

Smart Grid Edge Analytics Workshop Georgia Tech Global Learning Center June 4-5, 2019, Atlanta, GA, USA

Domain-aware Machine Learning

Robert Rallo

Advanced Computing, Mathematics, and Data Division

PNNL is operated by Battelle for the U.S. Department of Energy

Machine Learning: challenges

Guiding principles

- What is the best approach for a given task?
- What are the optimal model parameters?

Interpretability

How to extract cause-effect relationships from complex non-linear models?

Scalability

What is the optimal way of leveraging heterogeneous distributed computing resources?

Validity

- What are the best performance metrics to capture generalization power?
- How to quantify uncertainty without increasing the computational complexity?

"Black Cube" John McCraken, 1971 Portland Art Museum

From modeling and simulation to big data analytics and machine learning

- High-fidelity models and simulations
 - Computational complexity
- Big data analytics
 - Require significant amounts of data
- Machine learning
 - Computational complexity
 - Large datasets of "acceptable quality"

Regression and machine learning techniques generally **fail to convey the physicality** of processes being modeled and **lack acceptance** by some science communities.

Techniques and tools are needed for combining process (physical) models with machine learning models in a meaningful way.

NASA Machine Learning Workshop April 17-19, 2018. Boulder, Colorado

Scientific Machine Learning

- Machine Learning algorithms should be:
 - Domain-aware
 - Interpretable
 - Robust
 - Data-intensive
- Machine Learning must contribute to:
 - Enhance current modeling and simulation
 - Automation and decision support

Domain-aware Machine Learning

- Embedding domain knowledge
 - Knowledge representations for ML
 - Integration of domain knowledge
 - Data-driven scientific discovery
- Facilitate accelerated learning
 - Methods to accelerate the convergence and stability of ML algorithms when (labeled) data are limited
 - Tools to speed-up the tuning and optimization of domain-aware ML models

Data (Features)

- Features must be:
 - Representative
 - ✓ Capture relevant information in data
 - Interpretable
 - ✓ Recognizable by human experts
 - Generalizable
 - ✓ Same results using different ML techniques
- Feature Selection
 - Expert criteria
 - Heuristic search
 - Filters
 - Wrappers

Feature engineering

SISSO ("Sure Independence Screening and Sparsifying Operator")

- Generation of physically interpretable descriptors
- Based on compressing-sensing principles

Algorithm:

- Starting feature space: readily-available (and relevant properties): $\{\Phi_0\}$
- Operator set: $\widehat{H}^{(m)} \equiv \{I, +, -, \times, exp, log, |-|, \sqrt{}, -1, 2, 3\}[\phi_1, \phi_2]$ ✓ dimensional analysis; linear and non-linear operators
- Recursive expansion of the feature space: $\Phi_n \equiv \bigcup_{i=1}^n \widehat{H}^{(m)}[\phi_1, \phi_2], \forall \phi_1, \phi_2 \in \Phi_{i-1}$
- SIS: scores each standardized feature
 with a metric and keeps only top ranked features
- **SO**: finds optimal n-dimensional descriptor

Data requirements:

• # samples $\geq k \cdot n \cdot \log(\#\Phi)$, where $k \sim 1 - 10$

Representation Learning

• Autoencoders:

- Unsupervised Learning
- Bottleneck architecture
- Compressed data representation
- $\mathcal{L}(x,\hat{x}) + regularizer$

Sparse autoencoders

- Penalize node activations
- Few units active at the same time
- $\mathcal{L}(x,\hat{x}) + \lambda \sum_{i} |a_{i}|$

Variational Autoencoders:

- Generative
- Latent gaussian models

$$\mathcal{L}\left(x,\hat{x}\right) + \sum_{j} KL\left(q_{j}\left(z|x\right)||p\left(z\right)\right)$$
 assumed prior (gaussian)

Domain-aware representations

- Coupling autoencoders with:
 - Clustering algorithms
 - Classification algorithms

$$\mathcal{L}(x,\hat{x}) + \lambda_1 \sum_{i} |a_i| + \lambda_2 \mathcal{L}_{clustering}$$
classifier

- Variational autoencoders with:
 - Predefined priors

- Domain-informed prior
- KL term in the loss function enforces the desired probability distribution

0

Domain-awareness in supervised ML

- Learning as a constrained optimization technique
 - Hard Constraints
 - ✓ During training
 - ✓ At the time of prediction
 - Soft Constraints
 - ✓ Additional terms in the loss-function
 - ✓ Coupling with simulation codes
 - Model form
 - ✓ Basis functions
 - ✓ Domain-specific kernels

 $L = L_r + L_{SPR}$

knowledge graph

Machine Learning at the Edge

Reservoir computing

- Generalization of recurrent neural networks
- Dynamical systems
- Maps inputs onto a high-dimensional space
- Hardware implementation

Elements

- Input layer
 - ✓ random weights
- Reservoir
 - ✓ Random sparse connectivity
 - ✓ Non-linear activation
- Readout layer
 - ✓ Linear transformation of the reservoir state
 - ✓ Fast adaptation using ridge regression

Echo State Machines

Reservoir size: 100 units (15% density)

Online training and short-time prediction (5min)₁₂

Thank you

