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Machine Learning: challenges

• Guiding principles
 What is the best approach for a given task?
 What are the optimal model parameters?

• Interpretability
 How to extract cause-effect relationships from 

complex non-linear models?

• Scalability
 What is the optimal way of leveraging heterogeneous 

distributed computing resources?

• Validity
 What are the best performance metrics to capture 

generalization power?
 How to quantify uncertainty without increasing the 

computational complexity? 
“Black Cube” John McCraken, 1971
Portland Art Museum
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From modeling and simulation to big data 
analytics and machine learning

• High-fidelity models and simulations
 Computational complexity

• Big data analytics
 Require significant amounts of data

• Machine learning
 Computational complexity
 Large datasets of “acceptable quality”

Regression and machine learning techniques generally fail to convey the physicality of
processes being modeled and lack acceptance by some science communities.
Techniques and tools are needed for combining process (physical) models with machine 
learning models in a meaningful way.

NASA Machine Learning Workshop
April 17-19, 2018. Boulder, Colorado
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Scientific Machine Learning

• Machine Learning algorithms should be:
 Domain-aware
 Interpretable
 Robust
 Data-intensive

• Machine Learning must contribute to:
 Enhance current modeling and simulation
 Automation and decision support

DATA
(Features)

MODELS
(Algorithms)

SCIENTIFIC
KNOWLEDGE
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Domain-aware Machine Learning

• Embedding domain knowledge
 Knowledge representations for ML
 Integration of domain knowledge
 Data-driven scientific discovery

• Facilitate accelerated learning 
 Methods to accelerate the convergence and 

stability of ML algorithms when (labeled) data 
are limited

 Tools to speed-up the tuning and optimization 
of domain-aware ML models
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Data (Features)

• Features must be:
 Representative

 Capture relevant information in data
 Interpretable

 Recognizable by human experts
 Generalizable

 Same results using different ML techniques

• Feature Selection
 Expert criteria
 Heuristic search
 Filters
 Wrappers

forward selection

Backward elimination
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Feature engineering

SISSO (“Sure Independence Screening and Sparsifying Operator”)
 Generation of physically interpretable descriptors
 Based on compressing-sensing principles

• Algorithm:
 Starting feature space: readily-available (and relevant properties): {𝚽𝚽0}
 Operator set: �𝐻𝐻(𝑚𝑚) ≡ {𝐼𝐼, +,−,×, 𝑒𝑒𝑒𝑒𝑒𝑒, 𝑙𝑙𝑙𝑙𝑙𝑙, − , , −1, 2, 3}[𝜙𝜙1, 𝜙𝜙2]

 dimensional analysis; linear and non-linear operators
 Recursive expansion of the feature space: 𝚽𝚽𝑛𝑛 ≡ ⋃𝑖𝑖=1

𝑛𝑛 �𝐻𝐻 𝑚𝑚 𝜙𝜙1, 𝜙𝜙2 ,∀𝜙𝜙1, 𝜙𝜙2 ∈ 𝚽𝚽𝑖𝑖−1
 SIS: scores each standardized feature 

with a metric and keeps only top ranked features
 SO: finds optimal n-dimensional descriptor

• Data requirements:
 # 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝑘𝑘 � 𝑛𝑛 � log #𝚽𝚽 , where k~1 − 10

June 14, 2019Ouyang R et al. 2017, arXiv preprint arXiv:1710.03319
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Representation Learning

• Autoencoders:
 Unsupervised Learning
 Bottleneck architecture
 Compressed data representation
 ℒ 𝑥𝑥, �𝑥𝑥 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

• Sparse autoencoders
 Penalize node activations
 Few units active at the same time
 ℒ 𝑥𝑥, �𝑥𝑥 + 𝜆𝜆∑𝑖𝑖 𝑎𝑎𝑖𝑖

• Variational Autoencoders:
 Generative
 Latent gaussian models

assumed prior (gaussian)
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Domain-aware representations

• Coupling autoencoders with:
 Clustering algorithms
 Classification algorithms

µ
σ

• Variational autoencoders with:
 Predefined priors

ℒ 𝑥𝑥, �𝑥𝑥 + 𝜆𝜆1�
𝑖𝑖

𝑎𝑎𝑖𝑖 + 𝜆𝜆2ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Classifier

Clustering

• Domain-informed prior
• KL term in the loss function enforces the

desired probability distribution

e.g., topology preservation
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Domain-awareness in supervised ML

• Learning as a constrained optimization technique
 Hard Constraints

 During training
 At the time of prediction

 Soft Constraints
 Additional terms in the loss-function
 Coupling with simulation codes

 Model form
 Basis functions
 Domain-specific kernels

knowledge graph

Multimodal data integration
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Machine Learning at the Edge

• Reservoir computing
 Generalization of recurrent neural networks
 Dynamical systems
 Maps inputs onto a high-dimensional space
 Hardware implementation

• Elements
 Input layer

 random weights
 Reservoir

 Random sparse connectivity
 Non-linear activation

 Readout layer
 Linear transformation of the reservoir state
 Fast adaptation using ridge regression

Domain-awareness

Structured reservoirs
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Echo State Machines

Online training and short-time prediction (5min)

Reservoir size: 100 units 
(15% density)

𝑥𝑥𝑡𝑡+5 = ℱ(𝑥𝑥𝑡𝑡)

Training data (6759 min)



Thank you

13


	Domain-aware�Machine Learning
	Machine Learning: challenges
	From modeling and simulation to big data analytics and machine learning
	Scientific Machine Learning
	Domain-aware Machine Learning
	Data (Features)
	Feature engineering
	Representation Learning
	Domain-aware representations
	Domain-awareness in supervised ML
	Machine Learning at the Edge
	Echo State Machines
	Slide Number 13

