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Entropy-Based Algorithms for Best Basis
Selection

Ronald R. Coifman and Mladen Victor Wickerhauser

Abstract—Adapted waveform analysis uses a library of or-
thonormal bases and an efficiency functional to match a basis to
a given signal or family of signals. It permits efficient compres-
sion of a variety of signals such as sound and images. The
predefined libraries of modulated waveforms include orthogonal
wavelet-packets, and localized trigonometric functions, have
reasonably well controlled time-frequency localization proper-
ties. The idea is to build out of the library functions an or-
thonormal basis relative to which the given signal or collection
of signals has the lowest information cost. The method relies
heavily on the remarkable orthogonality properties of the new
libraries: all expansions in a given library conserve energy, hence
are comparable. Several cost functionals are useful; one of the
most attractive is Shannon entropy, which has a geometric
interpretation in this context.

Index Terms—Wavelets, orthogonal transform coding, sub-
band coding, entropy.

INTRODUCTION

E would like to describe a method permitting efficient

compression of a variety of signals such as sound and
images. While similar in goals to vector quantization, the
new method uses a codebook or library of predefined modu-
lated waveforms with some remarkable orthogonality proper-
ties. We can apply the method to two particularly useful
libraries of recent vintage, orthogonal wavelet-packets [1],
[2} and localized trigonometric functions [3], for which the
time-frequency localization properties of the waveforms are
reasonably well controlled. The idea is to build out of the
library functions an orthonormal basis relative to which the
given signal or collection of signals has the lowest informa-
tion cost. We may define several useful cost functionals; one
of the most attractive is Shannon entropy, which has a
geometric interpretation in this context.

Practicality is built into the foundation of this orthogonal
best-basis methods. All bases from each library of wave-
forms described below come equipped with fast O(N log N)
transformation algorithms, and each library has a natural
dyadic tree structure which provides O(N log N) search
algorithms for obtaining the best basis. The libraries are
rapidly constructible, and never have to be stored either for
analysis or synthesis. It is never necessary to construct a
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waveform from a library in order to compute its correlation
with the signal. The waveforms are indexed by three parame-
ters with natural interpretations (position, frequency, and
scale), and we have experimented with feature-extraction
methods that use best-basis compression for front-end com-
plexity reduction.

The method relies heavily on the remarkable orthogonality
properties of the new libraries. It is obviously a nonlinear
transformation to represent a signal in its own best basis, but
since the transformation is orthogonal once the basis is
chosen, compression via the best-basis method is not drasti-
cally affected by noise: the noise energy in the transform
values cannot exceed the noise energy in the original signal.
Furthermore, we can use information cost functionals defined
for signals with normalized energy, since all expansions in a
given library will conserve energy. Since two expansions will
have the same energy globally, it is not necessary to normal-
ize expansions to compare their costs. This feature greatly
enlarges the class of functionals usable by the method, speeds
the best-basis search, and provides a geometric interpretation
in certain cases.

II. DEFINITIONS OF TWO MODULATED WAVEFORM
LIBRARIES

We now introduce the concept of a “‘library of orthonor-
mal bases.”” For the sake of exposition we restrict our
attention to two classes of numerically useful waveforms,
introduced recently by Y. Meyer and the authors.

We start with trigonometric waveform libraries. These are
localized sine transforms associated to a covering by intervals
of R or, more generally, of a manifold.

We consider a strictly increasing sequence {a;} C R, and
build an orthogonal decomposition of L?*(R). Let b; be a
continuous real-valued function on the interval [a;_,, a/]
satisfying:

b(a;_,) =0;

b3(t) + b2(2a,—t) =1, fora,_,<t<a,.
Then the function which we may define by b,(f) = b,(2a; —
t) is the reflection of b; about the midpoint of [@;_,, &;], and
we have b2(f) + b?(¢) = 1. Now define

b;, ifa, | st<a,

1

bii1s ifa,<t=<a,,,

0, iftr<a,_, or

pi(t) =
r>a;,,.
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Each p; is supported on the interval [a,_,, @;,,], and we
have

2 p=1
I

The middle of the bump function p; lies over the interval
I, = [c;, ¢,y ), where ¢; = (a; + a;_,)/2; these intervals
form a disjoint partition of R, and we can show that the
following functions form an orthonormal basis for L*(R)
localized to this partition:

S; (1) 2 t'[ k 1)1_Ci]
Ao e k4 3 )
This is what we shall call a /ocal sine basis. Certain modifi-
cations are possible, for example sine can be replaced by
cosine, so we shall refer to it also as a local trigonometric
basis.

Fig. 1 is a plot of one such function, localized to the
interval [0, 1].

The indices of each function S; , have a natural interpreta-
tion as ‘‘position’” and ‘‘frequency.”” The collection {S; ,:
k € N} forms an oscillatory orthonormal basis for a subspace
of L*(R) consisting of continuous functions supported in
[a;_y, a;4,]. If we denote this subspace by H,, then H; +
H,  is spanned by the functions

+1

2
\| e P(1)sin
L]+ [ 1]

where

1 t—c;
s 2o toe ]
27 1L+ [ 1y

P3(t) = pi(1) + p},\(1)

is a ““window’’ function whose middle lies over the interval
LU Ly

The relationship between the larger interval and its two
““children’’ is illustrated by Fig. 2.

It can now be seen how to construct such an orthonormal
basis for any partition of R which has {a,} as a refinement.
For each disjoint cover R = {J, J,,, where the J, are unions
of contiguous I, we have L*(R)= &, H,. The local
trigonometric bases associated to all such partitions may be
said to form a library of orthonormal bases. There is a
partial ordering of such partitions by refinement; the graph of
the partial order can be made into a tree, and the tree can be
efficiently searched for a ‘‘best basis’” as will be described
next.

A second new library of orthonormal bases, called the
wavelet packet library, can also be constructed. This collec-
tion of modulated wave forms corresponds roughly to a
covering of ‘‘frequency’’ space. This library contains the
wavelet basis, Walsh functions, and smooth versions of
Walsh functions called wavelet packets.

We will use the notation and terminology of [4], whose
results we shall assume.

modulation
1+ envelope

04 02 0 02 04 06 08 I 12 14

Fig. . Example of a localized sine function.
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Fig. 2. Larger subspace is the direct sum of the two smaller subspaces.

We are given an exact quadrature mirror filter A(n) satis-
fying the conditions of {4, Theorem (3.6), p. 964], i.c.,

S h(n—2kYh(n—20) =6,,, > h(n)= 2.

We let g, = (—1)*h,_, and define the operations
P(Z) into “IP(2Z)”

Fo{sc}(20) = ;Skhkvﬂ
Fi{s}(20) = zk:skgk—Qi‘

The map F: [*(Z) — [*(2Z) @ I*(2Z) defined by F = F
@ F, is orthogonal. We also have F,Fy = F\Fj = I, F,Fy
= F,F" =0, and
FiFy + F¥F, = I. ()
We now define the sequence of functions { W, }%_, from a
given function W, as follows:

WZn(x) = \/Ezthn(zx - k)
W2n+l(x) = \/’Z-ngWn(zx - k)

(3)

Notice that W, is determined up to a normalizing constant by
the fixed-point problem obtained when n = 0. The function
Wy(x) can be identified with the scaling function ¢ in [4]
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and W, with the basic wavelet .
1 .
Let us define my(§) = ﬁtheﬂkg and
) 1 _
m(¢) = —emy(t + 7) = ﬁzgketkE‘

Remark: The quadrature mirror condition on the operation
F = (F,, F) is equivalent to the unitarity of the matrix

mq(£) my(£)
my(¢+ ) m(f+ ) '

Taking the Fourier transform of (3) when n = 0 we get

Wo(f) = my(£/2) WO(E/Z),

ie.,
Wo(£) = T1 m(£/2/)
and "
Wi(£) = my(£/2)Wo(£/2)

m (& /2)mo(§ /4)mo(§/2°) - .

More generally, the relations (3) are equivalent to

W,(&) = T m, (£ /2))

)

and n = Z;;lej2j‘1 (¢; = Qor ).

The functions W,(x — k) form an orthonormal basis of
L*(R).

We define our library of wavelet packet bases to be the
collection of orthonormal bases composed of functions of the
form W,(2'x — k), where I, ke Z, neN. Here, each ele-
ment of the library is determined by a subset of the indices: a
scaling parameter /, a localization parameter k and an oscil-
lation parameter n. These are natural parameters, for the
function W,(2'x — k) is roughly centered at 2~ 'k, has sup-
port of size =~ 27/, and oscillates =~ n times. We have the
following simple description of the orthonormal bases in the
library.

Proposition: Any collection of indexes (/, n, k) C N X
N X Z such that the intervals [2'n,2'(n = 1)) form a dis-
joint cover' of [0, ), and k ranges over all the integers,
corresponds to an orthonormal basis of L*(R).

If we use Haar filters, there will be elements of the library
which do not correspond to disjoint dyadic covers. For the
sake of generality, we will not consider such other bases.

This collection of disjoint covers forms a partially ordered
set. Just like the local trigonometric basis library, the wavelet
packet basis library organizes itself into a tree, which may be
efficiently searched for a ‘‘best basis.”

III. ENTROPY OF A VECTOR

We now define a real-valued cost functional .# on se-
quences and search for its minimum over all bases in a
library. Such a functional should, for practical reasons, de-

' We can think of this as an even covering of frequency space by windows
roughly localized over the corresponding intervals.

scribe ‘‘concentration’’ or the number of coefficients required
to accurately describe the sequence. By this we mean that .4
should be large when the coefficients are roughly the same
size and small when all but a few coefficients are negligible.
In particular, any averaging process should increase the
information cost, suggesting that we consider convex func-
tionals. This property should also hold on the unit sphere in
I?, since we will be measuring coefficient sequences in
various orthogonal bases. Finally, we will restrict our atten-
tion to those functionals which split nicely across cartesian
products, so that the search is a fast divide-and-conquer.

Definition: A map .# from sequences { x;} to R is called
an additive information cost function if #(0) =0 and
M x}) =T, M(x).

If we fix a vector xe R”, we can make an additive
information cost function into a functional on the manifold of
orthonormal bases, i.e, the orthogonal group O(N). Let
B e O(N) be an orthonormal basis, written as a matrix of
row vectors. Then Bx is the vector of coefficients of x in the
orthonormal basis B, and .# (Bx) is the information cost of
X in the basis B.

Since O(N) is compact, there is a global minimum for
every continuous information cost. Unfortunately, this mini-
mum will not be a rapidly computable basis in general, nor
will the search for a minimum be of low complexity. There-
fore, we will restrict our attention to a library 4 C O(N) of
orthonormal bases each of which has an associated fast
transform (of order O(nlog N) or better) and for which the
search for a constrained minimum of .# converges in O(N)
operations.

Definition: The best basis relative to .# for a vector x in
a library # of bases is that Be # for which .#(Bx) is
minimal.

Motivated by ideas from signal processing and communi-
cation theory we were led to measure the ‘‘distance’’ be-
tween a basis and a function in terms of the Shannon entropy
of the expansion. More generally, let H be a Hilbert space.
Let veH, ||v]] =1 and assume that H is an orthogonal
direct sum:

H=e) H,.

We write v = & > ,v; for the decomposition of v into its
H-components, and define

52(U§ {H:}) = =2 |lvllPmlv]?
as a measure of distance between v and the orthogonal

decomposition. €* is characterized by the Shannon equation
which is a version of Pythagoras’ theorem.

Let
o (L H') e (XL H)
=H,e H_.

Thus, H' and H; give orthogonal decompositions H =
YH', H = Y H, Then

e(v;{H,H})=¢e(v;{H,,H }

v .
+1|u+||2e2( - -{H'})+||v_||252(

ol '

H

Tk {H’})'
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This is Shannon’s equation for entropy if we interpret
| Py vl 2 to be, as in quantum mechanics, the ‘‘probability”’
of v being in the subspace H . This equation enables us to
search for a smallest-entropy spatial decomposition of a given
vector.

Remark: The Karhunen-Loéve basis is the minimum-ent-
ropy orthonormal basis for an ensemble of vectors. The best
basis as defined above is useful even for a single vector,
where the Karhunen-Loéve method trivializes. The con-
straint to a library # can keep us within the class of ‘‘fast”
orthonormal expansions.

Suppose that {x,} belongs to both L? and L?log L. If
x, = 0 for all sufficiently large #, then in fact the signal is
finite dimensional. Generalizing this notion, we can compare
sequences by their rate of decay, i.e., the rate at which their
elements become negligible if they are rearranged in decreas-
ing order. This allows us to introduce a notion of the
dimension of a signal.

Definition: The theoretical dimension of {x,} is

d=c><p(—anlogpn)
n

where p, = | x,| 2] X |2

Our nomenclature is supported by the following ideas,
which are proved in most information theory texts.

Proposition: If x, = 0 for all but finitely many (say N)
values of n,then 1 < d < N.

Proposition: If { x,} and { x}} are rearranged so that both
{p,} and {p,} are monotone decreasing, and if we have
Y ocnemPnZ LocnemPy forall m, then d < d'.

Of course, while entropy is a good measure of concentra-
tion or efficiency of an expansion, various other information
cost functions are possible, permitting discrimination and
choice between special function expansions.

IV. SELECTING THE BEST BaAsis

For the local trigonometric basis library example, we can
build a minimum-entropy basis from the most refined parti-
tion upwards. We start by calculating the entropy of an
expansion relative to intervals of length one, then we com-
pare the entropy of each adjacent pair of intervals to the
entropy of an expansion on their union. We pick the expan-
sion of lesser entropy and continue up to some maximum
interval size. This uncovers the minimum entropy expansion
for that range of interval sizes. This rough idea can be made
precise as well as generalized to all libraries with a tree
structure.

Definition: A library of orthonormal bases is a (binary)
tree if it satisfies the following.

1) Subsets of basis vectors can be identiﬁed with intervals
of N of the form I, = [2¥n,2%(n + V[, for k, n =
0.

2) Each basis in the library cotresponds to a disjoint cover
of N by intervals [,,.

3) If V,, is the subspace identified with 1,;, then V, .,

= Vonk ® Vapri ke

L XO xq X2 X3 )(4 X5 X6 X7j
s /\7
L S0 S1 s2 S3 ’ do dq dp dg J
s / \ D s / \ D
|

dsg  dsq l
PAEVAVCE AT,
sdsJ dds rssd I dsd | deT ddd ]

LS/I\Q

Fig. 3. Wavelet packets organized as a binary tree.
| Xg 3] Xp X3 X4 Xg Xg X7
l s Sq So s3 dg dy do dz
ssq 584 dsg dsq sdg sdq | ddg  dd4 I
$S8 dss sds | dds I ssd | dsd l sdd l ddd I

Fig. 4. Part of the wavelet packet basis library: the wavelet basis.

X0 X1 )(2 X3 X4 Xs X6 X7 |
s0 1 s2 s3 r do dq d2 d3 l
] ssq 584 l dsg  dsy l sdg sdy oddgoddy

555 I dss I sds ] dds ssd. oy dsd ,’
Fig. 5. Part of the wavelet packet library: some unnamed basis.

The two example libraries above satisfy this definition.
The library of wavelet packet bases is naturally organized as
subsets of a binary tree. The tree structure is depicted in
Fig. 3.

Each node represents a subspace of the original signal.
Each subspace is the orthogonal direct sum of its two chil-
dren nodes. The leaves of every connected subtree give an
orthonormal basis. Two example bases from this library are
depicted in Figs. 4 and 5.

The library of local trigonometric bases over a compact
interval U may be organized as a binary tree by taking
partitions localized to a dyadic decomposition of U. Then Iy,
will correspond to the sine basis on U, and I, will corre-
spond to the local sine basis over interval n of the 2%
intervals at level k of the tree. This organization is depicted
schematically in Fig. 6

This procedure permits the segmentation of acoustic sig-
nals into those dyadic windows best adapted to the local
frequency content. An example is the segmentation of part of
the word ‘‘armadillo,”’ in Fig. 7.
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Fig. 7.

Remark: In multidimensions, we must extend this notion
to libraries that can be organized as more general trees. This
can be done by replacing condition 3) with the condition that
for each k,n = 0, we have an integer b > 1 such that
Viks1t = Vont ® - ® Vo1« It will not change the
subsequent argument.

If the library is a tree, then we can find the best basis by
induction on k. Denote by B,, the basis of vectors corre-
sponding to I,,, and by A, the best basis for x restricted
to the span of B,,. For k =0, there is a single basis
available, namely the one corresponding to I, o, which is
therefore the best basis: A4, o = B, , for all n = 0. We
construct A, , ., for all n = 0 as follows:

B

n.k+1>
if “//(Bn.k+lx) < "”/((Aln.kx)
+ M ( Ay k%),

Asp i ® Aspiy gs

otherwise.

(5)

Ay ker =

Fix K, = 0 and let ¥ be the span of I,;. We have the
following proposition.

Proposition: The algorithm in (5) yields the best basis for
X relative to .4 .

4400 4600 4800

Automatic lowest-entropy segmentation of part of a word.

Proof: This can be shown by induction on XK. For
K = 0, there is only one basis for V. If A’ is any basis for
Vo k+1» then either A" = By ,,, or A" = A & A} is a
direct sum of bases for V, , and V|, x. Let A, and A,
denote the best bases in these subspaces. By the inductive
hypothesis, #(A;x) < #(A’x) for i =0, 1, and by (5)
M(Ax) = min { A (B g1 X), M(AgX) + M (A X)} <
M(A X).

Comparisons are always made between two adjacent gen-
erations of the binary tree. Therefore, the complexity of the
search is proportional to the number of nodes in the tree,
which for a vector in R” is just O(N). This complexity is
dominated by the cost of calculating all coefficients for all
bases in the library. This takes O(N log N) for the wavelet
packet library, and O(N[log N]?) for the local trigonomet-
ric library. In practice, the coefficients are small: approxi-
mately 20 for wavelet packets, and approximately 1 for
localized sines.

The number of bases in a binary tree library may be
calculated recursively. Let A, be the number of bases in a
binary tree of 1 + L levels, i.e, L levels below the root or
standard basis. We can combine two such trees, plus a new
root, into a new tree of 2 + L levels. The two subtrees are
independent, so we obtain the recursive formula

A, =1+43
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from which we can estimate 4, , |, = 22", Thus, a signal of
N = 2% points can be expanded in 2% different orthogonal
bases in O(log N) operations, and the best basis from the
entire collection may be obtained in an additional O(N)
operations.

For voice signals and images this procedure leads to
remarkable compression algorithms; see [7] and [8]. The best
basis method may be applied to ensembles of vectors, more
like classical Karrhunen-Loéve analysis. The so-called ‘‘en-
ergy compaction function’’ may be used as an information
cost to compute the joint best basis over a set of random
vectors. The idea is to concentrate most of the variance of the
sample into a few new coordinates, to reduce the dimension
of the problem and make factor analysis tractable. The
algorithm and an application to recognizing faces is described
in [6].

Some other libraries are known and should be mentioned.
The space of frequencies can be decomposed into pairs of
symmetric windows around the origin, on which a smooth
partition of unity is built. This and other constructions were
obtained by one of our students E. Laeng [5]. Higher dimen-
sional libraries can also be easily constructed, and there are

generalizations of local trigonometric bases for certain mani-
folds.
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