor was picked for the rotational motor because it is most accurate for the
type of motion

● One servo motor will be used to vertically raise the hat enough to show the Mad Hatter.
This motor will rotate until the hat reaches Mad Hatter’s headline.

● Another servo motor will be used horizontally to rotate the table around the Mad Hatter.
With enough power and motor rotation, we will be able to have a smooth rotation for the
table.

● If adjustments are needed we will reevaluate our motor requirements.
One alternative with the audio subsystem was a speaker driver with a Class D amplifier. The
Class D amplifier speaker system would have taken longer to get through to the speaker using
the software required.

● The USB jack speaker was picked because it is easier to use from the viewpoint of
software.

13

● We also added another processor, Mbed, to control the volume of the speaker using a
potentiometer with an Analog In signal.

Budget is another constraint. Staying under $160 may be difficult as the design process begins
and problems arise.

Electronic Design
Our electrical design is centered around a Raspberry Pi processor, a Mbed processor, a
custom-built PCB, and several specialized breakout boards. The figure below shows a high-level
block diagram of our system. The component diagram includes all inputs such as buttons and a
power supply. Each of these inputs leads to the microcontrollers, for us a Raspberry Pi and
Mbed, and out as an output through the servo motors, the speaker, and the LEDs.

Figure 16: Electronic component block diagram

Electronic Testing and Integration
A series of simulations and tests have been designed to verify that each electronic

component is functional separately during the development of the system with respect to the
hierarchy shown in Figure 16 according to the software written based on the requirements we
need to meet. Firstly, a very simple test using a breadboard and pushbuttons has been used to
simulate the buttons that change states using the digital IN and analog IN. This test was simply
tested to ensure that the pushbuttons work based on the output information from the console.

14

Similarly, the servo motors and the LEDs have been tested and checked based on their outputs
using the digital out signals and the speaker has been tested and checked based on the outputs
using the analog out signal in the USB port. After each component was tested and checked for,
we then tested the buttons to their corresponding subsystem along with the reset button. In the
end, we will integrate all the subsystems together for the Play All live button.

Created in Eagle, our schematic takes all necessary components from the block diagram and
creates a pinout for each individual part. We tested all individual parts on a breadboard and then
moved to our PCB.

Figure 17: Our initial schematic created in Eagle that integrates Raspberry PI, Mbed,
pushbuttons, a potentiometer for the speaker, and servos. PCB is designed from this schematic.

15

Figure 18: The actual layout of our design created in Eagle with Raspberry PI and Mbed pin
assignments and components that we will make after receiving the PCB. We will be using heat
shrinks and housing for the wires. The solder of the components will also take place manually.

16

Using the schematic, we also created the PCB design from Eagle. This is a two-layer PCB design
with our team name, class section, and product name on the silkscreen.

Figure 19: PCB created in Eagle for the electronic components and connections to the
processors.

17

Using the PCB design from Eagle software, the initial PCB was created from the Invention
Studio with our team name, class section, product name, and electronic component placements
laser engraved as the silkscreen without the solder mask. As shown in the following figure, using
the Eagle resistors created surface mount pads for the resistors. While, checking for connections,
the PCB was shorting out with the incorrect soldering placements.

Figure 20: Initial PCB created in PCB Mill for the connections to the electronic components and
processors with a silkscreen by laser engraving.

18

After adjusting the Eagle software for through holes, the finalized PCB was created from the
Invention Studio without the silkscreen and solder mask. For the following figure, everything
was correctly placed with through holes for resistors, potentiometer, servos, switch and pads for
all other connections. While, checking for connections, this PCB was still shorting out with the
little to no incorrect soldering placements.

Figure 21: Recreation of the PCB from the PCB Mill for the connections to the electronic
components and processors without a silkscreen.

19

Mechanical Design
Our mechanical design features two moving parts: the rotating teacups and the raising hat. The
teacups are on a ring that is level with the raised platform and are rotated by a servo. A
piston-like mechanism will push the hat to reveal the Hatter standing behind.

Figure 22: Front view of the main mechanism CAD

20

Figure 23: Back view of the main mechanism CAD

The central part of the mechanism will be held up by four support rods. This is also where the
Hatter will be standing. The hat will be lifted by the wheel rotating 180 degrees and pushing the
rod upwards with a peg. The ring will be driven by a servo to rotate 90 degrees at a time to
present 3 different teas to the viewer. For this many moving parts, weight is a concern. The ring,
hat lifting rod, and upper part of the platform will be made of light wood. The Hat and the Hatter
will be laminated paper.

The front of the thespian will have a speaker for audio and six different buttons. The buttons will
be used for testing purposes, and activate the following:

● Test the rotating tea cups
● Test the rising hat
● Test the lights
● Test the audio
● Run the complete sequence
● Reset

21

Mechanical Rotation
To control the rotating teacups, a servo (the purple block in Figures 22 and 23) will rotate

a ring system (red). This servo will rotate in 90-degree increments with some time between
rotations. When reset it will return to its starting position.

Figure 24: The connections between the servo and the ring. Note the holes at the bottom of the
vertical rod to fit the servo horn.

Mechanical Lifting of the Hat
A servo (orange in Figures 22 and 23) will be used to lift the hat upwards. The wheel

with a peg (yellow) will lift the hat (green) when it gets rotated 180 degrees. On reset, the servo
will return the hat to the lower position.

22

Figure 25: The wheel component of the lift subsystem. There is a servo-horn shaped hole the
design to allow for it to connect to the servo.

23

Figure 26: The lifting bar component of the lift subsystem. The width of the bottom means that it
will be lifted even when the wheel pin is all the way to the side. The component is split into two

so it can be fit into the hole at the top of the table and then combined.

Mechanical Testing and Integration
For simulation testing, we will verify that the servos are able to move their loads before

integrating them fully into the system. The servo that rotates the teacups will be placed vertically
with the rod and ring attached. The test will pass if the servo is able to rotate in 90-degree
increments from 0 to 180 degrees. The servo that lifts the hat will have the wheel and rod system
set up with a human tester holding the rod system in alignment. The test will pass if the servo is
able to rotate 180 degrees and lift the rod to its max height.

24

Once these unit tests are complete, the servos will be ready to be placed into their
housings. The thespian will be designed to allow for easy access to internal parts. The top and
side of the table and the top of the box are parts that will be separable from the rest of the system.

Software Design

Software State Machine System
Our software design includes 9 different states—Idle, Connect To Director, Wait For

Instruction, LED Test, Audio Test, Motion Hat Test, and Motion Teacups Test states
recorded shown in Figure 27. The design centralizes around an Idle state that waits for user
inputs. If the Play All Button is pressed, the system waits for instructions from the Director to
play its respective lines and perform designated movements. To access the test states, each test
mode has a button that can be pressed to test the respective subsystem. At any point, the Reset
button will generate an interrupt on the processor that will return the system to the Idle state.
Figure 28 describes the software design hierarchy.

Software Hierarchy
A current_state object handles the movement from one state to another. Each subsystem

has its own thread that is responsible for running the methods associated with each subsystem for
that state. For example, in the PERFORM_ALL state, all of the threads (the audio_thread,
motion_hat, and the motion_cups threads) run their designated functions. For the test states, the
functionality of each subsystem is isolated using the threads, and only the designated subsystem
is tested. For example, pressing the audio test button on the interface will only run the
audio_thread state, which controls the audio subsystem. Figure 28 shows how each state
interfaces with each helper method and subsystem thread hierarchically. Threads and higher up
controlling methods are shown in gray bubbles while methods controlling the device on the
component level are shown in blue. Notice that controller methods may need to access different
lower level methods to allow for the functionality of a specific state. The reset_callback function
is an interrupt function that will interrupt whatever routine is occurring and return the system to
the idle state.

Software Simulations and Integration
A series of software simulations were designed to verify the software of the device is

functional during the development of the system with respect to the hierarchy shown in Figure
27. A demo program was created for each simulation. Note that because the Power Subsystem is
solely hardware based, there are no simulations for it in software. Please note that all the
mentioned files are available on the Github link for the project:
https://github.com/auveedgatech/madhatter.

Audio Sub-System
● Speaker Audio Simulation

○ The speaker.py file tests the audio output to the USB speaker using a python
library called pygame. This package converts the audio in the form of a .wav file

25

https://github.com/auveedgatech/madhatter

to an USB signal that is sent to the Raspberry Pi’s USB port. The speaker, which
has an USB input, then plays the audio sent.

○ We found that the speaker quality is better when a high quality speaker is
connected via an USB cable as opposed to an analog speaker driver system. Also,
the library used for the speaker, pygame, allows for a larger degree of control over
the audio output as opposed to an analog driver because it integrates loading files
with outputting them to the speaker.

● Speaker Volume Simulation
○ The analog_speaker_volume.cpp file tests the volume control feature of the

Audio Sub-System. A potentiometer circuit is connected to Pin 20 of the mBed
(AnalogIn). The mBed’s built in ADC converts this to a float between zero and on
based on the input voltage from the potentiometer. This float represents the
fraction at which the speaker volume will play. When it is time to integrate the
audio sub-system with the computing sub-system, a serial USB connection
between the Raspberry Pi and mBed will be used.

○ We found the accuracy of this percentage with respect to the degree in which the
potentiometer was turned is high.

● State Machine Integration Test
○ The software_demo_code.py integrates the use of the speaker with the overall

state machine. When the correct pushbutton is pressed, the speaker plays ten
seconds of audio.

○ We found that the speaker library pygame allows for a large degree of software
control in the form of play, pause, and stop functions. It makes it easy to load
different audio files and interchange them quickly.

Interface Subsystem
● Pushbutton Simulation

○ The pb.py file tests the use of a pushbutton through the Pi’s GPIO system. This
file simply prints an output on the press of a button.

○ This test solidified the use of buttons in our final design as opposed to switches.
● Inputs in the State Machine Simulation

○ The software_demo_code.py integrates the use of push buttons as inputs to the
state machine. Interrupt functions are used to change variables in the software
system in real-time. See the Computing Sub-System for more details.

○ We found that emphasis on button debouncing is unnecessary if using a state
machine approach because the callback functions only change state, a state cannot
be re-entered upon entry.

Motion Sub-System
● Servo Simulation

○ The Servo.py file tests the motion of the servos used for moving the mad hatter’s
hat as well as rotating the teacups. This file was used to test the servos with the
actual mechanical components they are attached to in Figure 23.

○ We found that the servos are jittery, but developed a manual method of
debouncing using the Pi’s GPIO.

● Movements in State Machine Simulation

26

○ The software_demo_code.py integrates the use of servos into the state machine.
This file ensures that the servos can rotate to their maximum as well as reduce
jitter when the reset button is pressed. Furthermore, this file tests the accuracy of
the angular rotation of the servo by increments of 90 degrees.

○ In this file, we created a function that is operable on any PWM based servo. For
our final design, we will build a software API that, regardless of the servo, will be
able to perform a series of functions correlating with rotation. For example, we
will write a rotate ninety degree function, which will rotate a servo clockwise or
counterclockwise based on the input.

Light Sub-System
● LED Control Output

○ The software_demo_code.py tests that the Pi GPIO output controlling the LED
strip operates correctly. When the pushbutton testing the LED system is pressed,
the LED output GPIO bit goes high for ten seconds. In our simulation videos, a
singular LED is used to show this output bit is high.

○ This test helped us determine that using an GPIO bit is the best way to control the
LED bit. From software, we can integrate the LED into virtually any function.

Computing Sub-System
● Software State Machine

○ Each of the previous subsystems have detailed how they are integrated with the
computing subsystem in the software_demo_code.py file. This file has a built-in
state machine which acts as the controller for the entire hatter system. The
different states are detailed in Figure 27. Idle is the home state from which all of
the other states are reachable from. Pressing the reset button will always take the
user back to the Idle state using a Python function interrupt. From the Idle state,
the other test states described above are available through the use of push buttons
from the interface subsystem.

○ We found that the software state machine is by far the most stable way of
integrating the subsystems together. Trying to use a file system with different
scripts for each subsystem is not only slower (because of loading times), but also
prone to more edge case errors such as debouncing. The state machine approach
allows for easy management of the user’s inputs.

● Director Code Simulation
○ The director code (given by instructors) is used to connect to the Mad Hatter

through a local network. We were able to register the robot with the director.
○ We found that if the director and robot scripts are both running on the Pi, the

director is able to connect and send commands to the robot script. However, we
found that if the director was a different device, after registering with the director,
the robot is unable to receive commands and actually crashes. This was
unexpected, and we will be working to solve this issue shortly.

27

Figure 27: Software state machine and flow with test states, instruction states, and an idle state.

28

Figure 28: Layered Software Architecture. The State Machine Manager manages the functionality of the
system while the Debug Manager manages to access debug data to help developers troubleshoot issues
that may occur. Each of the different states accesses different system methods to achieve their function.

The reset button connects to the on_reset button to interrupt any routine and return to the Idle state at any
time.

Figure 29: Details the functionalities associated with each subsystem. This diagram shows how each
subsystem functionality interfaces with the software state machine.

29

Schedule / Subsystem Leaders
The schedule for completion of the project is shown in Table 2 where the task lead is indicated
on each task.

Task Week 6: 09/25 Week 7: 10/02 Week 8: 10/09

Week 9:

10/16

Week 10:

10/23

Week 11:

10/30

SOFTWARE SUBSYSTEM

Software Design Director Auveed

Software Design User Inputs Auveed

Software Design Motion and

Lights Auveed

Software Design Audio Zachary

Software Build User Inputs Auveed

Software Build Motion and

Lights Matthew

Software Build Audio Zachary

Software Test User Inputs Auveed

Software Test Motion and

Lights Matthew

Software Test Audio Zachary

ELECTRICAL SUBSYSTEM

Hardware Design User

Inputs Rushabh

Hardware Design Motion

and Lights Rushabh

Hardware Design Audio Zachary

Hardware Design PCB Rushabh

Hardware Design Power Rushabh

Hardware Build User Inputs Zachary

Hardware Build Motion and

Lights Rushabh

30

Hardware Build Audio Zachary

Hardware Test User Inputs Zachary

Hardware Test Motion and

Lights Rushabh

Hardware Test Audio Zachary

MECHANICAL SUBSYSTEM

Mechanical CAD Design

User Inputs Matthew

Mechanical CAD Design

Lights Matthew

Mechanical CAD Design

Structure Matthew

Mechanical CAD Design

Mbed Holder Matthew

Mechanical CAD Design

Servo Motors Matthew

Mechanical CAD Design

Switch Matthew

Mechanical CAD Design

Potentiometer Matthew

Mechanical CAD Design

Power Matthew

Mechanical Build User

Inputs Matthew

Mechanical Build Motion,

Lights, Audio Matthew

Mechanical Test User Inputs Matthew

Mechanical Test Motion and

Lights Matthew

Mechanical Test Audio Auveed

SYSTEM

PCB Soldering and

Fabrication Rushabh

31

System Integration Motion,

Lights, Audio Rushabh

System Integration Mad

Hatter Structure Rushabh

System Test PCB Rushabh

System Test Motion, Lights,

Audio Rushabh

System Test Mad Hatter

Structure Rushabh

System Test Power Rushabh

Table 2: Schedule to complete Mad Hatter (One-Month timeframe). Weeks are relative to the master
schedule.

Integration
Each subsystem will need to be able to work together with others. The subsystems will

need to not only perform their designated tasks but also be able to work in conjunction with one
another. For each subsystem, software and hardware have been tested together on a breadboard.
The subsystem with a mechanical load has also been tested. After the subsystems have been fully
tested, the code for that system will be refactored into an API for that subsystem and the
electrical circuit will be incorporated into a PCB. This preliminary test will be isolated, meaning
it will not incorporate the other subsystems in the design. After all of the preliminary tests are
done on each subsystem, the subsystems will be tested in conjunction with a power supply under
similar conditions to the actual device (wall plug 120V AC). After a PCB is designed for each
subsystem, the PCB will be tested in a simulated environment (ideal power settings) and then in
an environment with all the other subsystem PCBs as part of a larger integration test. Mechanical
loads are incorporated into this test.

Software High-Risk Parts:
● A python state machine must ensure that timing parameters for each electrical component

is met. Timing is important for resetting the device, responding to network messages, and
managing the subsystems in real-time is important. Each test and simulation will ensure
timing parameters are met.

● Power to the microprocessor is paramount because the microprocessor handles all the
different states of the device. If power is lost the system fails.

● The reset button must instantly exit any state. This requires the use of an interrupt
function to interrupt the current task. If the system does not reset correctly, the entire state
machine can become stuck in a loop.

32

Hardware High-Risk Parts:
● Servo motors are another high-risk part of the design. They require the most current and

are the most visually interesting aspect. If the servo motors fail to run, then Mad Hatter’s
hat will not be lifted up to his headline and the overall design will not run as intended.

● We still have the PCB components to test and revise our design with. Knowing we only
have these tests available, we want to reduce the risk of failure when soldering our parts
together. To reduce risk, we have been to the lab several times to breadboard the speaker,
push buttons, motors, LEDs, and the USB Mini Stereo Speaker. By debugging our wiring
and getting a sense of how each part connects, we will be more confident when going
into the PCB and soldering stage.

Mechanical High-Risk Parts:
● There are two motors, one for rotating the teacups and one for moving the hat vertically.

Each motor must be able to handle its respective load and each mechanical subsystem
will be tested to ensure that it can perform its delegated tasks.

● The overall structure of the design (the box around it) must meet design requirements as
well as fit all of the PCB boards inside.

Repository Management:
● We have a GitHub that includes our electronic system files (schematic, PCB, and Eagle

files). The GitHub repository also includes our software code.
o https://github.com/auveedgatech/madhatter

● We also share design documents and files in our central Microsoft Teams SharePoint
folder

Configuration Controls:
● The UI includes a series of push buttons as well as a power switch. This will be

integrated into the design using the RTOS.

Conclusion / Current Progress
We have completed our Mad hatter project. By breaking the project into subsystems and

creating smaller and more feasible tasks, we are able to distribute and complete these tasks in a
feasible manner. We have tested and simulated all the subsystems on the breadboard and have
designed and soldered the PCB layout. The subsystem simulations has been integrated into the
larger state machine subsystem as well.

Over the course of 12 weeks, our team was able to design the Mad Hatter Box. We
divided our team into three parts: a software team, a hardware team, and a mechanical team. Our
team faced many challenges in producing the Mad Hatter. In the electrical subsystem, we were
not able to produce a functioning PCB. Rather our design required a breadboard setup to connect
the Pi to the different subsystems. Furthermore, we decided to include an mBed instead of an
analog to digital converter to process the volume control input, which added to the total cost of
the project. Furthermore, because our PCB was not functional, we were not able to perform
many of the electrical tests found in the test plan. Furthermore, we lacked a unified power system
and regulation due to time constraints. Mechanically, we relied heavily on non-glued 3D printed

33

https://github.com/auveedgatech/madhatter

and laser cut parts. This meant that in the final projects, there were some components that did not
fit together and had to be glued or taped. In the software, we encountered issues with the
sampling of serial data from the mBed. The serial connection would often lag leading to a delay
in the change of volume control.

If given this project again, there are a few things that we would have done differently. We
would start by designing the system in CAD. We would then breadboard each subsystem and
then integrate them into one larger system. Then we would integrate the circuits with the
mechanical features. Rather, we used a more scattered approach, developing software for the
overall system.

34

