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Entropy-Based Algorithms for Best Basis 
Selection 

Ronald R. Coifman and Mladen Victor Wickerhauser 

Abstract-Adapted waveform analysis uses a library of or- 
thonormal bases and an efficiency functional to match a basis to 
a given signal or family of signals. It permits efficient compres- 
sion of a variety of signals such as sound and images. The 
predefined libraries of modulated waveforms include orthogonal 
wavelet-packets, and localized trigonometric functions, have 
reasonably well controlled time-frequency localization proper- 
ties. The idea is to build out of the library functions an or- 
thonormal basis relative to which the given signal or collection 
of signals has the lowest information cost. The method relies 
heavily on the remarkable orthogonality properties of the new 
libraries: all expansions in a given library conserve energy, hence 
are comparable. Several cost functionals are useful; one of the 
most attractive is Shannon entropy, which has a geometric 
interpretation in this context. 

Index Terms-Wavelets, orthogonal transform coding, sub- 
band coding, entropy. 

INTRODUCTION 

E would like to describe a method permitting efficient W compression of a variety of signals such as sound and 
images. While similar in goals to vector quantization, the 
new method uses a codebook or library of predefined modu- 
lated waveforms with some remarkable orthogonality proper- 
ties. We can apply the method to two particularly useful 
libraries of recent vintage, orthogonal wavelet-packets [ 13, 
[2] and localized trigonometric functions [3], for which the 
time-frequency localization properties of the waveforms are 
reasonably well controlled. The idea is to build out of the 
library functions an orthonormal basis relative to which the 
given signal or collection of signals has the lowest informa- 
tion cost. We may define several useful cost functionals; one 
of the most attractive is Shannon entropy, which has a 
geometric interpretation in this context. 

Practicality is built into the foundation of this orthogonal 
best-basis methods. All bases from each library of wave- 
forms described below come equipped with fast O( N log N )  
transformation algorithms, and each library has a natural 
dyadic tree structure which provides O( N log N) search 
algorithms for obtaining the best basis. The libraries are 
rapidly constructible, and never have to be stored either for 
analysis or synthesis. It is never necessary to construct a 
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waveform from a library in order to compute its correlation 
with the signal. The waveforms are indexed by three parame- 
ters with natural interpretations (position, frequency, and 
scale), and we have experimented with feature-extraction 
methods that use best-basis compression for front-end com- 
plexity reduction. 

The method relies heavily on the remarkable orthogonality 
properties of the new libraries. It is obviously a nonlinear 
transformation to represent a signal in its own best basis, but 
since the transformation is orthogonal once the basis is 
chosen, compression via the best-basis method is not drasti- 
cally affected by noise: the noise energy in the transform 
values cannot exceed the noise energy in the original signal. 
Furthermore, we can use information cost functionals defined 
for signals with normalized energy, since all expansions in a 
given library will conserve energy. Since two expansions will 
have the same energy globally, it is not necessary to normal- 
ize expansions to compare their costs. This feature greatly 
enlarges the class of functionals usable by the method, speeds 
the best-basis search, and provides a geometric interpretation 
in certain cases. 

11. DEFINITIONS OF Two MODULATED WAVEFORM 
LIBRARIES 

We now introduce the concept of a “library of orthonor- 
mal bases.” For the sake of exposition we restrict our 
attention to two classes of numerically useful waveforms, 
introduced recently by Y. Meyer and the authors. 

We start with trigonometric waveform libraries. These are 
localized sine transforms associated to a covering by intervals 
of R or, more generally, of a manifold. 

We consider a strictly increasing sequence { a ; ]  C R ,  and 
build an orthogonal decomposition of L2(R) .  Let b, be a 
continuous real-valued function on the interval [a,-  a,] 
satisfying: 

b i ( a ; _ l )  = 0; b,(.;) = 1 ;  

b:(t) + b?(2a,  - t )  = 1, for a jp l  < t < a,. 

Then the function which we may define by hi(t)  = b,(2ai - 
t )  is the reflection of b; about the midpoint of [aip a,] ,  and 
we have b?(t) + 8;(t)  = 1. Now define 

if a j p l  I t < a,,  
p , ( t )  = 8,+,, if a; 5 t I a ,+l ,  { :: if t < a,-l or t > a,+,. 

0018-9448/92$03.00 0 1992 IEEE 



Each p i  is supported on the interval [a , -  a , + , ] ,  and we 
have 1 

C p ’ =  1.  
1 

0.5 

0 
The middle of the bump function p i  lies over the interval 
I ,  = [ c,, ci+ 1), where ci = ( a ,  + a,- l ) / 2 ;  these intervals 
form a disjoint partition of R ,  and we can show that the 
following functions form an orthonormal basis for L2(R)  
localized to this partition: 1 

-0.5 

This is what we shall call a local sine basis. Certain modifi- 
cations are possible, for example sine can be replaced by 
cosine, so we shall refer to it also as a local trigonometric 
basis. 

Fig. 1 is a plot of one such function, localized to the 
interval [0, 11. 

The indices of each function Si, k have a natural interpreta- 
tion as “ position’ ’ and “ frequency. ’ ’ The collection { Si, : 
k E N }  forms an oscillatory orthonormal basis for a subspace 
of L 2 ( R )  consisting of continuous functions supported in 
[a , -  a,, If we denote this subspace by HI,,  then HI, + 
HI,+]  is spanned by the functions 

where 

is a “window” function whose middle lies over the interval 

The relationship between the larger interval and its two 
“children’; is illustrated by Fig. 2.  

It can now be seen how to construct such an orthonormal 
basis for any partition of R which has { a i }  as a refinement. 
For each disjoint cover R = U, J,,  where the J,, are unions 
of contiguous I;, we have L2(R)  = en HJ,. The local 
trigonometric bases associated to all such partitions may be 
said to form a library of orthonormal bases. There is a 
partial ordering of such partitions by refinement; the graph of 
the partial order can be made into a tree, and the tree can be 
efficiently searched for a “best basis” as will be described 
next. 

A second new library of orthonormal bases, called the 
wavelet packet library, can also be constructed. This collec- 
tion of modulated wave forms corresponds roughly to a 
covering of “frequency” space. This library contains the 
wavelet basis, Walsh functions, and smooth versions of 
Walsh functions called wavelet packets. 

We will use the notation and terminology of [4], whose 
results we shall assume. 

I; U I;,  1 .  

modulation 

- 

-04 - 0 2  0 0 2  0 4  0 6  0 8  I 1 2  1 4  

Fig 1 Example of a localized sine tunction 

I I 

-0.5 1 
Left child bell - 
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Negative of parent bell b 
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Fig. 2. Larger subspace is the direct sum of the two smaller subspaces. 

We are given an exact quadrature mirror filter h(n )  satis- 
fying the conditions of [4, Theorem (3.6), p. 9641, i.e., 

h ( n  - 2 k ) h ( n  - 21) = 6 k , , ,  1 h ( n )  = 6. 
n n 

We let gk = (-  l )kh l  ~ 

12(z) into “ / 2 ( 2 ~ ) ”  
and define the operations F; on 

F O { s k } ( 2 i )  = 1 ’ k h k - 2 i  
k 

F l { s k } ( 2 i )  = 1 skgk-2i’ 

The map F :  12(Z)  + I2(2Z)  e 12(2Z) defined by F = Fo 
Fl is orthogonal. We also have FoF,* = Fl F,* = I ,  Fl F,* 

= FoFT = 0, and 

F,*F, + F,*F~ = I .  ( 2 )  

We now define the sequence of functions { Wk}:=, from a 
given function WO as follows: 

Notice that WO is determined up to a normalizing constant by 
the fixed-point problem obtained when n = 0. The function 
Wo(x)  can be identified with the scaling function cp in [4] 
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and W, with the basic wavelet $. 
1 

Let us define m o ( t )  = -Ch ,ep ikE and 
& 

Remark: The quadrature mirror condition on the operation 
F = (Fo, F,)  is equivalent to the unitarity of the matrix 

Taking the Fourier transform of (3) when n = 0 we get 

@ o w  = mo(t/2)@0(E/% 
i.e., 

@ o w  = fi m o ( t P j )  
j =  1 

and 

WE) = m , ( t / W o ( E / 2 )  
= m ( t / 2 )  m, ( t /4) mo ( t / 2  ’ ) * * . 

More generally, the relations (3) are equivalent to 

@n( t )  = j =  fi 1 m , , ( t / 2 j )  (4) 

and n = X,m=1~,2j-1 ( e j  = 0 or 1). 
The functions W,(x - k )  form an orthonormal basis of 

We define our library of wavelet packet bases to be the 
collection of orthonormal bases composed of functions of the 
form W,(2‘x - k ) ,  where I ,  k €2, n E N .  Here, each ele- 
ment of the library is determined by a subset of the indices: a 
scaling parameter I, a localization parameter k and an oscil- 
lation parameter n. These are natural parameters, for the 
function W,(2‘x - k )  is roughly centered at 2-’k, has sup- 
port of size = 2-‘, and oscillates = n times. We have the 
following simple description of the orthonormal bases in the 
library. 

Proposition: Any collection of indexes ( I ,  n,  k )  C N x 
N x 2 such that the intervals [2‘n, 2‘(n = 1 ) )  form a dis- 
joint cover’ of [0, co), and k ranges over all the integers, 
corresponds to an orthonormal basis of L2(R) .  

If we use Haar filters, there will be elements of the library 
which do not correspond to disjoint dyadic covers. For the 
sake of generality, we will not consider such other bases. 

This collection of disjoint covers forms a partially ordered 
set. Just like the local trigonometric basis library, the wavelet 
packet basis library organizes itself into a tree, which may be 
efficiently searched for a “best basis.” 

L ~ ( R ) .  

111. ENTROPY OF A VECTOR 

We now define a real-valued cost functional A on se- 
quences and search for its minimum over all bases in a 
library. Such a functional should, for practical reasons, de- 

’ We can think of this as an even covering of frequency space by windows 
roughly localized over the corresponding intervals. 

scribe “concentration” or the number of coefficients required 
to accurately describe the sequence. By this we mean that A 
should be large when the coefficients are roughly the same 
size and small when all but a few coefficients are negligible. 
In particular, any averaging process should increase the 
information cost, suggesting that we consider convex func- 
tionals. This property should also hold on the unit sphere in 
1 2 ,  since we will be measuring coefficient sequences in 
various orthogonal bases. Finally, we will restrict our atten- 
tion to those functionals which split nicely across Cartesian 
products, so that the search is a fast divide-and-conquer. 

Definition: A map JZ from sequences { x , }  to R is called 
an additive information cost function if A ( 0 )  = 0 and 

If we fix a vector X E R ” ,  we can make an additive 
information cost function into a functional on the manifold of 
orthonormal bases, i.e, the orthogonal group O ( N ) .  Let 
B E O( N )  be an orthonormal basis, written as a matrix of 
row vectors. Then Bx is the vector of coefficients of x in the 
orthonormal basis B ,  and dl ( B x )  is the information cost of 
x in the basis B .  

Since O ( N )  is compact, there is a global minimum for 
every continuous information cost. Unfortunately, this mini- 
mum will not be a rapidly computable basis in general, nor 
will the search for a minimum be of low complexity. There- 
fore, we will restrict our attention to a library 97 C O ( N )  of 
orthonormal bases each of which has an associated fast 
transform (of order O(n log N) or better) and for which the 
search for a constrained minimum of JZ converges in O( N) 
operations. 

Definition: The best basis relative to dl for a vector x in 
a library 3 of bases is that B E 97 for which d( Bx) is 
minimal. 

Motivated by ideas from signal processing and communi- 
cation theory we were led to measure the “distance” be- 
tween a basis and a function in terms of the Shannon entropy 
of the expansion. More generally, let H be a Hilbert space. 
Let U E H ,  1 1  U I( = 1 and assume that H is an orthogonal 
direct sum: 

A ( { x , l )  = X 1 J Z ( X , ) .  

H =  @ E H l .  

We write U = e C,u, for the decomposition of U into its 
H,-components, and define 

as a measure of distance between U and the orthogonal 
decomposition. e 2  is characterized by the Shannon equation 
which is a version of Pythagoras’ theorem. 

Let 

= H+@ H - .  

Thus, H i  and Hj give orthogonal decompositions H+= 
E H ‘ ,  H-= EHj .  Then 

e 2 ( u ;  { H i ,  Hj}) = e 2 ( u ;  { H + ,  Hp)  
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sso ssj 

This is Shannon’s equation for entropy if we interpret 
11 PH+u 11 to be, as in quantum mechanics, the “probability” 
of U being in the subspace H,. This equation enables us to 
search for a smallest-entropy spatial decomposition of a given 
vector. 

Remark: The Karhunen-Lohe basis is the minimum-ent- 
ropy orthonormal basis for an ensemble of vectors. The best 
basis as defined above is useful even for a single vector, 
where the Karhunen-Lokve method trivializes. The con- 
straint to a library can keep us within the class of “fast” 
orthonormal expansions. 

Suppose that { xn} belongs to both L2 and L2 log L. If 
x,, = 0 for all sufficiently large n ,  then in fact the signal is 
finite dimensional. Generalizing this notion, we can compare 
sequences by their rate of decay, i.e., the rate at which their 
elements become negligible if they are rearranged in decreas- 
ing order. This allows us to introduce a notion of the 
dimension of a signal. 

Definition: The theoretical dimension of { x,,} is 

dSo ds1 Sdo sd, ddo ddl 

where pn = I x, I 11 X 11 - 2 .  
Our nomenclature is supported by the following ideas, 

which are proved in most information theory texts. 
Proposition: If x, = 0 for all but finitely many (say N) 

values of n ,  then 1 I d I N. 
Proposition: If { x,} and { x ; }  are rearranged so that both 

{ p,,} and { P A }  are monotone decreasing, and if we have 
C o < n < m p n  2 

Of course, while entropy is a good measure of concentra- 
tion or efficiency of an expansion, various other information 
cost functions are possible, permitting discrimination and 
choice between special function expansions. 

for all m ,  then d I d. 

IV. SELECTING THE BEST BASIS 

For the local trigonometric basis library example, we can 
build a minimum-entropy basis from the most refined parti- 
tion upwards. We start by calculating the entropy of an 
expansion relative to intervals of length one, then we com- 
pare the entropy of each adjacent pair of intervals to the 
entropy of an expansion on their union. We pick the expan- 
sion of lesser entropy and continue up to some maximum 
interval size. This uncovers the minimum entropy expansion 
for that range of interval sizes. This rough idea can be made 
precise as well as generalized to all libraries with a tree 
structure. 

Definition: A library of orthonormal bases is a (binary) 
tree if it satisfies the following. 

1) Subsets of basis vectors can be identified with intervals 
of N of the form Ink = [ 2 k n ,  2 k ( n  + l)[, for k ,  n 2 
0. 

2) Each basis in the library corresponds to a disjoint cover 
of N by intervals Ink .  

3) If Vnk is the subspace identified with Ink ,  then V,,, k + l  

= V2n.k 8 V * n + l . k .  

sss 

I 
S D 

I 

dss sds dds ssd dsd sdd ddd 

I 
S D S D 

I 

sss dss sds dds ssd dsd sdd ddd 

xo x i  x2 x3 x4 x5 x6 x7 

1 sss [ dss I sds I dds ssd dsd 

Fig. 5 Part of the wavelet packet library: some unnamed basis. 

The two example libraries above satisfy this definition. 
The library of wavelet packet bases is naturally organized as 
subsets of a binary tree. The tree structure is depicted in 
Fig. 3. 

Each node represents a subspace of the original signal. 
Each subspace is the orthogonal direct sum of its two chil- 
dren nodes. The leaves of every connected subtree give an 
orthonormal basis. Two example bases from this library are 
depicted in Figs. 4 and 5. 

The library of local trigonometric bases over a compact 
interval U may be organized as a binary tree by taking 
partitions localized to a dyadic decomposition of U. Then I, 
will correspond to the sine basis on U ,  and I n k  will corre- 
spond to the local sine basis over interval n of the 2 k  
intervals at level k of the tree. This organization is depicted 
schematically in Fig. 6 

This procedure permits the segmentation of acoustic sig- 
nals into those dyadic windows best adapted to the local 
frequency content. An example is the segmentation of part of 
the word “armadillo,” in Fig. 7. 
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Fig. 6. Organization of localization intervals into a binary tree 
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Fig. 7. Automatic lowest-entropy segmentation of part of a word 

Remark: In multidimensions, we must extend this notion 
to libraries that can be organized as more general trees. This 
can be done by replacing condition 3) with the condition that 
for each k ,  n 2 0,  we have an integer b > 1 such that 

subsequent argument. 
If the library is a tree, then we can find the best basis by 

induction on k .  Denote by Bnk the basis of vectors corre- 
sponding to I n k ,  and by A , ,  the best basis for x restricted 
to the span of Elnk.  For k = 0,  there is a single basis 
available, namely the one corresponding to which is 
therefore the best basis: An,o = B,,,, for all n 2 0. We 
construct A,,,  k +  , for all n 2 0 as follows: 

v,, k + l  = Vb,,, k @ * .  * @ Vb,,+b- 1, k .  It will not change the 

Fix K. 2 0 and let V be the span of ZOK. We have the 

Proposition: The algorithm in (5) yields the best basis for 
following proposition. 

x relative to d. 

Proof: This can be shown by induction on K .  For 
K = 0, there is only one basis for V.  If A’ is any basis for 
VO,K+I ,  then either A’ = or A’ = Ab 8 A ;  is a 
direct sum of bases for Vo, and V,,  K .  Let A ,  and A ,  
denote the best bases in these subspaces. By the inductive 
hypothesis, J ( A , x )  I y & ( A : x )  for i = 0, 1, and by (5 )  
& ( A x )  I min{~~( (B , , ,+ ,x ) ,  . d ( A , x )  + A ( A , x ) }  5 

Comparisons are always made between two adjacent gen- 
erations of the binary tree. Therefore, the complexity of the 
search is proportional to the number of nodes in the tree, 
which for a vector in R N  is just O ( N ) .  This complexity is 
dominated by the cost of calculating all coefficients for all 
bases in the library. This takes O ( N  log N )  for the wavelet 
packet library, and O(N[log N I 2 )  for the local trigonomet- 
ric library. In practice, the coefficients are small: approxi- 
mately 20 for wavelet packets, and approximately 1 for 
localized sines. 

The number of bases in a binary tree library may be 
calculated recursively. Let A ,  be the number of bases in a 
binary tree of 1 + L levels, i.e, L levels below the root or 
standard basis. We can combine two such trees, plus a new 
root, into a new tree of 2 + L levels. The two subtrees are 
independent, so we obtain the recursive formula 

.d ( A ’ X ) . 

A , , ,  = 1 + A ;  
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from which we can estimate A L + ,  2 2 2 L .  Thus, a signal of 
N = 2 L  points can be expanded in 2 N  different orthogonal 
bases in O(1og N )  operations, and the best basis from the 
entire collection may be obtained in an additional O ( N )  
operations. 

For voice signals and images this procedure leads to 
remarkable compression algorithms; see [7] and [8]. The best 
basis method may be applied to ensembles of vectors, more 
like classical Karrhunen-Lohe analysis. The so-called “en- 
ergy compaction function” may be used as an information 
cost to compute the joint best basis over a set of random 
vectors. The idea is to concentrate most of the variance of the 
sample into a few new coordinates, to reduce the dimension 
of the problem and make factor analysis tractable. The 
algorithm and an application to recognizing faces is described 
in [6] .  

Some other libraries are known and should be mentioned. 
The space of frequencies can be decomposed into pairs of 
symmetric windows around the origin, on which a smooth 
partition of unity is built. This and other constructions were 
obtained by one of our students E. Laeng [ 5 ] .  Higher dimen- 
sional libraries can also be easily constructed, and there are 

generalizations of local trigonometric bases for certain mani- 
folds. 
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