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* Guiding principles
= What is the best approach for a given task?
= What are the optimal model parameters?

* Interpretabillity

= How to extract cause-effect relationships from
complex non-linear models?

» Scalability

= What is the optimal way of leveraging heterogeneous
distributed computing resources?

 Validity
» \WWhat are the best performance metrics to capture
generalization power?

= How to quantify uncertainty without increasing the “Black Cube” John McCraken, 1971
computational complexity? Portland Art Museum
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» High-fidelity models and simulations T SRS ‘m

= Computational complexity ° ;
» Big data analytics o8

= Require significant amounts of data ‘ i -
 Machine learning odiy | L,, 9, . -

L Qe k‘\% M Y
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= Large datasets of “acceptable quality” 2 Y//,
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Regression and machine learning techniques generally fail to convey the physicality of

. ! ViThr
processes being modeled and lack acceptance by some science communities. L \" g
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NASA Machine Learning Workshop :
April 17-19, 2018. Boulder, Colorado §

Techniques and tools are needed for combining process (physical) models with machine
learning models in a meaningful way.
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* Machine Learning algorithms should be:
* Domain-aware
* |nterpretable
= Robust
= Data-intensive

* Machine Learning must contribute to:
= Enhance current modeling and simulation
= Automation and decision support
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 Embedding domain knowledge izzm
= Knowledge representations for ML v |
= |Integration of domain knowledge y ;WV}\(G@ cos(0, ~9,)+ B, sin(®, -0,))
= Data-driven scientific discovery 3y | |
Q)= Z[V, V, (G,\j sin(¢,=0,)~B;, cos(6, —0, ))

 Facilitate accelerated learning

= Methods to accelerate the convergence and
stability of ML algorithms when (labeled) data
are limited

* Tools to speed-up the tuning and optimization
of domain-aware ML models
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* Features must be: Al | e
* Representative oatire st . | ML Agorm |
v’ Capture relevant information in data et 4 Bpotness
= |nterpretable Featurs e Fealator
v Recognizable by human experts \ - J @jjl'j‘r:‘j
= Generalizable Filter ”
v' Same results using different ML techniques
Tasting data

 Feature Selection | :;t}[ﬂ | }

cross validation
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hypothesis [ Final Evaluation

ML algorithim
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= Wrappers

Wrapper

| Backward elimination
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SISSO ("“Sure Independence Screening and Sparsifying Operator”)
= Generation of physically interpretable descriptors
» Based on compressing-sensing principles

 Algorithm:

= Starting feature space: readily-available (and relevant properties): {®,}

= Operator set: H™ = (I, +, —,x,exp, log, |-I,Y , ~% 2% °les, 2]

v dimensional analysis; linear and non-linear operators

= Recursive expansion of the feature space: ®,, = U™, H™ [¢,, ¢,], VP, P, € ®;_;
= SIS: scores each standardized feature huge features-space: ®
with a metric and keeps only top ranked features sxsml SIS(A1p) SIS(Acn-up) l
= SO: finds optimal n-dimensional descriptor bPT subspace: Sy bpsl
« Data requirements: Sio S US e S US U VS
» # samples >k -n-log(#®),where k~1 — 10 [ 50 | 0 |
1D descriptor 2D descriptor nD descriptor

Ouyang R et al. 2017, arXiv preprint arXiv:1710.03319 June 14. 2019
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* Autoencoders:
Unsupervised Learning
Bottleneck architecture
Compressed data representation
L(x,X) + regularizer

» Sparse autoencoders
= Penalize node activations
= Few units active at the same time

L(x,%) + A Xila;l

Representation Learning

e Variational Autoencoders:

Generative

= [atent gaussian models
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» Coupling autoencoders with:  Variational autoencoders with:
= Clustering algorithms * Predefined priors
= Classification algorithms

L(x,X) + A4 Zlail + Ay Lciustering

classifier

Classifier
Clustering e.g., topology preservation

encode > decode >
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» Learning as a constrained optimization technique

= Hard Constraints Multimodal data integration
v" During training
v At the time of prediction r L |me Y DID R 'I'I'
- . IIIII ------------- (11 |-—~1 [TT111] |M|I|I|
= Soft Constraints - IDID
v’ Additional terms in the loss-function B T nformedby | -

structure-property | *

relationships

v' Coupling with simulation codes A i

Hidden layer Hidden layer
= Model form e
v’ Basis functions b
v Domain-specific kernels | /| R
e
.\..

knowledge graph
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* Reservoir computing
= Generalization of recurrent neural networks

= Dynamical systems

= Maps inputs onto a high-dimensional space
» Hardware implementation

* Elements
= |Input layer
v random weights
= Reservoir
v' Random sparse connectivity

Structured reservoirs

v

Input serial data Input layer Reservoir Output layer
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v" Non-linear activation Random, output weights
fixed Random, fixed
= Readout layer input recurrent
v’ Linear transformation of the reservoir state weights connections

v’ Fast adaptation using ridge regression
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Northwest Echo State Machines
Neuronal Reservoir
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