

Critical Infrastructure Data Analytics Models and Tools

B. Aditya Prakash Department of Computer Science Virginia Tech. http://www.cs.vt.edu/~badityap

Tutorial at NSF Smart Grid Analytics Workshop Georgia Tech, June 4, 2019

Thanks!

- To all the organizers
 - Santiago Grijalva
 - Zoran Obradovic
 - Mladen Kezunovic
 - Renata Rawlings-Goss

Part of a longer tutorial

- <u>http://people.cs.vt.edu/~badityap/TALKS/18-sdm-tutorial</u>
- Given at SIAM Data Mining 2018
- All Slides are posted there.
- Also, invited article at IEEE Intelligent Informatics Bulletin Dec, 2018. http://people.cs.vt.edu/~badityap/papers/cis-ieeeiib18.pdf
- License: for education and research, you are welcome to use parts of this presentation, for free, with standard academic attribution. For-profit usage requires written permission by the authors.

Outline

- Introduction
 - Data (network and sequence) mining challenges in CI systems
- Part 1: Power Systems
 - Identifying and protecting against vulnerability in power networks
- Part 2: Transportation Systems
 - Traffic states/flow prediction and control
- Part 3: Decision Making
 - Tools for facilitating decisions
- Conclusion

Outline

- Introduction
 - Data (network and sequence) mining challenges in CI systems
- Part 1: Power Systems
 - Identifying and protecting against vulnerability in power networks
- Part 2: Transportation Systems
 - Traffic states/flow prediction and control
- Part 3: Decision Making
 - Tools for facilitating decisions
- Conclusion

Urban computing

Many broader problems and challenges in big cities

Q1: Smart grid

Q2: Urban flow

Q3: Situation awareness

Q4: Robustness & Evolution

Q5: Public Health

Q6: Air pollution

Q1: Smart grid

• How to design more efficient and environment friendlier systems for managing electric grids.

Use digital communication techniques to detect and react to local changes in usage

Challenges: Huge Data Processing from Sensors Protection from Cyberterrorism Privacy Concern

Q2: Urban flow

- Traffic flow is the study of interactions between vehicles, drivers, crowds and infrastructure (including highways, signage and traffic control devices)
 - How to predict and utilize the traffic flow in a city.

Predicting the traffic flow

Use traffic flow information for finding good billboard locations

Crowd flow prediction

• Predicting the crowd flow in a region at a specific time (ST-ResNet [Zhang et al., AAAI'17])

- Important for:
 - Traffic management

Prakash 2019

- Risk assessment
- Public safety

Research

Traffic flow prediction

 Predicting traffic on an urban traffic network (ITS [Wu et al., TRB'12])

Fig. 1. Downtown area in the City of Bellevue, WA (background images are from maps.google.com)

Prakash 2019

Smart billboard locations

• Finding the most influential Locations to place billboards using the traffic flow (SmartAdP [Liu

et al., IEEE Trans. Vis. Comput. Graph'16]

Guizhou, China

UirginiaTech

Q3: Situation awareness

- Improving situation awareness during extreme events using social media
 - Using Twitter to locate events during Earthquakes
 - Detecting fire emergencies

Event detection

 Detecting earthquake locations using social media (JMA [Sakaki et al., WWW'10])

Published	Location	Title	Screen_name	URL
2009-08-11 05:08:57	Saitama, Japan	地震お秋山の一	tondol	http://twitte
2009-08-11 050856	unknown	地震。Lots of	earthquakes	http://twitte
2009-08-11 05:08:53	iPhone: 35:509506;139:615601	Ishta	Jake. Hakkan	http://with
2009-08-11 05:08:53	Mie Prefecture	TE shook すこ、地震だ [mb]	narude531 masu	http://twitte
2009-08-11 05:08:52	Kawasaki city	地震だ!! 地震だ!!	yaketasamma	http://twitte
2009-08-11 05:08:52	unknown	地震こわいですかんべん	wzzc	http://witte
2009-08-11 05:08:52	Kansai	あら、地震? Earthqu	Jakel My goshi	http://twitte
2009-08-11 05:08:52	Sakado, Seitama, Japan	地震だ <u>Oh, ear</u>	thquake?	http://twitte
2009-08-11 05:08:51	unknown	2006fEht.w	edomain	http://twitte
2009-08-11 050851	unknown	また地震 具、 user	Aichi	http://twitte
2009-08-11 05.0851	JP	地震なうEarthq	uake again. This is a lo	ng one
111110101010101000	101 1113 ALC: 1113	Earthqu	lake now.	24.000

Disaster phase detection

• Tweet classification and visualization for disaster phase detection (PhaseVis [Yang et al.,

UirginiaTech

Urban computing

Many problems and challenges in big cities

Q1: Smart grid

Q2: Urban flow

Q3: Situation awareness

Q4: Robustness & Evolution

Q5: Public Health

Q6: Air pollution

Q4: Robustness & Evolution

- Improving system robustness and modeling system evolutions
 - Failure simulation and prediction system

Analyzing species flow and invasion risk [Xu et al., KDD'14]

Q5: Public health

- To assure the condition in which people can be healthy
 - Immunization/vaccination
 - Health surveillance

Controlling disease spread over a contact network

Syndromic surveillance of flu

Prakash 2019

UirginiaTech

Q6: Air pollution

- Infer real-time and fine-grained air quality throughout a city using Big Data (U-Air [Zheng et
 - al., KDD'13])

Meteorology

Traffic

Human Mobility

Road networks

Historical air quality data

Real-time air quality reports Prakash 2019

🖫 Virginia Tech

Critical Infrastructure Systems → Urban Computing

• Vital to our national security, economy.

Electric Grid System

Importance of CIS

CIS are the fundamental for many of the urban computing problems

Q3 (situation awareness)

UirginiaTech

Importance of CIS

• CIS are the fundamental for many of the urban computing problems

Traffic flow analysis based on the transportation system **Q2 (urban flow)** Cyber system facilitates online communications Q1 (smart grid)

Ex: 2003 Northeast Blackout

 Cascading failures on CIS lead to huge loss in different areas

Data mining problems

• What are the underlying data mining problems in CIS?

Aim 1: System modeling

• Modeling the regular and anomalous dynamics of the system

Traffic flow modeling

System modeling during a hurricane

Aim 2: Vulnerability analysis

• Analyze system vulnerability and resilience

Identifying critical facilities in the system

Quantifying system vulnerability

Aim 3: Supporting tools & systems

Tools & systems to facilitate decision makings

Published	Location	Title	Screen_name	URL
2009-08-11 05:08:57	Saitama, Japan	地震お扱いー	tondol	http://twitte
2009-08-11 05:08:56	unknown	地震。 上ots of e	earthquakes]	http://twitte
2009-08-11 05:08:53	iPhone: 35.509506,139.615601	Ishta	Hakkan	http://with
2009-08-11 05:08:53	Mie Prefecture	TE shook すこ、地震だ [mb]	narude531 masu	http://twitte
2009-08-11 05:08:52	Kawasaki city	地震だ!!Terrible	earthquake.	http://twitte
2009-08-11 05:08:52	unknown	地震これいですかんべん	wzzc	http://heitte
2009-08-11 05:08:52	Kansai	あら、地震? Earthqu	ake! My goshi	http://twitte
2009-08-11 05:08:52	Sakado, Seitama, Japan	地震だ 地震だ	d_wackys	http://twitte
2009-08-11 05:08:51	unknown	愛知も揺れたw	edomain	http://twitte
2009-08-11 050851	unknown	Shook A また地震 長いな…	Aichi) laukaz	http://twitte
2009-08-11 05.0851	JP	地震なう 世際なう	uake again. This is a lo	ng one
		Earthqu	ake now.	

Challenges in working with CIS

- Why are CIS hard to work with:
 - 1. Complexity
 - Hierarchy of subsystems
 - 2. Heterogeneity
 - Types of interdependencies
 - 3. Dynamics
 - Different types of failures
 - State of operation
 - Coupling behavior

Challenge 1: Complexity

Many underlying subsystems

Electric Grid System

- Power generator: generates power using different types of fuel.
- Transmission network: transfer power to different areas.
- Distribution plant: distribute power to local facilities.
- Pipeline network: transfer resources such as natural gas

Even more subsystems inside these subsystems (like natural gas compressors inside the pipeline network)

Challenge 2: Heterogeneity

- Different types of interdependencies
 - Physical: the state of an infrastructure depends on the material output of another
 - Geographical: changes caused by local environmental events
 - Cyber: the state of an infrastructure depends on the information transmitted through the information infrastructure
 - Logical: other dependencies

Challenge 3: Dynamics

- Different types of incidents can cause the failure of a facility
 - Loss of dependencies (power, fuel, etc)
 - Malfunctioning (due to natural or man-made disasters)
- The system has different states of operations
 - Normal, repair, stressed

31

From a Data Analytics viewpoint...

- Highly heterogeneous data. E.g.:
 - Networks with many different types of nodes and links.
 - Multiple networks
 - Multiple sources of information
- Complex system dynamics
 - **Temporal behavior** is important
- Large scale big-data for analysis.
- Require actionable results and intelligent systems.

Four V's of Big-data: Variety, Volume, Velocity, Veracity

Modeling CIS

- How to model the dynamics of the system? [Ouyang'13]
 - System dynamics based
 - Agent based
 - Network based
 - Empirical
 - Economic theory based

Network based approaches

 Describe CIS as networks with nodes representing different CIS components and links mimicking the physical and relational connections among them

- Less 'realistic': require less domain knowledge More general: can be applied
- for different systems

Infer across-layer connections [Chen, KDD'16]

 Different CIS layers can be connected due to their complex interdependencies (not completely observable)

Some slide materials taken from: http://www.public.asu.edu/~cchen211/FASCINATE KDD.pdf

Prakash 2019

UirginiaTech

Infer across-layer connections

Key idea 1

Collaborative filtering

Users ≈ Routers| Movies ≈ Transportation | Known Ratings ≈ Observed Cross-Layer Dependency

Prakash 2019

Key idea 2

• Collaborative filtering with side information

Known Ratings ≈ Support from Routers to Transportation Network

Prakash 2019

UirginiaTech

Key idea 3

 Node homophily: closely connected entities tend to have similar latent profiles

Celebrities ≈ Power Plants | Users ≈ Routers | Movies ≈ Transportation Known Ratings, Movie Cast, Fans ≈ Observed Cross-Layer Dependencies

Prakash 2019

UirginiaTech

FASCINATE

• A collaborative filtering based optimization algorithm

$$\begin{split} \min_{F_i \ge 0} (i=1,...,g) J &= \sum_{i,j:G(i,j)=1} \| W_{i,j} \odot (D_{i,j} - F_i F_j') \|_F^2 + \\ & \text{Matching observed cross-layer dependencies} \\ \alpha \sum_i tr(F_i'(T_i - A_i)F_i) + \beta \sum_i \| F_i \|_F^2 \\ & \text{Node homophily} \quad \text{Regularization} \end{split}$$

Performance

• Achieving good performance in inferring the across-layer dependencies

Modeling CIS

System dynamics based

- Good for realistic and precise modeling of a single system
- Typically require domain knowledge
- Can be time consuming

Agent based

- Assumptions for agents'
 behaviors/policies
- Very system specific
- Useful for testing policies or strategies

- Less realistic modeling
- Require less domain knowledge
- Can work for multiple systems together
- More general

We will focus more on the network based methods

Outline

- Introduction
 - Data (network and sequence) mining challenges in CI systems
- Part 1: Power Systems
 - Identifying and protecting against vulnerability in power networks
- Part 2: Transportation Systems
 - Traffic states/flow prediction and control
- Part 3: Decision Making
 - Tools for facilitating decisions
- Conclusion

- Identifying critical/vulnerable facilities
 - Network structure based
 - Dynamics based
- Protecting CIS against attacks

- Identifying critical/vulnerable facilities
 - Network structure based
 - Dynamics based
- Protecting CIS against attacks

Find facilities to protect/enhance against unknown natural disasters (non-adversarial)

- Identifying critical/vulnerable facilities
 - Network structure based
 - Dynamics based
- Protecting CIS against attacks

Using mainly the static topology/structure of the network to find crucial nodes

- Identifying critical/vulnerable facilities
 - Network structure based
 - Dynamics based
- Protecting CIS against attacks

Integrating the failure cascade dynamic into the analysis

- Identifying critical/vulnerable facilities
 - Network structure based
 - Dynamics based
- Protecting CIS against attacks

Protect the system against adversarial attacks with known patterns and strategies

- Identifying critical/vulnerable facilities
 - Network structure based
 - Dynamics based
- Protecting CIS against attacks

Power grid resilience metric [Arianos, Chaos'09]

- Power transmission grid network
 - Transmission network connecting power generators and load nodes

Power grid resilience metric [Arianos, Chaos'09]

 Generalize the geodesic (shortest) distance to account for the flow capacity between power grid nodes

$$E = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{d_{ij}}$$

Global efficiency score

- Power does not flow from one node to another in a single path
- The power only flows from the generator nodes to the load nodes
- Capacity C_{ij} from generator i to load j (the maximum power injection)

Net-ability

 Generalize the geodesic (shortest) distance to account for the flow capacity between power grid nodes

Net-ability

 Generalize the geodesic (shortest) distance to account for the flow capacity between power grid nodes

Adapt to power grid $E = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{d_{ij}} \longrightarrow A = \frac{1}{N_G N_D} \sum_{i \in \mathcal{G}} \sum_{j \in \mathcal{D}} C_{ij} \sum_{k \in \mathcal{H}_{ij}} p_{ij}^k \frac{1}{d_{ij}^k}$ Global efficiency score Distance based on economic and technical cost $d_{ij}^k = \sum_{l \in k} f_k^l Z_l$ Impedance Power distribution factor

Prakash 2019

Global performance evaluation

 Comparing with overload rate upon line removal

UirginiaTech

Global performance evaluation

Comparing with overload rate upon line removal

Prakash 2019

UirginiaTech

Connectivity measures on multilayered networks [Chen, ICDM'15]

• Multi-layered networks

A four-layered network

Some slide materials taken from: http://www.public.asu.edu/~cchen211/ICDM15 Mulan.pdf

Prakash 2019

Connectivity unification (SUBLINE family)

• Key idea: graph connectivity as an aggregation over the subgraph connectivity

$$C(\mathbf{A}) = \sum_{\pi \subseteq \mathbf{A}} \frac{f(\pi)}{f(\pi)}$$

- A: adjacency matrix of the graph
- $-\pi$: a non-empty subgraph in A
- $f(\pi)$: connectivity of the subgraph π
- C(A): connectivity of graph A

Connectivity unification (SUBLINE family)

• Key idea: graph connectivity as an aggregation over the subgraph connectivity

$$C(\mathbf{A}) = \sum_{\pi \subseteq \mathbf{A}} \frac{f(\pi)}{f(\pi)}$$

Examples

- Path Capacity: $f(\pi) = \begin{cases} \beta^{len(\pi)} & \text{if } \pi \text{ is a valid path of length } len(\pi) \end{cases}$ - Loop Capacity: $f(\pi) = \begin{cases} 1/len(\pi)! & \text{if } \pi \text{ is a valid loop of length } len(\pi) \end{cases}$ - Triangle Capacity: $f(\pi) = \begin{cases} 1 & \text{if } \pi \text{ is a triangle} \end{cases}$ $f(\pi) = \begin{cases} 1 & \text{if } \pi \text{ is a triangle} \end{cases}$

Prakash 2019

Connectivity control

• Define $I(S_i) = \sum_{i=1}^g \alpha_j (C(A_j) - C(A_j \setminus S_{i \to j}))$

– Example: C = Triangle Capacity

 $I(V) \sim #Triangles in which A & its dependencies participate$

WirginiaTech

Optimal control

- Goal
 - Find an optimal node set in the control layer to maximize its impact on the target layers
- Theorem
 - The SUBLINE family enjoy the diminishing returns property
- Solutions (**OPERA**)
 - Greedy algorithm (linear)

- Identifying critical/vulnerable facilities
 - Network structure based
 - Dynamics based
- Protecting CIS against attacks

Robustness under failure cascade [Buldyrev, Nature'10]

• Failure cascade between different layers

Failure cascade based on mutually connected clusters

 Only the mutually connected clusters are functional

UirginiaTech

Failure cascade based on mutually connected clusters

• At the end, we study the size of the giant (largest) mutually connected clusters.

Analysis on ER networks

• A critical threshold p_c to maintain a giant mutually connected cluster at the end.

Prakash 2019

HotSpots [Chen, CIKM'17 and KDD'19]

 Given a heterogeneous interconnected CIS network

HotSpots

Given a heterogeneous interconnected CIS
 network

Inter-connections:

- Power plants are connected to the closest transmission line, and gas pipeline
- Substations are connected to the closest transmission line
- Gas compressors are connected to the corresponding substations that provide power to them; and to the closest gas pipeline
- Gas pipeline and transmission network themselves are networks with connections

Use the **Urbannet toolkit** to automatically construct heterogeneous CI networks from original raw shapefiles.

More details later in the tutorial

UirginiaTech

HotSpots

- Given a heterogeneous interconnected CIS network
- Goal 1: Model the failure cascade among multiple CIS
- Goal 2: Identify critical facilities that may lead to large failure spread over the entire system

• Propose F-CAS model:

- Propose F-CAS model:
 - If a substation has no path in the trans. network to any power plant, it fails.

- Propose F-CAS model:
 - If a substation has no path in the trans. network to any power plant, it fails.
 - If a natural gas compressor's associated substation fails, it fails.

Substations

- Propose F-CAS model:
 - If a substation has no path in the trans. network to any power plant, it fails.
 - If a natural gas compressor's associated substation fails, it fails.
 - If a power plant's reachable natural gas compressor fails, it fails

Goal 1: Failure Cascade Model

- Propose F-CAS model:
 - If a substation has no path in the trans. network to any power plant, it fails.
 - If a natural gas compressor's associated substation fails, it fails.
 - If a power plant's reachable natural gas compressor fails, it fails
 - In the trans. network, we propose two Independent Cascade (IC) [Kempe 2003] based models

F-CAS: Novelty

- Neighbor-based failure cascade
 - Substation to gas compressors
- (New) Path-based failure cascade
 - Not handled by traditional cascade models such as the IC model, epidemiological models (SI, SIR, etc.)

🎚 VirginiaTech

Prakash 2019

Goal 2: Find Critical Nodes

- Problem 1 (Max-Sub)
 - *Given*: a heterogeneous network G, the failure cascade model F-CAS, and a budget k,
 - Find: the critical set S* of k transmission nodes, the failures of which maximize the expected number of failed substations.

75

Challenge

- E[#s|S] is hard to directly optimize
 - For each s, we need to check the connectivity of the entire transmission network
- NP-Hard

Idea: Quickly estimate if a substation node would fail without re-checking the full network

Effectiveness

• Simulate the final failure spread of the selected critical nodes

Case Study: 2003 Blackout

 Evaluating critical nodes detected by HotSpots

Prakash 2019

Part 1: Power systems

- Identifying critical/vulnerable facilities
 - Network structure based
 - Dynamics based
- Protecting CIS against attacks

Cascade-based attack vulnerability [Wang, Safety Science'09]

- Study the effect of two different attacks for the network robustness against failure cascade
- Load redistribution in the network cascading the failure

An attack on node i redistributes its load to the neighboring nodes

Model for load and load redistribution

Prakash 2019

Comparison of two different attacking strategies

HL: selecting 50 nodes with the highest loads

• LL: selecting 50 nodes with the lowest loads

T: ratio between capacity and initial load CFattack: impact of the attack

Prakash 2019

Comparison of two different attacking strategies

Prakash 2019

Robustness of interdependent networks under targeted attack

[Huang, Physical Review'11]

 Failure cascade based on mutually connected clusters (only the giant cluster is functional)

Degree based attacks

• Use α to adjust whether to target high degree nodes or low degree nodes

Probability of a node being attacked

 α >0: target high degree nodes α =0: random selection α <0: target low degree nodes

Main conclusion

Idea: Removal of edges connecting a deleted edge is equivalent to randomly removing a portion of edges of the remaining nodes

Optimize resilience against attacks [Ouyang, 2017]

• Integrate the arranging of the repair sequence of damaged components under limited repair resources into protection planning

Maximizing the resilience of the system $R(T) = 1 - \frac{\int_{t_0}^{t_0+t_r} [P_T - P_R(t)]dt}{TP_T}$ Minimizing the resilience loss $RL = \int_{t_0}^{t_0+t_r} [P_T - P_R(t)]dt = \int_0^{t_r} [P_T - P_R(t)]dt$

CIRO-IA model

Prakash 2019

Protection against adversarial attacks

Prakash 2019

Outline

- Introduction
 - Data (network and sequence) mining challenges in CI systems
- Part 1: Power Systems
 - Identifying and protecting against vulnerability in power networks
- Part 2: Transportation Systems
 - Traffic states/flow prediction and control
- Part 3: Decision Making
 - Tools for facilitating decisions
- Conclusion

Transportation Systems

• Example problems:

Predicting traffic flow

Predicting different traffic states such as weather, accidents, etc.

Congestion tracking and control

Prakash 2019

Influence estimation for traffic diffusion [Anwar+, CIKM'15]

- Given
 - Traffic data:
 - Traffic volume: the count of vehicles crossing a road segment during the green light time
 - Degree of saturation: the ratio of effectively used green light time and the total green light time
 - Road network:
 - A network of road intersections, connected by road segments with features
- Compute the influence score for each road segment (how much the traffic on this segment influence that on the global network)

RoadRank

• Detect the influence between road segments in terms of propagating congestions.

Defining traffic diffusion probabilities

$$tdp(r_i \rightarrow r_j) = rac{td(r_i \rightarrow r_j)}{\sum\limits_{orall k: r_i} rac{inf}{r_k} r_k} td(r_i \rightarrow r_k)$$

Calculating PageRankbased influence score

UirginiaTech

Prakash 2019

Finding most influential roads

• Detecting congestion areas

Rank	Road segment	RR Score
	03-02-2012 08:05 AM	
1.	Hoddle St (Victoria Parade to Elizabeth St)	02.57095
2.	Hoddle St (Elizabeth St to Albert St)	02.00645
3.	Mills St (Canterbury Rd to Danks St)	01.89356
4.	Heidelberg Rd (Hoddle St to The Esplanade)	01.83253
5.	Heidelberg Rd (The Esplanade to Hoddle St)	01.81797
03-02-2012 10:05 AM		
1.	Hoddle St (Victoria Parade to Elizabeth St)	03.49890
2.	Hoddle St (Elizabeth St to Albert St)	02.50019
3.	Heidelberg Rd (Hoddle St to The Esplanade)	02.38343
4.	Heidelberg Rd (The Esplanade to Hoddle St)	02.35427
5.	Hoddle St (Elizabeth St to Victoria Parade)	02.31045

State estimation using crowd sourced apps [Adhikari+, SIAM Data Mining '18]

- Crowd sourced application
 - Navigation
 - Reporting incidents on road
- Users report incidents like
 - Accidents
 - Traffic Jam
 - Stranded Vehicles
 - ...

Waze app

Problem formulation

• Given

- A network *G(V,E)* with
 I⊂*V* which have failed
- Probes: nodes observed to have been failed *Q*⊂*I*

• Infer

 Most likely unobserved nodes which have failed *I-Q*

Failures are geographically correlated [Agarwal et al., IEEE/ACM ToN 2013]

🖫 Virginia Tech

GRAPHSTATEINF based on MDL

- Given:
 - Graph *G(V,E)*
 - Probes *Q*⊂*V*
 - Probability Dist. P_s and F
- Find:
 - The failure set I
- Such that:
 - MDL cost is minimized

$$\mathcal{L}(|\mathcal{Q}|, |I|, I, \mathcal{Q}) = -\log \binom{|I|}{|\mathcal{Q}|} - \log \left(\sum_{s \in V} p_s(s) \prod_{v \in I} F(v \mid s) \prod_{v' \notin I} \left(1 - F(v' \mid s) \right) \right)$$
Near optimal
$$-2|\mathcal{Q}|\log(\gamma) - 2(|I| - |\mathcal{Q}|)\log(1 - \gamma)$$
Prakash 2019

Performance

GRAPHMAP results in higher F1 Score

Outline

- Introduction
 - Data (network and sequence) mining challenges in CI systems
- Part 1: Power Systems
 - Identifying and protecting against vulnerability in power networks
- Part 2: Transportation Systems
 - Traffic states/flow prediction and control
- Part 3: Decision Making
 - Tools for facilitating decisions
- Conclusion

Facilitating decision making

- Improving situation awareness
 - Ex 1: Finding flooding area
 - Ex 2: Spatial event discovery
- Other CIS systems & tools
 - Critical Infrastructure Protection/Decision Support System (CIP/DSS)
 - Urbannet toolkit & web interface
 - Other resources

Flood mapping on satellite images [Liang, WWW'18]

• Distinguish flooded areas from non-flooded areas using image segmentation techniques

(f) 12/18 Prakash 2019

Satellite images of Chennai

(e) 12/06

Human guidance

- A semi-supervised learning algorithm
 - Divide the satellite image into patches using a graph-based approach depending on the proximity and intensity of the pixels
 - Classify each patch: each time the user is asked to label a few patches, and then learn a classifier to automatically classify the other patches

Performance

• Identify flooding areas with high accuracy

(a) Our Method

(b) Watershed Algorithm

(c) Normalized Cuts Algorithm (100 partitions)

(d) Graph-based Clustering with Post-processing (100 partitions)

Prakash 2019

Facilitating decision making

- Improving situation awareness
 - Ex 1: Finding flooding area
 - Ex 2: Spatial event discovery
- Other CIS systems & tools
 - Critical Infrastructure Protection/Decision Support System (CIP/DSS)
 - Urbannet toolkit & web interface
 - Other resources

Real-time event detection

[Sakaki, WWW'10]

- Using Twitter users as sensors
- Design
 - A classifier for detecting target events
 - A probablistic spatial-temporal model that finds the center and trajectory of the event

Figure 2: Earthquake map.

Summary of the framework

 Correspondence between event detection from Twitter and object detection in a ubiquitous environment

Results

Earthquake location estimation

Typhoon trajectory estimation

Multi-resolution spatial event forecasting in social media

• Trade-off between accuracy and discernibility

Three different predictions, correct in different discernibilities

Prakash 2019

MREF model

Performance

Method	Brazil	Colombia	Ecuador	El Salvador	Mexico	Paraguay	Uruguay	Venezuela
ARX	0.63,0.47,0.54	0.30,0.40,0.35	0.33,0.47,0.39	0.44,0.42,0.43	0.43,0.20,0.27	0.52,0.27,0.36	0.53,0.60,0.56	0.51,0.23,0.32
LR	0.43,0.41,0.42	0.33,0.38,0.36	0.37,0.39,0.38	0.50,0.34,0.41	0.30,0.11,0.16	0.52,0.23,0.32	0.48,0.47,0.48	0.40,0.33,0.36
KDE-LR	0.99,0.01,0.02	0.68,0.01,0.01	0.16,0.13,0.15	0.28,0.09,0.14	0.02,0.15,0.04	0.04,0.35,0.07	0.13,0.93,0.22	0.69,0.03,0.06
LDA-LR	1.00,0.01,0.02	0.01,0.63,0.02	0.16,0.13,0.15	0.26,0.09,0.13	0.01,0.19,0.02	0.04,0.36,0.07	0.14,0.93,0.24	0.99,0.04,0.07
LASSO	0.74,0.45,0.56	0.40,0.41,0.40	0.34,0.42,0.38	0.62,0.36,0.46	0.18,0.42,0.25	0.72,0.25,0.37	0.61,0.46,0.52	0.19,0.80,0.31
MTL	0.68,0.48,0.56	0.37,0.44,0.41	0.24,0.55,0.34	0.42,0.45,0.43	0.42,0.24,0.31	0.57,0.29,0.38	0.60,0.54,0.56	0.37,0.45,0.41
TMTL	0.46,0.42,0.44	0.36,0.34,0.35	0.37,0.43,0.40	0.57,0.43,0.49	0.29,0.25,0.27	0.25,0.42,0.31	0.60,0.64,0.62	0.41,0.58,0.48
MREF	0.79,0.47,0.59	0.37,0.39,0.38	0.38,0.43,0.40	0.58,0.43,0.50	0.29,0.30,0.29	0.75,0.26,0.39	0.66,0.60,0.63	0.24,0.49,0.33
State Level (precision, recall, F-measure)								
Method	Brazil	Colombia	Ecuador	El Salvador	Mexico	Paraguay	Uruguay	Venezuela
ARX	0.73,0.63,0.67	0.35,0.41,0.38	0.34,0.51,0.41	0.53,0.55,0.54	0.55,0.39,0.46	0.48,0.42,0.45	0.33,0.57,0.42	0.63,0.41,0.50
LR	0.53,0.56,0.55	0.34,0.54,0.41	0.21,0.69,0.32	0.51,0.53,0.52	0.30,0.89,0.45	0.58,0.37,0.45	0.49,0.45,0.47	0.55,0.48,0.51
KDE-LR	1.00,0.08,0.16	0.02,0.18,0.04	0.10,0.38,0.16	0.10,0.29,0.14	0.93,0.23,0.37	1.00,0.12,0.21	0.23,0.20,0.21	0.37,0.37,0.37
LDA-LR	1.00,0.08,0.16	0.99,0.05,0.09	0.08,0.79,0.15	0.08,0.32,0.12	0.94,0.23,0.37	1.00,0.12,0.21	0.19,0.21,0.20	0.41,0.40,0.41
LASSO	0.70, 0.67 ,0.68	0.43,0.43,0.43	0.34,0.50,0.40	0.64,0.44,0.52	0.41,0.69,0.52	0.31,0.77,0.44	0.52,0.49,0.50	0.64,0.40,0.49
MTL	0.60,0.72,0.66	0.40,0.50,0.45	0.39,0.51,0.44	0.55,0.51,0.53	0.70,0.30,0.42	0.65,0.37,0.47	0.58,0.55,0.56	0.57,0.54,0.55
TMTL	0.61,0.36,0.45	0.37,0.38,0.37	0.36,0.49,0.41	0.61,0.51,0.56	0.42,0.34,0.38	0.43,0.50,0.46	0.52,0.52,0.52	0.54,0.37,0.44
MREF	0.75,0.64,0.69	0.36,0.51,0.43	0.37,0.49,0.42	0.27,0.59,0.37	0.35,0.77,0.49	0.58,0.41,0.48	0.63,0.58,0.61	0.53,0.42,0.47
Country Level (precision, recall, F-measure)								
Method	Brazil	Colombia	Ecuador	El Salvador	Mexico	Paraguay	Uruguay	Venezuela
ARX	0.93,1.00,0.96	0.73,0.97,0.83	0.53,0.87,0.65	0.66,0.97,0.78	0.99, 1.00,1.00	0.90,0.87,0.88	0.60,0.90,0.72	0.90,0.98,0.94
LR	0.95,1.00,0.97	0.79, 0.97 ,0.87	0.56,0.95,0.70	0.78,0.82,0.80	1.00,0.98,0.99	0.89,0.97,0.93	0.63,0.93,0.75	0.92,0.96,0.94
KDE-LR	0.97,0.96,0.97	0.93,0.80,0.86	0.88,0.59,0.70	0.85 ,0.76,0.80	1.00,0.99,1.00	1.00,0.85,0.92	0.97 ,0.69,0.80	1.00,0.91,0.95
LDA-LR	0.96,0.96,0.96	0.95 ,0.82,0.88	0.95,0.57,0.71	0.82,0.78,0.80	0.93,1.00,0.96	0.91,0.92,0.91	0.94,0.70,0.80	1.00,0.91,0.95
LASSO	0.95,0.99,0.97	0.81,0.95,0.87	0.59,0.93,0.72	0.75,0.86,0.80	0.99,0.99,0.99	0.90, 0.99 ,0.94	0.54, 0.99 ,0.70	0.93,0.99,0.96
MTL	0.98,0.97,0.97	0.83,0.94,0.88	0.58,0.88,0.70	0.79,0.87,0.83	0.99,0.99,0.99	0.92,0.94,0.93	0.68,0.75,0.71	0.95,0.95,0.95
TMTL	0.82,0.98,0.89	0.88,0.92,0.90	0.67,0.87,0.76	0.70,0.87,0.78	1.00,1.00,1.00	0.94,0.98,0.96	0.67,0.72,0.70	0.88,1.00,0.94
MREF	0.97,1.00,0.98	0.86,0.94,0.90	0.66,0.91,0.76	0.76,0.98,0.86	1.00,1.00,1.00	0.93, 0.99,0.96	0.69,0.97,0.81	0.96,1.00,0.98

Achieving good precision, recall and F1 score performance

Prakash 2019

Facilitating decision making

- Improving situation awareness
 - Ex 1: Finding flooding area
 - Ex 2: Spatial event discovery
- Other CIS systems & tools
 - Critical Infrastructure Protection/Decision Support System (CIP/DSS)
 - Urbannet toolkit & web interface
 - Other resources

CIP/DSS [Bush, 2005]

- Main focus: develop a risk-based decision support system to provide insights for making critical infrastructure protection decisions
- Covering different problems in a wide range of infrastructures:
 - Transportation, water distribution system, agriculture, banking and finance, etc.
- URL: http://public.lanl.gov/dp/CIP.html

Example system: CLEAR_{CO2}

CLEAR_{CO2} model interface; users can choose different energy and transportation policies in the main view (left figure), run the chosen scenario and look at the simulation in real time (right figure); the main view also allows to compare different scenarios.

Facilitating decision makings

- Improving situation awareness
 - Ex 1: Finding flooding area
 - Ex 2: Spatial event discovery
- Other CIS systems & tools
 - Critical Infrastructure Protection/Decision Support System (CIP/DSS)
 - Urbannet toolkit & web interface
 - Other resources

URBANNET [Lee+ Big Data'16, Chen+ CIKM 2017]

• A system to generate networks for CIS

Data processing pipeline

Prakash 2019

Urbannet

- A licensed (ORNL and VT) toolkit that integrates
 - Network construction
 - CIS visualization
 - Failure cascade modeling
 - HotSpots algorithm to identify critical facilities
 - Scenario generator & simulator

Additions: Provide actionable insights in emergency management

Red rectangle shows the affected counties due to hurricane and their restoration period

119

Facilitating decision makings

- Improving situation awareness
 - Ex 1: Finding flooding area
 - Ex 2: Spatial event discovery
- Other CIS systems & tools
 - Critical Infrastructure Protection/Decision Support System (CIP/DSS)
 - Urbannet toolkit & web interface
 - Other resources

• HSIP gold

- A unified infrastructure geospatial data inventory, which includes domestic infrastructure datasets collected from various government agencies and partners
- URL: https://gii.dhs.gov/HIFLD/hsip-guest
- NHDplus
- EIA
- USGS water data
- • •

- HSIP gold
- NHDplus
 - A dataset created by the US Environmental Protection Agency (EPA), which includes information about the nation's hydrological framework
 - URL: http://www.horizon-systems.com/nhdplus/
- EIA
- USGS water data
- • •

- HSIP gold
- NHDplus
- EIA
 - Open source Energy datasets from US Energy Information Administration
 - URL: https://www.eia.gov/
- USGS water data

• • • •

- HSIP gold
- NHDplus
- EIA
- USGS water data
 - Provide real time stream flow data across the nation
 - URL: <u>https://waterdata.usgs.gov/nwis/rt</u>

• • • •

Outline

- Introduction
 - Data (network and sequence) mining challenges in CI systems
- Part 1: Power Systems
 - Identifying and protecting against vulnerability in power networks
- Part 2: Transportation Systems
 - Traffic states/flow prediction and control
- Part 3: Decision Making
 - Tools for facilitating decisions
- Conclusion

Urban computing

Many problems and challenges in big cities

Q1: Smart grid

Q2: Urban flow

Q3: Situation awareness

Q4: Robustness & Evolution

Q5: Public Health

Q6: Air pollution

Critical Infrastructure Systems

• Vital to our national security, economy.

Electric Grid System

Conclusions

- Many important problems in CIS for data miners
- Complex system dynamics, unknown system interdependencies pose huge challenges to traditional approaches
- An open domain with many opportunities!

Acknowledgements

Funding

Critical Infrastructure Data Analytics: Models and Tools

B. Aditya Prakash

Modeling

Algorithms

Tools

Prakash 2019

References: Intro (1)

- 1. Weng, Yang, et al. "Robust data-driven state estimation for smart grid." IEEE Transactions on Smart Grid 8.4 (2017): 1956-1967.
- 2. Zhang, Junbo, Yu Zheng, and Dekang Qi. "Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction." AAAI. 2017.
- 3. Wu, Yao-Jan, et al. "Traffic flow prediction for urban network using spatio-temporal random effects model." 91st Annual Meeting of the Transportation Research Board (TRB). 2012.
- 4. Liu, Dongyu, et al. "Smartadp: Visual analytics of large-scale taxi trajectories for selecting billboard locations." IEEE transactions on visualization and computer graphics 23.1 (2017): 1-10.
- 5. Sakaki, Takeshi, Makoto Okazaki, and Yutaka Matsuo. "Earthquake shakes Twitter users: real-time event detection by social sensors." Proceedings of the 19th international conference on World wide web. ACM, 2010.

References: Intro (2)

- 6. Yang, Seungwon, et al. "PhaseVis1: What, when, where, and who in visualizing the four phases of emergency management through the lens of social media." ISCRAM. 2013.
- Xu, Jian, et al. "Improving management of aquatic invasions by integrating shipping network, ecological, and environmental data: data mining for social good." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014.
- 8. Zheng, Yu, Furui Liu, and Hsun-Ping Hsieh. "U-air: When urban air quality inference meets big data." Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2013.

References: Part 1 (1)

- Ouyang, Min. "Review on modeling and simulation of interdependent critical infrastructure systems." Reliability engineering & System safety 121 (2014): 43-60
- O'Reilly, Gerard P., et al. "Telecom Critical Infrastructure Simulations: Discrete-Event Simulation vs. Dynamic Simulation How Do They Compare?." Global Telecommunications Conference, 2007. GLOBECOM'07. IEEE. IEEE, 2007.
- 3. Brown, Theresa. "Multiple modeling approaches and insights for critical infrastructure protection." NATO Security through Science Series D-Information and Communication Security 13 (2007): 23.
- 4. Kim, Seul-Ki, et al. "Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer." IEEE transactions on industrial electronics 55.4 (2008): 1677-1688.
- 5. Xu, X., et al. "Dynamic modeling and interaction of hybrid natural gas and electricity supply system in microgrid." IEEE Transactions on Power Systems 30.3 (2015): 1212-1221.

References: Part 1 (2)

- 6. Song, Hyun Ah, et al. "PowerCast: Mining and forecasting power grid sequences." Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2017.
- Basu, Nipa, R. Pryor, and Tom Quint. "ASPEN: A microsimulation model of the economy." Computational Economics 12.3 (1998): 223-241.
- 8. Barton, Dianne C., et al. "Aspen-EE: an agent-based model of infrastructure interdependency." SAND2000-2925. Albuquerque, NM: Sandia National Laboratories (2000).
- Hopkinson, Kenneth, et al. "EPOCHS: a platform for agent-based electric power and communication simulation built from commercial offthe-shelf components." IEEE Transactions on Power Systems 21.2 (2006): 548-558.
- 10. Balmer, Michael, et al. "Towards truly agent-based traffic and mobility simulations." Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 1. IEEE Computer Society, 2004.

References: Part 1 (3)

- Lee, Sangkeun, et al. "URBAN-NET: A network-based infrastructure monitoring and analysis system for emergency management and public safety." Big Data (Big Data), 2016 IEEE International Conference on. IEEE, 2016.
- 12. Chen, Chen, et al. "FASCINATE: Fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.

References: Part 2

- Arianos, Sergio, et al. "Power grid vulnerability: A complex network approach." Chaos: An Interdisciplinary Journal of Nonlinear Science 19.1 (2009): 013119.
- Chen, Chen, et al. "On the connectivity of multi-layered networks: Models, measures and optimal control." Data Mining (ICDM), 2015 IEEE International Conference on. IEEE, 2015.
- 3. Chen, Liangzhe, et al. "HotSpots: Failure Cascades on Heterogeneous Critical Infrastructure Networks." Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, 2017.
- 4. Buldyrev, Sergey V., et al. "Catastrophic cascade of failures in interdependent networks." Nature 464.7291 (2010): 1025.
- 5. Wang, Jian-Wei, and Li-Li Rong. "Cascade-based attack vulnerability on the US power grid." Safety Science 47.10 (2009): 1332-1336.
- 6. Huang, Xuqing, et al. "Robustness of interdependent networks under targeted attack." Physical Review E 83.6 (2011): 065101.
- 7. Ouyang, Min, and Yiping Fang. "A mathematical framework to optimize critical infrastructure resilience against intentional attacks." Computer-Aided Civil and Infrastructure Engineering 32.11 (2017): 909-929.

References: Part 3 (1)

- Anwar, Tarique, et al. "Roadrank: Traffic diffusion and influence estimation in dynamic urban road networks." Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM, 2015.
- Wu, Yao-Jan, et al. "Urban traffic flow prediction using a spatiotemporal random effects model." Journal of Intelligent Transportation Systems 20.3 (2016): 282-293.
- 3. Moretti, Fabio, et al. "Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling." Neurocomputing 167 (2015): 3-7.
- Zheng, Zimu, et al. "Urban traffic prediction through the second use of inexpensive big data from buildings." Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, 2016.
- Gu, Yiming, Zhen Qian, and Guohui Zhang. "Traffic State Estimation for Urban Road Networks Using a Link Queue Model." Transportation Research Record: Journal of the Transportation Research Board 2623 (2017): 29-39.

References: Part 3 (2)

- 6. Adhikari, Bijaya, et al. "Near-optimal Mapping of Network States using Probes." SIAM International Conference on Data Mining (SDM 2018)
- 7. Anwar, Tarique, et al. "Tracking the evolution of congestion in dynamic urban road networks." Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, 2016.
- 8. Sundar, Rajeshwari, Santhoshs Hebbar, and Varaprasad Golla. "Implementing intelligent traffic control system for congestion control, ambulance clearance, and stolen vehicle detection." IEEE Sensors Journal 15.2 (2015): 1109-1113.

References: Part 4 (1)

- 1. Liang, Jiongqian, Peter Jacobs, and S. Parthasararthy. "Human-guided flood mapping on satellite images." WWW 2018, Lyon.
- 2. Huang, Chao, Xian Wu, and Dong Wang. "Crowdsourcing-based urban anomaly prediction system for smart cities." Proceedings of the 25th ACM international on conference on information and knowledge management. ACM, 2016.
- 3. McClendon, Susan, and Anthony C. Robinson. "Leveraging geospatially-oriented social media communications in disaster response." International Journal of Information Systems for Crisis Response and Management (IJISCRAM) 5.1 (2013): 22-40.
- Muralidhar, Nikhil, et al. "illiad: InteLLigent Invariant and Anomaly Detection in Cyber-Physical Systems." ACM Transactions on Intelligent Systems and Technology (TIST) 9.3 (2018): 35.
- 5. Sakaki, Takeshi, Makoto Okazaki, and Yutaka Matsuo. "Earthquake shakes Twitter users: real-time event detection by social sensors." Proceedings of the 19th international conference on World wide web. ACM, 2010.

References: Part 4 (2)

- 6. Zhao, Liang, et al. "Multi-resolution spatial event forecasting in social media." Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016.
- Lee, Sangkeun, et al. "URBAN-NET: A network-based infrastructure monitoring and analysis system for emergency management and public safety." Big Data (Big Data), 2016 IEEE International Conference on. IEEE, 2016.
- 8. Chen, Liangzhe, et al. "HotSpots: Failure Cascades on Heterogeneous Critical Infrastructure Networks." Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, 2017.

