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The evolving grid

THE ELECTRIC GRID: PRESENT AND FUTURE
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The evolving grid

1 #_‘ th“ o u:mm "mm Sherging H;“’
2y Markets o 3 ,
L $ & ~ Operati oné‘\ g 3 \-’ '2 ‘/_1 1M[£|s

= = 5 BT ae 0 O SNdamoe T muesens

o B s
e ¥ % Sty = ue
‘W = _ Operations _ Service \»—/\—/-/

«  Markets . Provider -~

-

— Generation

Customer

o =, leldor ,’k‘ w--*"] ormmerai
5 }? ‘[ransmissiorj ‘‘‘‘‘ Distribution ﬂ) o im::“
2 e N \\-__.._.-\._/—/ - ~ =
" Marksts @ . {,’.’-‘- \"-‘_ é‘gﬂj mmmmm
& Securs Intorface gt & i By - |§°°:"‘“"; |1
a  [= = T S\ e B
Domain

TiResTh
ey H
51""‘&

— L . Transmission -

TEXAS AAM SMART GRID CENTER

TEXAS A&M ENGINEERING EXPERIMENT STATION
U N I V E R S I T Y ® ©2019 Mladen Kezunovic, All Rights Reserved 5




Layered Architecture
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Control/application layer

Utility Back Office / Centralized Generation
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Interoperability layer

it Frasnework

Function Layer _— - P ——

Imteraporability —

Dimansion
o —
Communication Layar = /.f ---".'/--/._ e
= - -
o W
/ o~

Campanent L:lur .__-j:‘}-___/

EW:II-\:H\‘\‘
TransTesshon

Crstritution -
DER
Damains Customer
P sy

TEXAS A&AM SMART GRID CENTER

TEXAS A&M ENGINEERING EXPERIMENT STATION
U N I V E R S I T Y ® ©2019 Mladen Kezunovic, All Rights Reserved 5



Resilience

Proceedings IEEE

JOINT UNITED STATES-CANADA
ELECTRIC GRID SECURITY
AND RESILIENCE STRATEGY

Enhancing the

Q RESILIENCE

of the Nation's Electricity System
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c;’egrades gradually, and not abruptly, when it experiences stressed conditions and it is able to restore back into its normal state
thereafter

lears from its previous lessons and experiences under major disturbances and uses this knowledge to adapt and fortify itself to prevent
or mitigate the consequences of a similar event in the future.

minimizes interruptions of service during an extraordinary and hazardous event

anticipates, absorbs, adapts to and/or rapidly recovers from a disruptive event

plans and prepares for a disruptive event, absorbs it and is able to recover from it
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Resilience

K. Eshghi, B.K.Johnson, C.G
Rieger“Power System
Protection and Resiliency
Metrics.” 2015 Resilience Week,
Workshop Proceedings, Idaho
lz\lgiié)nal Laboratory, August

T. Mc. Junkin, C.G. Rieger,
“Electricity distribution system
resilient control system metrics.”
2017 Resilience Week,
Workshop Proceedings, Idaho
ygii;)nal Laboratory, September
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Design Requirements: 3RAP

* Robustness (withstand low probability but high consequence events),

* Resourcefulness (effectively manage a disturbance as it unfolds),

* Rapid recovery (get things back to normal as fast as possible after the disturbance),
* Adaptability (absorb new lessons from a catastrophe).

* Predictability (learns from the past and anticipates future disturbances)
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R

Figure: Resilient Control System Framework (Wikipedia)
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Manifestation

Observed Qutages to the Bulk Electric System, 1992-2012
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The Department of Energy tracks major electric disturbance events through Form OE-417 Utilities submit information about qualifying
incidents, including when they occurred, where they eccurred, what triggered them, and how many customers were affected, Notably, while the
reported number of non-weather-related events is high, the vase majority of incidents resulting in customer outages oceur because of weather,

Unlon of Concerned Sclentists 2015; www.ucsusa org/ lightsout
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Causes

Major causes of power outages in the U.S.

Equipment —
failure

Unknown/ —
Other

Public or Animal —
contact

Power Grid failure Maintenance

1%
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What causes our power outages?
2015 5-yr. average

Vegetation
33%
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2300 4 Equipment
Equipment e 25.4%
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Source: Alaska Electric light and Power Company

Animal

Human
Equipment
29% % — Miscellaneous

Weather

21%

Source: We Energies

® Animal (206)

® Faulty Equipment/Human Error
(921)

® Planned (175)

® Unknown (578)

u Vehicle Accident (354)

® Weather/Trees (966)

® Theft/Vandalism (30)

® Overdemand (6)

Source: Annual Eaton Investigation 2013
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Outline
The Grid Edge:

- Application centric view h‘)
- Data centric view f?‘.* |
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International Electricity Grid Reliability

Application centric view i
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The Grid View

U.S. electricity transmission investment by NERC region
billions of 2012 dollars
16
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Figure ES-2. Frequency trace following a large contingency event (i.e., loss of a large generating
unit). Inertial contrel, PFC, and AGC (secondary frequency contrel) each serve a different purpose,
and their response timeframes are also at different points of the frequency recovery.
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Moving market
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Data Centric view
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Smart Meter Data
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Industrial Plant Data

Intelligent
field instruments

for
Process and Electrical system
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Renewables Data

AR
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Asset Condition |
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Oil and Electricity Monthly Average Price

Market Data
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Cyber Security Data

Chart 2.1 Smart Grid Cyber Security Revenue by Application, World Markets: 2010-2015
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Outline

Big Challenges
- Big Data Properties
- Expectations
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Big Data Properties
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Competitive Advantage

Expectations
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Data Science& Processing Infrastructure

Languages
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Example: Predicting
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Cause of outages

Major causes of power outages in the U.S.

150 1~ B storms and severe weather
s Weather/Tree-related cold weather and ice storms
120 1~ B hurricanes and tropical storms
Equnrem — gﬂ, B tornadoes
ailure g
i 0 B extreme heat and wildfires
E 60
Unknown/ — 5
Other
Public or Animal — 30
contact
Power Gnd failure —J L Maintenance
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Impact

International Electricity Grid Reliability
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Annual Business Losses from Grid Problems

Primen Study: $1508 annually for power outages and quality issues
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Real-time Weather Data Historical Data
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BD Data Properties

VELOCITY VOLUME
Source Data Type Temporal Resoluti Spatial Resoluti Measurements
Automated Surface Land-Based 1 min 900 stations Air Temperature, Dew Point, Relative Humidity, Wind Direction, Speed Data Cla Data Source VOLUME VELOCITY VERACITY
e S - i 3 A Precipitati ata Class
N Observing System and Gust, Altimeter, Sea Level Pressure, Precipitation, Visibility... (Measurements) (Data file size) (Rate of use) {Accuracy)
Level-2 Next Generation| — Radar Data 5 min 160 high-resolution Precipitation and Atmospheric Movement v | . o ey 5.1 mi -
Weather Radar Doppler radar sites SM 120GE per day/ device Every 3-15 min emor <1.5%
A NOAA Satellite Satellite Data  |Hourly, daily, monthly 4 km cloud coverage, hydrological observations (precipitation, cloud | Utility PMU 30GH per day/device 240 samples/sec emor <1%
Database wiler, total i meas'mer;ems
Vaisala 11, Lightning Data Instantaneous Median Location | Date and Time, P slitude, Polarity, Type of A ICM 5GB per day/device 250 samples'sec ermor <1%
Lightning Dete Accuracy 200-500m Cloud or Cloud to Ground
R Netwaork DFR 10MB per fault/device 1600 samples/sac error <0.2%
National Digital ‘Weather Forecast 3 hours Skm Wind Speed, Direction, and Gust, Relative Humidity, Convective Hazard
Forecast Database Data Outlook, Tomado Probability, Probability of Thunderstorms... R Radar [27] 612 MB/day per radar Every 4-10 min 1-2 dB; m s
I | Texas Parks & Wildlife | Texas Ecological static 10m Distribution of different tree spices VI5<2%:
Department Mapping Systems Satellite [28] At least 10 GB per day Every 1-15 min
- TR=1-2K
Data 1
[Texas Natural Resources| NAIP year S0em-1m High Resolution Imagery . T RE Pt W
E i . . I-1.8°F, P<1%, Wind
Information Syste Weather data | A50s [29] 10 MB/day per station speed~ 5, RR- 4%
National Aeronautics 3D Global static 1 km Canopy height data
T and Space Vegetation Map E NLDN [30] 40 MB/day During lightning SE < 200m, PCE <15%
Administration
National Cooperative 2SSURGO static 10m Soil type NDFD [31] 5-10 GB/day per model 1 - 12 hours Varies by parameter
Soil Survey
Y Historical Outage instantaneous Feeder section | Location, start and end time and date, number of customers affected, cause T VD EMST [32] [2.7 GB for Texas static SE<10m
Data code
Tree Trimming day Feeder Feeder location, date, trimming period, number of customers affected, cost Vegetation and 300 GB for Texas static SE<1lm
Data of trimming Topoeraphy —
Metwork GIS data static Infinity (shapefile) ) _ Poles: locatjo_n. material/class, hci_g]lt _ Y LIDAR [34] 7 GB for Hamis Co. static HE < Im,
Feeders: location; conductor size, count, and material: nominal voltage VE <150 em
Utility Historical day Tower location Start and end date and time, location, type (maintenance, replacement),
i Data cost, number of customers affected
Insulator asset data static Infinity (shapefile) Surge Impedances of Towers and Ground Wires, Footing Resistance,
Comp BIL
In-field instantaneous Tower location  [Leakage Current Magnitude, Flashover Voltage, Electric Field Distribution,.
measurements Corona Discharge Detection, Infrared Reflection Thermography, Visual
Inspection Reports
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The Processing Steps

e Preprocessing: extract the data for the full graph of
the network, and provide precise location of outages

e Spatiotemporal Correlation: correlate every network
component with weather parameters

e Prediction Algorithm: graph based — combination of
GCRF and logistic regression
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Data Integration
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Predictive Data Analytics ko
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M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P. Dehghanian, and P. -C. Chen, "Predicating Spatiotemporal Impacts of Weather on Power Systems
using Big Data Science," Springer Verlag, Data Science and Big Data: An Environment of Computational Intelligence, Pedrycz, Witold, Chen, Shyi-Ming (Eds.), ISBN

978-3-319-53474-9, 2017.
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Weather Driven Risk Analysis

Risk = Hazard x Vulnerability x Economic Impact

/ \ N

*  Probability of hazardous weather . probability that hazardous conditions ~ *  Expected economic impact in case of
conditions will cause an event in the network an event
» Depends on Weather Forecast  Depends on Historical Weather and » Depends on the type of economic loss
Outage Data that the user wants to consider

* Pick a moment in time (or a period

of time) and estimate probability of . | earn from the historical data what » Identify type of economic loss that is of
hazardous conditions may happen if hazardous conditions interest for the study and calculate it
occur
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Example : Vegetation Risk Model

Hazard » Vulnerability— Risk

00
\\‘-_/I

Vegetation
Index

P. C. Chen and M. Kezunovic, “Fuzzy
Logic Approach to Predictive Risk
Analysis in Distribution Qutage
Management”, IEEE Transactions on
Smart Grid, vol. 7, no. 6, pp. 2827-
2836, November 2016.

Temperature

T. Dokic, P.-C. Chen, M. Kezunovic,
“Risk Analysis for Assessment of
Vegetation Impact on Qutages in
Electric Power Systems”, CIGRE US
National Committee 2016 Grid of
the Future Symposium, Philadelphia,
PA, October-November 2016.

Tree Trimming

Economic
Risk
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http://smartgridcenter.tamu.edu/resume/pdf/cnf/Dokic_CIRGE16.pdf
http://smartgridcenter.tamu.edu/resume/pdf/j/PCC-2016Nov.pdf

Results — Risk Maps
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BD Analytics Outcomes

Probabilities of outages for no outage Probabilities of outages for lightning
Outage
® 1
Outage
Probability
E, A =
= @ o
Probabilities of outages for vegetation Probabilities of outages for ice
o:tag? Qutage
Outage @
Proposed_m Probability
. 80-100 . 80:100
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Takeaways

Extensive research is needed to bring BD Analytics into utility practice:

- Data analytics has been used in the power system domain for over 50 years, but Big Data Analytics is in its infancy

- The Big Data Applications require intensive and costly effort to prepare the data (ingestion, cleansing, curation)

- The gap between the Big Data platforms and utility legacy software (EMS, DMS, MMS) uses is huge, and costly

- Utility predictive methods do not explore data sciences advances (Deep learning, spatiotemporal scaling, etc.)
Lessons learned:

- Assessment of risk is not meaningful without clear mitigation steps (design, component health, operating steps)

- Big Data Predictive Analytics is cost effective and feasible if Big Data is readily available

- Acceptance of Big Data Analytics depends on whether it is able to solve problems that otherwise are not solved

- The target need to be great challenges with high returns if solved to justify the cost of implementation

- The solutions are not necessarily intuitive, so extensive training and mind set change may be needed
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Publications

T. Dokic, M. Kezunovic, “Predictive Risk Management for Dynamic Tree Trimming Scheduling for
Distribution Networks,” IEEE Transactions on Smart Grid, (Accepted, In print).

T. Dokic, M. Pavlovski, Dj. Gligorijevic, M. Kezunovic, Z. Obradovic, "Spatially Aware Ensemble-Based
Learning to Predict Weather-Related Outages in Transmission," The Hawaii International Conference on
System Sciences - HICSS, Maui, Hawaii, January 2019.

M. Kezunovic, T. Dokic, R. Said, “Optimal Placement of Line Surge Arresters based on Predictive Risk
Framework using Spatio-Temporally Correlated Big Data,” CIGRE Paris, August 2018.

M. Kezunovic, T. Dokic, "Predictive Asset Management Under Weather Impacts Using Big Data,
Spatiotemporal Data Analytics and Risk Based Decision-Making," 10th Bulk Power Systems Dynamics and
Control Symposium — IREP’2017, Espinho, Portugal, August 2017.

http://smartgridcenter.tamu.edu/resume/long_resume/Html/index.html#publ
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bulldmwperous future.

Where energy is
clean, abundant, reliable, safe, secure and atfordahle
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